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SUMMARY

Code artefacts that have non-trivial requirements with respect to the ordering in which their methods or
procedures ought to be called are common and appear, for instance, in the form of API implementations
and objects. Testing such code artefacts to gain confidence that they conform to their intended protocols is
an important and challenging problem. This paper proposes conformance testing adequacy criteria based
on covering an abstraction of the intended behaviour’s semantics. Thus, the criteria are independent of
the specification language and structure used to describe the intended protocol and the language used to
implement it. As a consequence, the results may be of use to black box conformance testing approaches
in general. Experimental results show that the criteria are a good predictor for fault detection for protocol
conformance and for classical structural coverage criteria such as statement and branch coverage. They also
show that the division of the domain derived from the criterion produces subdomains such that most of its
inputs are fault revealing. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Despite the progress made, the automatic generation of efficient high-quality test suites is still a
major challenge for many kinds of software [1–3]. This is the case for stateful components such
as APIs, GUI, web software, protocol servers and clients that have non-trivial requirements with
respect to the ordering in which their methods or procedures ought to be called to produce mean-
ingful results or to access certain functionality [4]. For instance, in Java, the interface ResultSet
is used to access or modify elements from a database. The call protocol for a ResultSet instance
prohibits cursor movements while a new record is being inserted (i.e. no cursor movement between
moveToInsertRow and insertRow) but allows closing the ResultSet even if insertion has
not been completed. Another example of a stateful component is some web-servers: although they
must be able to receive requests in any order, only by following a specific sequence of actions, it
is possible to trigger portions of its functionality. Components with non-trivial call protocols and
options are particularly challenging for testing approaches [2, 5]. It is known that they are hard for
both random testing and related approaches [5] and dynamic symbolic execution techniques [2].

A particularly important type of testing for stateful components is performed to gain confidence
that they conform to their intended call protocols [6]. For instance, call protocol conformance is
crucial to gain assurance that client code abiding to intended usage will not fail due to making calls
on code that poorly implements the intended call protocol (as the dual problem of typestate verifi-
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cation [7]). Thus, call protocol conformance underlies settings like model-based development [8],
model-based testing [9] and test-driven development [10]. In this context, testing focus is on verify-
ing that the code under test accepts or rejects sequences of method calls according to the intended
call protocol. This is intractable as in principle it may consist in checking for a potentially infinite
set of sequences of method calls that the implementation accepts or rejects, each one according to
the call protocol.

White box adequacy criteria (i.e. adequacy criteria based on code) implies that the same test suite
developed at design time may be adequate for some implementations but not for others. Such a
situation is undesirable in, for instance, cross platform development of API’s, which is becoming
widespread in product family development. The question addressed in this paper is if it is possible
to define adequacy criteria for testing call protocols that are independent of the structure of the code
to be tested. That is, whether adequacy criteria can be defined in terms of the intended call protocol
rather than its implementation.

Black box testing has addressed this problem to some extent. The vast majority of work on black
box testing has studied structural strategies for defining adequacy of conformance with respect to
specifications [3]. Coverage criteria are then defined either in terms of structural elements of the
specification [11–15] or the executable code generated from it [16, 17]. This yields criteria and
empirical studies influenced by (accidental) elements of the structure of the model or its executable
code such as predicates, control or data flow elements. Authors have already warned that acciden-
tal aspects of specifications or model compilers may potentially influence effectiveness of criteria
[16–21]. Moreover, being tightly coupled to a particular language, the relation between the criterion
and protocol state space actually covered and, consequently, the degree to which the failure domain
is explored, is not studied. This in turn hinders the generalization of the empirical results of this
body of work [3] to the general problem of black box testing of call protocols.

Thus, although some sort of semantic coverage would be expected as a natural measure of testing,
there is a hitherto unexplored difficulty when the behaviour of the system under test is infinite. One
of the main challenges of defining effective semantic or behaviour-based coverage criteria is that call
protocols are typically infinite state, and consequently, traditional black box criteria for conformance
testing of call protocols are not applicable as finite state spaces are assumed [11, 12, 20, 22–25].
Various strategies for finitizing protocol state spaces have been studied [26–28]. However, there are
no empirical results on their effectiveness.

The general hypothesis of this paper is that effective notions of behaviour coverage are actually
feasible by defining them in terms of finite abstractions of the semantic domain that describes the
intended call protocol behaviour. Two coverage criteria over a finite abstraction of deterministic
infinite state behaviour call protocols are proposed together with experiments that show two things:
(i) that when faults manifest themselves as unexpected exceptions or non-termination, the criteria
are good predictors of fault detection in the context of call protocol conformance testing and (ii) that
the criteria are good predictors of structural coverage. The practical implications of this result may
be that in the context of development approaches which advocate test development before coding,
generating tests according to an abstraction of the call protocol semantics of an artefact with non-
trivial requirements on method call ordering would provide (i) a good criterion for detecting faults
and (ii) a first and early shot at producing high code coverage test suites.

The coverage criteria are defined over enabledness-preserving abstractions (EPAs) [29]. These
abstractions quotient an infinite state space into finite classes of states, which allow the same method
calls. They also abstract method parameters through existential elimination. The transitions between
EPA states (corresponding to action invocations that may lead the program from one state to another)
are the key of the first proposed criteria: the more transitions are covered by a test suite, the higher
the level of adequacy according to the criteria.

The fault detection ability of EPA transition coverage is evaluated on five industrially relevant Java
classes with rich call protocols by analysing the mutant detection capability of randomly generated
test suites. Questions studied are (RQ.1) how good EPA transition coverage is for fault detection
by looking at (RQ.1.1) EPA transition coverage and fault detection correlation, and (RQ.1.2), as
achieving higher coverage is related to test suite size, the impact of EPA transition coverage over
fixed-size test suites. Then, a more qualitative study is performed (RQ.2) aiming to provide insight

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
DOI: 10.1002/stvr



BEHAVIOUR ABSTRACTION ADEQUACY CRITERIA FOR API CALL PROTOCOL TESTING

on why the positive results for RQ.1 are obtained. The paper includes a study on the correlation
between EPA transition coverage and code coverage (RQ.2.1) on the category partition implicitly
defined by EPA transition coverage (an input i belongs to the subdomain defined by a transition t
if and only if i exercises t ) is likely to have dense subdomains (RQ.2.2) and the effectiveness of
individual EPA transitions (RQ.2.3). It is also investigated (RQ.3) if the results for RQ.1 and RQ.2
are not simply an artefact of achieving action coverage. Finally, a combined criterion that involves
covering EPA transitions and actions (RQ.4) is proposed and studied.

Subject to the threats derived from the adopted fault and failure model and the assumption of
deterministic specifications and implementations (which are further discussed in Section 5), results
suggest that the EPA transition criterion is a good predictor of mutant detection (RQ.1.1). Results
also show that EPA transition correlations are comparable with or better than those of structural
(rather than behavioural) white box criteria. They also suggest that the EPA transition coverage
criterion, which is behavioural and hence independent of specification language bias, performs com-
parably in terms of predictability of test suite fault detection, resulting in higher values for all case
studies against statement coverage and is better than branch coverage in two out of five case stud-
ies. Moreover, for fixed size, test suites with the highest behavioural adequacy are statistically better
(RQ.1.2) in terms of fault detection.

Results for RQ.2 aiming at attaining a deeper understanding of the observed phenomena reinforce
the results of RQ.1. Results indicate that the proposed criterion is a good predictor of structural
coverage criteria (statement and branch coverage) when applied over code under test (RQ.2.1).
These results indicate that a first and early shot at producing high code coverage test suites (which
could be extended when code is available) can be achieved through EPA transition coverage.

Results also suggest that the domain partition implicitly derived from EPA transitions is likely to
produce subdomains that are dense in failures, that is, a subdomain with high failure rate (RQ.2.2).
This is close to what is known to be optimal in the context of partition testing [30].

The finer-grained study of RQ.2.3 that investigates the effectiveness of transitions (the likelihood
of revealing a mutant when traversing the transition) rather than the subdomains defined by them
reveals that for each fault, there is almost always one transition that is highly effective in detecting it
(> 90% effectiveness), while nearly all the rest of the transitions have poor effectiveness (< 10%).
Furthermore, experimental results show that the effective transition is not always the same one, it
depends on the fault. This is in line with previous results: as faults are a priori unknown, it makes
sense to consider more adequate those tests that cover more transitions. Test suites with highest
adequacy cover all transitions, and consequently, the one highly effective is exercised. However, a
more significant implication is that, as uniqueness of effective subdomain per fault does not hold
but does for transitions, there is an opportunity to improve on EPA transition coverage criterion.

Experimentation regarding RQ.3 aimed at investigating that promising results for EPA transition
coverage are not simply because the criterion is a refinement of an action coverage criterion. Results
suggest that for correlation with fault detection and structural coverage, in most cases, EPA transition
coverage performs comparably or better than action coverage. Also, results indicate that subdomains
defined by actions are less dense than those derived from transitions and that transitions are, by
far, much more effective than actions for exposing faults. These results suggest that EPA transition
coverage can provide benefits over action coverage and justify studying a combined criterion.

The last set of results (corresponding to RQ.4) shows that considering both actions and transitions
for measuring the adequacy level of test suites yields to results that outperform those of actions and
transitions (when considered in isolation) as a fault detection predictor.

In conclusion, this paper is a step to understanding how behavioural coverage of call protocol
behaviour correlates with fault detection in the context of protocol conformance testing. Results
suggest, to the extent of the external validity threats of our experiments, that the proposed criteria
are good predictors for fault detection and for classical structural coverage criteria such as statement
and branch coverage.

The implication being that the criterion could help improve random testing, test-driven develop-
ment, test case selection and, in general, techniques for tests generation from formal specifications
when applied to API code with rich call protocols. The results seem to indicate that such approaches
would benefit from introducing heuristics that aim to maximize action and EPA coverage.
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The rest of this paper is organized as follows. It begins by formally defining the addressed
problem, formalizing a conformance relation (Section 2.1), the EPA transition coverage criterion
(Section 2.3) and research questions (Section 2.4). Then, in Sections 3 and 4, the experimental
design and results are presented, followed by related work (Section 6) and conclusions and future
work (Section 7).

2. PROBLEM STATEMENT

The paper proposes adequacy criteria based on behavioural coverage. In this section, the problem is
formalized by defining what is meant by an intended protocol to be provided by a code artefact, the
actual protocol implemented by a code artefact and the conformance relation that is expected to hold
between them. Finally, the EPA transition test adequacy criterion is defined, and research questions
are formulated.

2.1. Call protocol conformance

The term protocol conformance has been extensively used, encompassing many different approaches
related to checking if an implementation is in compliance with a specification. In this work, a more
specific term is used: API call protocol conformance. As in the case of typestate verification litera-
ture [4, 31–34], the verification purpose here is interoperability preservation: an API implementation
must support sequences of calls that a specification (potentially used to build or verify client code)
defines as legal. As in typestate verification, our setting is restricted to deterministic specifications
and to abstracting away output. Determinism in specifications is a natural assumption that provides
API clients with certainties about when it is legal to call a given operation. On the other hand, assum-
ing deterministic behaviour of failures in API implementations is a reasonable assumption in many
contexts that greatly simplifies presentation and experimentation as further explained in the sequel.

Full formal treatment of programming language semantics is beyond the scope of this paper.
An intuitive definition is provided, sufficient for defining rigorously the notion of call protocol
conformance used in this work. The semantics of an API implementation can be defined as a call
protocol labelled transition system (LTS). The states of the LTS are all configurations of the internal
state of the code. If the code is a class, then configurations correspond to all structurally distinct
instances of the class. If the code is an API implementation, configurations are all possible valuations
on internal variables of the API. Transitions are the effect of successful invocations of specific
methods with concrete parameters. A transition between states s and s0 will be present if and only if
the execution of the associated method – with the annotated actual parameters – on the configuration
corresponding to s eventually halts, does not yield any exceptions and changes the internal state of
the code to a configuration that corresponds to s0.

A specification language designed to describe the intended call protocol behaviour of a class
or API to be developed can be given semantics in a similar fashion. The intended call protocol
LTS defines which are the (potentially infinite) set of valid method invocation sequences on a code
artefact (each invocation including actual parameters). An implementation is conformant if it accepts
the sequences of method invocations that are legal according to the intended protocol.

Hence, this paper adopts (intended and actual) call protocol LTS as the semantic domain for
implementations and specifications. The actual protocol LTS represents the real behaviour of the
implementation, while the intended protocol LTS represents the intended behaviour according to
some specification. Both LTS are semantic representations and independent of the programming and
specification languages used.

Definition 1 (call protocol LTS)
Let m1; : : : ; mn be method names, and Di the domain of mi . An LTS protocol for m1; : : : ; mn is a
tuple L D h†;S;S0; �i where

� S is the (possibly infinite) set of states.
� S0 is the initial state.
� † D

S
i6n.¹miº �Di / is the set of possible method invocations.
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� � W .S�†�S/ is the transition relation that maps pairs of a state and method invocation to the
corresponding resulting state. The relation must be a partial function on the first two elements
of the tuple.

As said, no assumptions are made on the way the intended protocol LTS of a code artefact is
described: it is simply assumed that the semantics of such language can be defined in terms of a
call protocol LTS as defined subsequently. In fact, there are several ways an intended protocol LTS
can be defined in practice: it could be formally given as a model in a Model-Based Testing (MBT)
setting, it could be defined by a reference implementation, it could be given as a set of known valid
traces, it could be mined from client applications of the code and so on. In any case, an LTS is a
reasonable representation of the underlying behaviour. Note that, as mentioned, the protocol LTS is
required to be deterministic.

The expression s ! mi .p/s0 denotes that .s;mi .p/; s
0/ 2 �; s !mi .p/ denotes

9s0:.s;mi .p/; s
0/ 2 �, and s 6!mi .p/ denotes Às0:.s;mi .p/; s0/ 2 �. These definitions are trivially

extended to sequences of method invocations. Conformance between call protocol LTS is defined
as an inclusion with respect to the sequences of method invocations they accept.

Definition 2 (call protocol LTS conformance)
Given an intended and an actual call protocol LTS, I and A, over the same set of methods with
initial states SI0 and SA0 ; A is in conformance to I if and only if for all sequence w of method
invocations – with concrete parameters –, SI0 !

w
I then SA0 !

w
A .

The failure model adopted is derived from the definitions of intended and actual protocol LTS
and the definition of conformance. A failure is then a sequence of method invocations with concrete
parameters, which is part of the intended protocol but does not terminate or raise an exception when
executed on the implementation.

Definition 3 (Failure)
Given an intended and an actual Protocol LTS, I and A, over the same set of methods with initial
states SI0 and SA0 , a sequence w of method invocations – with concrete parameters – is a failure if
SI0 !

w
I and SA0 6!

w
A .

Figure 1(a) shows a portion of the intended call protocol LTS of a bounded stack over alphabet
¹a; bº. Initially the stack is empty, and thus, the only possible action in S0 is to push an element into

Figure 1. (a) Snippet of the intended protocol of a bounded stack and (b) its corresponding enabledness-
preserving abstraction.
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Figure 2. Snippets of the (a) faulty implementation of a bounded stack and (b) its actual protocol.

it. Note that there are two outgoing transitions from S0, each of which corresponds to a different
actual parameter. Let us consider now the faulty implementation shown in Figure 2(a). It fails when
trying to pop the last element of the stack: the IllegalStateException should be thrown
when top is less than 0 but not when it equals 0. Figure 2(b) shows part of its actual protocol
LTS. As aforementioned, it fails when pop is invoked on a BoundedStack containing only one
element. Consequently, there are no transitions to go back to the initial state. Therefore, the sequence
Œpush.a/; push.a/; pop./; pop./� is a failure, because it is part of the intended call protocol but
not of the actual call protocol. In practice, a client following the intended call protocol may fail if
the implementation is non-conformant.

2.2. Enabledness-preserving abstractions

The aim is to define an adequacy criterion based on its protocol’s behaviour. Therefore, the criterion
should be independent of the specification language used to express the intended protocol and the
programming language used to implement it.

Classical protocol testing approaches are defined over finite state machines [35]; however, pro-
tocol behaviour is a typically infinite state. In this paper, the proposal is to work over a finite state
abstraction of the intended protocol. The abstraction proposed is the EPA [29]. Basically, an EPA is
an LTS where labels are method names (with no concrete parameters). EPAs abstract the state space
of the protocol LTS by quotienting it according to the methods that are enabled. In other words, two
states of a protocol LTS are represented by the same abstract state if and only if for every method
and concrete parameters enabled in one state, the same method is enabled in the other state (possibly
with different concrete parameters). Consequently, an EPA state can be thought of as representing
a particular subset of methods and abstracting all concrete states for which for every method in the
subset, there are some concrete parameters for which calling that method on that state is valid in
the protocol LTS. EPAs abstract parameters by introducing a transition between abstract states only
if there exist parameter values such that a concrete state of the source abstract state can lead to a
concrete state of the target abstract state (i.e. existential elimination). Figure 1(b) shows the EPA of
the intended protocol LTS of a bounded stack depicted in Figure 1(a).‡ State S0 abstracts concrete
states in which the only enabled action is push (an empty stack), S1 abstracts states where push

‡Note that the single arrow from S1 to S1 represents two different transitions, one for push and the other for pop.
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and pop are both enabled (a neither full nor empty stack), and S2 abstracts concrete states where
the only enabled action is pop (a full stack).

In order to formally define EPAs, the notion of states enabledness equivalence must be defined.

Definition 4 (enabledness equivalence)
Given a protocol LTS L D

˝
† D

S
i6n.¹miº �Di /; S; S0; �

˛
over method names m1; : : : ; mn

and Di as the domain of mi and two states s1; s2 2 S; s1 and s2 are enabledness equivalent states
(noted s1 � s2) if and only if for every mi9p 2 Di :s1 !mi .p/” 9p0 2 Di :s2 !

mi .p
0/.

States S1 and S2 of the intended protocol of Figure 1(a) are enabledness equivalent, because
both states enable the same set of actions (note that S4, S6 and many other states are equivalent
to S1 and S2 as well). Given an LTS describing a protocol, its EPA is defined as a finite, poten-
tially non-deterministic, state machine which groups the protocol states according to the actions that
they enable.

Definition 5 (enabledness-preserving abstraction)
Given a protocol LTS L D

˝
† D

S
i6n.¹miº �Di /; S; S0; �

˛
for a protocol over method names

m1; : : : ; mn and Di as the domain of mi , the LTS M D h
S
i6n.¹miº/; S; S0; ıi is the EPA of L if

there exists a total function ˛ W S ! S such that ˛.S0/ D S0 and for every s; s0 2 S and every
method name mi ; .˛.s/;mi ; ˛.s0// 2 ı ” 9p 2 Di :s !

mi .p/ s0. Furthermore, given a pair of
states s1 and s2 on S, it holds that s1 � s2 ” ˛.s1/ D ˛.s2/.

Enabledness-preserving abstractions were used in previous work for validation of specifications
[36] and programs [29]. Also, there is tool support for constructing EPAs either from a contract-
based specification [36] or from source code [29].

2.3. Test coverage criterion

Naively measuring coverage of a test suite on an infinite state space would typically yield zero as a
result [37]. Measuring the coverage on the entire protocol LTSs would fall in this case. Considering
that they can be abstracted as EPA models, it is natural to define and investigate whether the latter
would be effective as a basis for defining a coverage criterion for conformance testing. In this paper,
a criterion based on transition coverage is defined and its effectiveness as test suite quality predictor
is studied.

A unit test is defined as a sequence of method invocations with concrete parameters and a test
suite as set of unit tests. Note that the effect of the execution of a unit test over an instance can
be univocally interpreted as a path along a protocol LTS. In turn, (and because EPAs can simulate
all paths of the LTS they abstract and each protocol LTS state is abstracted by only one EPA state)
a path on the protocol LTS can be unequivocally simulated by a path in the EPA by applying the
abstraction function ˛. The latter is said to be an ˛-abstracted execution of the unit test. Figure 3
shows an example of a unit test for a BoundedStack object and its corresponding ˛-abstracted
execution. Note that the non-conformant implementation of Figure 2(a) throws an exception every
time the ˛-abstracted execution of a unit test traverses the transition .S1; pop; S0/.

The adequacy criterion over EPAs of protocol LTS, which simply consists in covering the
transitions of the protocol’s EPA, is defined as follows.

Definition 6 (EPA transition adequacy level)
Let L be a protocol LTS, A its EPA and TS a test suite. The adequacy level of TS with respect to

Figure 3. Sample input and its ˛-abstracted execution over the enabledness-preserving abstraction of the
intended protocol labelled transition system.
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A according to the EPA transition coverage criterion is defined as the percentage of transitions of A
that are covered by the ˛-abstracted execution of the unit tests of TS .

As an example, the adequacy level of a test suite consisting only of the unit test of Figure 3 is 33,
because it covers two out of six transitions. In particular, push is only invoked on an empty stack. A
test suite with adequacy level 100 should necessarily contain in addition a unit test in which push
is executed on a non-empty stack leading to full stack and one unit test in which push is executed
on a non-empty stack leading to stack that is neither empty nor full.

2.4. Research questions

The research questions that are the focus of the experimentation reported in the next sections are
now posed. The first question aims at establishing if the EPA transition adequacy level is a good
predictor of the ability of a test suite to detect faults that manifest themselves as violations of the
intended call protocol, that is, call protocol conformance failures.

RQ.1. To what extent does the EPA transition adequacy level predict the ability of test suites to
detect faults in the context of call protocol conformance testing?

This question is first studied by looking at the correlation between the coverage of EPA transi-
tions and the ability of a test suite to detect faults.

RQ.1.1. Does the EPA transition adequacy level have a high correlation with fault detection in the
context of call protocol conformance testing?

Correlations are typically considered high when equal to or above 0.7. However, a comparative
measure would provide a more robust answer to RQ.1.1. Consequently, the question is also answered
by measuring how well branch and statement coverage performed over the code of the subjects (i.e.
as white box criteria) would predict test suite fault detection ability. The importance of this analysis
is twofold. First, it provides a baseline reference for correlations yielded by the proposed criterion.
Second, it enables a comparison against what would be measuring structural adequacy using an ideal
specification in terms of closely mimicking the structure of code under test. Choosing the code of
the reference implementation as the specification language against which to compare EPA coverage
is discussed in Section 5.

Because requiring coverage leads naturally to requiring larger test suites, it is standard to analyse
if stronger correlations are just a consequence of size or if the criterion has an independent effect on
test suites quality. More specifically, this work includes studying if picking a test suite with higher
adequacy is more likely to detect more faults than picking a test suite of the same size but with
lower adequacy.

RQ.1.2. Given a fixed test suite size, do test suites with higher EPA transition adequacy level
perform better in terms of fault detection than those with lower EPA transition adequacy level?

RQ.2 aims at providing some insights that can explain the results of RQ.1.

RQ.2. Why does EPA transition adequacy level predict the ability of test suites to detect faults that
manifest themselves as call protocol conformance failures?

Although code coverage does not always correlate to test suite effectiveness [38], programs are
expected to be tested using test suites that achieve high structural coverage (otherwise, portions of
the program are under-tested). Therefore, achieving high code coverage can be considered a neces-
sary (but not sufficient) condition for test suites. Hence, a high correlation between EPA transition
coverage and code coverage could partially explain the results of RQ.1.

RQ.2.1. Does EPA transition adequacy level predict the statement and branch coverage?
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For RQ.2.1., the coverage of each test suite over a reference implementation and correlations
are analysed. As before, the impact of EPA coverage on code coverage for fixed-size test suites to
account for dependencies between coverage and size is analysed.

Analytical results in [30] indicate that category partition approaches that define dense subdo-
mains (i.e. subdomains that have a high likelihood of identifying a fault) are likely to be better at
identifying faults. Any coverage criterion implicitly defines a category partition; in the case of EPA
transition coverage, a subdomain for a transition can be defined as all the tests that when executed
cover the transition. If such implicit category partition indeed defines dense subdomains, this would
contribute to explaining results in RQ.1.

RQ.2.2. Does the category partition implicitly defined by EPA transition coverage result in subdo-
mains with high failure rates?

Although a test in the subdomain defined by a transition covers that transition, it may reveal a
fault at any point of the test. Thus, RQ.2.2 provides a rather coarse-grained insight on the effec-
tiveness of each transition in detecting faults. A finer-grained question would be to investigate the
likelihood that each transition has, when exercised, of revealing a fault. If every fault has at least
one transition that is highly effective in detecting it, then it is reasonable to think that the higher the
coverage, the more likely the effective transition is covered.

RQ.2.3. Do faults have transitions that are highly effective in detecting them?

The third main question relates to differentiating the effect of action coverage and transition
coverage. Each transition of an EPA is associated with a particular action in a many-to-one rela-
tion. For instance, in the EPA of a bounded stack shown in Figure 1(b), there are three different
transitions corresponding to the action push and three different transitions corresponding to the
action pop. Clearly, achieving high EPA transition adequacy requires a degree of action coverage.
Thus, it is important to determine whether the observed phenomena for RQ.1 and RQ.2 are really
determined by transition coverage. Therefore, in RQ.3 questions, RQ.1 and RQ.2 are revisited for
action coverage, and the results are compared against those obtained for EPA transition coverage.

RQ.3. How do results for RQ.1 and RQ.2 compare when action coverage is considered instead of
EPA transition coverage?

Finally, experimentation investigates if action coverage and EPA transition coverage can be
combined to obtain a better criterion.

RQ.4. How do results for RQ.1 and RQ.2 compare when a combined Action-EPA transition
coverage criterion is adopted?

3. EXPERIMENT DESIGN

3.1. Experiment overview

To answer the research questions proposed in Section 2.4, various types of values associated to
test suites must be collected: faults detected, code coverage, EPA transition coverage, and action
coverage. The experimental strategy is based on code mutations as in other works [39–41].

Fault detection involves (i) fixing both an intended protocol LTS and a conformant implemen-
tation and (ii) obtaining implementations that fail to conform to the intended protocol in diverse
ways. In general, this would imply obtaining a specification of the intended protocol together with
a conformant implementation. That may introduce a major threat to validity as there is no guaran-
tee that an implementation is conformant with respect to a specification. For avoiding such risk, our
strategy involves selecting an implementation as a reference implementation to be used as both the
specification and implementation of the intended behaviour. This way, the actual protocol LTS of
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the subject implementation is conformant by construction. Also note that the intended protocol LTS
is in fact the actual protocol LTS of the reference implementation. This may be a typical case for
regression testing when the actual protocol of the original version is intended to be preserved by the
newer versions.

The reference implementation is also used as the basis for generating non-conformant or faulty
implementations. The faulty implementations are obtained by applying mutation operators to the
reference implementation. Identification of failures is carried out by executing unit tests on both the
reference implementation and on the mutated implementations. When mutation is unable to execute
a sequence of calls that is valid in the reference implementation, then the mutant is considered to be
killed. More precisely, a failure is recorded if the mutated version throws an exception or timeouts
on method call sequences that raise neither exceptions nor timeout in the reference implementation,
or in other words, if a unit test is a witness to a conformance failure between the intended protocol
LTS and the actual protocol LTS of the mutated implementation.

Note that semantically different mutations do not necessarily alter the actual protocol. For
instance, altering the way an index is updated may (or may not) eventually lead to a state where
some operation yields an exception. Between 56% and 70% of mutations (depending on the
case study) produce faulty implementations. To have a representative set of flawed implementa-
tions, no mutation operator was filtered a priori. As in some other papers, mutants that were not
killed by any unit test (i.e. no test sequence led to an unexpected behaviour of that mutant) were
considered mutations that have the same actual protocol as the reference implementation of the
class [39].

3.2. Subjects

The universe of potential subjects was restricted to one programming language to allow for a uni-
form experimental platform regarding mutation, test generation and infrastructure for detecting
failures. The programming language chosen was Java to take advantage of existing tools and the
availability of Java classes that satisfy the general criteria for subject selection: (i) code that features
a rich set of restrictions on the order in which methods should be called (i.e. rich call protocols); (ii)
code that is of industrial relevance; and (iii) code for which its EPAs can be obtained (Section 3.3).

The experimentation was conducted on five subject classes: Signature, ListItr and
Socket from the Java Development Kit (JDK) 1.4 implementation; the SMTPProcessor class
of JES mail server, a Java SMTP and POP3 e-mail server; and JDBCResultSet class, which
is the implementation of the ResultSet interface of the JDBC specification of HyperSQL
2.0.0 database.

The Java Signature class is used to provide applications for the functionality of a digital sig-
nature algorithm. There are three phases to the use of a Signature object for either signing data
or verifying a signature: (i) initialization, with either a public key, which initializes for verifica-
tion, or a private key, which initializes for signing; (ii) updating, which updates the bytes to be
signed or verified; and (iii) signing or verifying a signature on all updated bytes. The ListItr
class provides functionality to go through the elements stored in a list. If the end of the list has
not been reached, the iterator can retrieve the next element. Conversely, it can retrieve the pre-
vious element if the current index is not 0. It has methods for adding, removing and replacing
elements in the list. The Socket class provides the client-side functionality to establish a trans-
mission control protocol connection between two hosts. A Socket instance can open and close
connections to a server and also can operate on streams for either send or receive data, among
other operations. Note that a smaller version of the class was used in which a subset of the pub-
lic methods is considered. Methods considered are those that are part of rich protocol requirements
for the class. This version was previously used in other works [42, 43]. The SMTPProcessor,
which is a core class of the Java Email Server, is responsible for processing all incoming SMTP
requests. It checks whether a request is valid or not in terms of the restrictions defined on the
SMTP protocol specification. In the presence of valid requests, it processes them, whereas it
rejects the invalid ones. Finally, the JDBCResultSet class implements the ResultSet inter-
face of the JDBC specification. A ResultSet represents a set of data that is generated by
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Figure 4. Enabledness-preserving abstractions of the semantics of Socket intended protocol.

executing a query to a database. The class allows iterating over the result and making updates on
the underlying database. It maintains a cursor pointing to the current row of data and provides
methods to scroll the data back and forth. Also, it supplies methods for making updates on the
underlying database.

3.3. Construction of EPAs of intended protocol LTSs

The EPAs of the intended protocol for each subject are built from the original reference implemen-
tations, which act as infinite state specifications. We used different construction strategies for each
case study.

A key resource for all subjects was the tool CONTRACTOR [36]. It constructs EPA either from
contract-based specifications [36] or directly from source code [29]. CONTRACTOR’s output models
over-approximate EPAs in the sense that they may include spurious transitions. When computing
the model from contracts, the tool relies on a first-order theorem prover. If neither a proof nor a
counterexample can be found to determine whether a transition exists or not, the tool simply adds it
because it may be present in the EPA. In a similar way, when the calculation is made from code, it
uses a software model checker that tries to determine whether some statements present in the code
are reachable or not (which is undecidable in the general case). Again, when no answer is found,
CONTRACTOR conservatively adds the corresponding transition.

Because the intended protocol is required to be the actual protocol of the reference implemen-
tation, the EPAs of the intended protocol for subjects Signature, ListItr, Socket and
SMTPProcessor were obtained by using CONTRACTOR on code of the reference implementation
as performed by De Caso et al. [29]. In all cases, no spurious transitions were generated, so the con-
structed EPAs are those of the actual protocols of the reference implementations. On the other hand,
the EPA of the actual protocol LTS for JDBCResultSet was obtained by using CONTRACTOR

on the contract-based specification defined in the work of Bierhoff et al. [34] for the ResultSet
JDBC interface.§ The contract specification was validated by comparing the preconditions of each
method against the conditions that guard exception throwing statements in the reference imple-
mentation. Indeed, the analysis performed concludes that resulting EPA is that of actual protocol
LTS for the JDBCResultSet reference implementation. Figure 4 shows the EPA of JDK 1.4
Socket class.

3.4. Experiment implementation details

In this study, for each subject 10 000 unit tests were generated by using RANDOOP [44], an auto-
matic unit test generator for Java classes. It uses a random approach that generates test sequences
by randomly choosing method calls.

The �-JAVA tool [45], a mutation system for Java programs, was used to generate mutations. In
order to obtain as many implementations as possible, all available mutation operators of �-JAVA

were applied whenever possible. Some of these mutants may not be semantically equivalent, but

§Available at http://www.cs.cmu.edu/ kbierhof/plural/plural-java-apis.zip
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Table I. Subject classes summary.

EPAs

Mutants Transitions

Subject LOC Unit tests Total Killed States Total Covered

ListItr 59 10000 207 145 (70%) 8 68 63 (93%)
Signature 121 10000 150 96 (64%) 4 29 27 (93%)
Socket 144 10000 98 59 (60%) 7 20 18 (90%)
SMTPProcessor 404 10000 570 317 (56%) 12 85 70 (82%)
JDBCResultSet 785 10000 404 259 (64%) 9 247 199 (81%)

there is no evidence that their actual protocol is different to the one of the reference implementation.
Although it may not be the case for every non-detected mutant, automatically detecting such equiv-
alences has been proved to be undecidable [46]. Due to the large number of mutants generated, a
manual inspection for detecting equivalences would have been unfeasible and certainly error prone.
Mutants that were not killed were considered conformant as in the work of Andrews et al. [39].

The setting used is restricted to deterministic failure behaviour of API implementations. This
restriction greatly simplifies experimental methodology. To perform a quantitative analysis of the
effectiveness of the proposed criteria, information on which tests kill which mutants (i.e. which
sequences of method invocations reveals that an implementation does not behave as expected) must
be collected. If non-deterministic API implementations were included, the notion of test effective-
ness (killing a mutant) would require probabilistic treatment because a non-deterministic mutant
could behave differently in terms of failing or not to accept a given sequence of calls. Thus, each test
would have a probability of killing each mutant. Assuming determinism allows us to perform muta-
tion analysis, which is a common practice approach for empirical assessment of test techniques in
software testing research [39, 47, 48]. The experiments were run in a controlled execution environ-
ment in order to minimize as much as possible a non-deterministic failure behaviour of the subjects.
For instance, the experimentation performed on the case studies SMTPProcessor, Socket and
JDBCResultSet were run on a single machine to avoid non-deterministic behaviour resulting
from issues in network communication.

Statement and branch coverage were measured using COBERTURA, a Java tool that calculates the
percentage of code accessed by tests. It instruments the class under test and records which lines of
code are and are not executed as the test suite runs. It reports on both code and branch coverage.

Table I summarizes relevant information for each subject. Column 2 exhibit lines of code, column
3 shows the number of unit tests generated, columns 4 and 5 show the number of mutants generated
and detected, respectively, column 6 indicates the number of states of the corresponding EPAs, and
columns 7 and 8 show the total and reached (by at least one test suite) number of EPA transitions.

4. RESULTS

The analysis performed over the measurements obtained in the experiments detailed in the previous
section is now reported.

4.1. Research question 1

The first research question seeks to quantitatively analyse the fault detection ability of EPA transition
coverage. This question is addressed in two ways, first, looking at the correlation between EPA
transition coverage and fault detection, and then looking at the impact of EPA transition coverage
over fixed-size test suites.

4.1.1. Research question 1.1. In order to determine to what extent the EPA transition adequacy level
predicts the ability of test suites to detect faults that manifests themselves as protocol conformance
failures, the Spearman’s rank correlation coefficient � was used. The coefficient measures how well
the relationship between two variables can be described by a monotonic function. The coefficient
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Table II. Correlation between coverage and fault detection.

Subject Stmt coverage Brch coverage Tx coverage

ListItr 0.48 0.61 0.84
Signature 0.65 0.71 0.73
Socket 0.81 0.86 0.72
SMTPProcessor 0.66 0.78 0.69
JDBCResultSet 0.89 0.92 0.68

Bold emphasis indicates highest value for a row.

lies in the interval Œ�1; 1�. Values near 1 and �1 signal a strong dependence between both variables
(direct and inverse, respectively), while values around 0 indicate no dependence between them.
The choice of the Spearman’s coefficient is because unlike others commonly used, such as Pearson
product-moment coefficient, it does not make any assumption about the distribution of data. This is
important as it was not possible to establish that data fitted known distributions using goodness of
fit tests such as Kolmogorov–Smirnov.

The coefficient was computed not only to correlate EPA adequacy against detected faults but also
for correlating statement and branch coverage against detected faults. The coefficients provide a
measure of statistical dependence between the degree of coverage of each criterion and the number
of detected faults by a test suite.

Table II shows the �-values obtained for each criterion. Transitions coverage has high .� > 0:7/

or very close to high correlation for all cases. On the other hand, white box criteria correlation values
are more disperse, indicating only moderate correlation in some subjects.

Two case studies illustrate the best and worst cases for transition coverage and structural
coverage criteria. On the one hand, comparatively worse performance of transition criterion on
JDBCResultSet can be explained by the unbalanced API implementation of the subject. There
is one method out of 42 that collects the 35% of all mutations of the class. For killing these mutants,
a test should execute that method (and consequently its ˛-abstracted execution traverses a few spe-
cific transitions of the 247 of the EPA). In other words, for killing a large number of the mutants,
traversing many transitions does not help; in these cases, a specific transition should be exercised.
On the other hand, for ListItr transition, coverage has a high correlation compared with that of
statement and branch coverage. This can be explained by the fact that the subject presents a simple
code structure (no loops, few branches) within methods that can be easily covered by test suites.
However, the structure of the intended protocol LTS, and hence its EPA, is quite rich. Achieving
coverage of the EPA requires executing more complex sequences of method calls that explore inter-
esting states of the iterator (such as getting to the end of the list). High code coverage does not
guarantee reaching such states.

As can be seen, black box EPA transition coverage has high correlation with fault detection. In
some subjects, transition coverage seems to be a better proxy of exercised concrete behaviour than
white box criteria. Because EPA transition coverage privileges diversity of transitions regardless of
whether or not actions are covered, correlation with fault finding is reduced when a particular action
is error prone.

4.1.2. Research question 1.2. The impact of size (as the number of calls to the software under
test) on the effectiveness of test suites has been addressed by several works [49, 50]. Although it is
known that not only the size determines the quality of a test suite, in general, it is expected that the
likelihood of revealing faults increases with the number of invocations featured by a test suite [49].

In order to refute that EPA coverage correlates with fault detection only to required test suite
size, experimentation included an analysis of whether test suites with higher EPA transition ade-
quacy level are likely to detect more faults than those with lower adequacy when fixing the size of
test suites.

Samples for each size are not large enough for obtaining statistically significant results. Therefore,
they were divided into bins, grouping those of similar size in the same bin. For each subject, the
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difference of size between test suites of the same bin do not exceed 10% of the difference of size
between the largest and the smallest overall test suites.

Here, the question to answer is if given a bin, picking a test suite from the best test suites according
to the defined criterion is more likely to give a test suite with higher fault detection ability than
picking one from the rest of the test suites of that bin. The tests that achieve at least 80% of the
coverage that is achieved by the test suite with highest coverage of that bin are considered to be
those of high adequacy level. This is because the degree of coverage varies from bin to bin due to
the change in test suite sizes. In this way the ‘best’ test suites for a particular bin can be obtained.

As explained in Section 4.1.1, detected fault data do not necessarily fit standard distributions.
Therefore, as before, a non-parametric test for our analysis was chosen. In order to compare higher
coverage test suites of a bin against the rest of that bin, the Mann–Whitney U-test was used, a non-
parametric statistical hypothesis test for assessing whether the probability of an observation from
one population exceeding an observation from a second population is not equal to 0.5. This hypoth-
esis test assumes that all the observations from both groups are independent of each other, which
is true because the test suites that do fit our criterion and those that do not form disjoint sets. It
also requires that the responses are ordinal or continuous measurements, which is also true because
the variables considered here are EPA transition adequacy level and detected faults. Under the null
hypothesis, the probability of a random observation from one population P1 exceeding a random
observation from the second population P2 equals the probability of an observation from P2 exceed-
ing an observation from P1. Under the alternative hypothesis, the probability is not equal to 0.5.
That is, values from one population tend to exceed those of the other. We reject the null hypothesis
when the �-value resulting from the hypothesis test is less than 0.05. In this case, rejecting the null
hypothesis means that tests with high transition coverage are better in terms of fault detection than
those of low coverage, and that that is not just due to chance.

To also assess the magnitude of the improvement, the Vargha and Delaney’s A12 effect size was
used. This non-parametric measure has recently been advocated for randomized algorithms [51]. In
this case, in a given bin, A12 estimates the probability that choosing a tests suite of high transition
coverage detects more mutants than one chosen randomly from the population of low coverage. The
confidence interval for the effect size stated at the 95% confidence level is also reported.

Table IV shows the test results for all subjects. Each row of the table corresponds to one bin. The
second column specifies the test suite size interval of each bin. The third indicates the minimum and
maximum number of EPA transitions covered by them, and the fourth shows the threshold number
of transitions that a test suite must cover to be considered adequate (i.e. coverage of at least 80%
of the best coverage in the bin). The fifth and sixth columns show the number tests suites that are
adequate (i.e. high coverage) and not adequate. The seventh column exhibits the �-value of the
Mann–Whitney test, the eighth the A12 effect size and the ninth its confidence interval. Remaining
columns corresponds to results of RQ2.1.

Results indicate that EPA coverage makes a difference in terms of fault detection for tests suites of
the same size. Considering all the five case studies, in 39 out of 50 bins, there is statistical evidence
that test suite with higher coverage of EPA transitions perform better than those of lower coverage
(column 7). Moreover, except for two bins of JDBCResultSet, those on which there is no sta-
tistical evidence correspond to bins containing very large test suites. That makes sense, because the
impact of coverage tends to decrease as the size of test suites increases. For many of these bins, the
sample size of test suites that does not reach the coverage threashold is quite small (ranging between

Table III. Correlation between EPA transitions and code coverage.

Class TX/STMT CORR TX/BRCH CORR

ListItr 0.66 0.70
Signature 0.63 0.70
Socket 0.77 0.77
SMTPProcessor 0.70 0.73
JDBCResultSet 0.67 0.66

Bold indicates highest value for a row.
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8 and 28 individuals in five of these bins), difficulting the possibility of obtaining statistical conclu-
sions. The case of the bin corresponding to the largest test suites of JDBCResultSet illustrates
this situation: although the effect size is 0.70, the number of test suites that do and do not reach
the coverage threshold are 248 and 17, respectively. In this case, the �-value is 0.06. Consequently,
according to the significance level chosen in our experiments in this case, the null hypothesis cannot
be rejected.

4.2. Research question 2

This research question aims at providing more qualitative results that may provide insight on why
positive results for RQ.1 are obtained. The question is analysed from three different perspectives:
(i) correlation between EPA transition coverage and code coverage (RQ.2.1); (ii) the characteristics
of category partition criterion implicitly defined by EPA transition coverage (an input i belongs to
the subdomain defined by a transition t if and only if i exercises t ) (RQ.2.2); and (3) how faults are
detected by the traversal of EPA transitions (RQ.2.3).

4.2.1. Research question 2.1. To measure the correlation between EPA transition coverage and
code coverage, the code coverage achieved by test suites must be analysed to see if it fits a standard
distribution. As with the relation between EPA coverage and fault detection, this is not the case.
Consequently, to find out how well the coverage of EPA predicts code coverage, Spearman’s rank
correlation coefficient � is again calculated. The results are shown in Table III.

Results lead to believe that the EPA coverage criterion is a reasonably good predictor of statement
and branch coverage adequacy. Correlation against branch coverage is moderate to high depend-
ing on the case and values are consistently close to 0.7. Interestingly, except for transition coverage
in JDBCResultSet, in all cases, the correlation with branch coverage is greater than or equal
to that of statement coverage. In the types of software under analysis, the selection of branches
of conditional expressions is often based on the internal state of the object. Thus, the high cor-
relation values may be an indication that indeed, EPA states capture important properties of the
object states and, therefore, may be useful to use them for abstracting concrete object states. It is
worth noting that in almost all cases, the EPA transition coverage criterion works better as predic-
tor of mutant detection than as code coverage predictor – which seems consistent to the rationale
underlying criteria.

Similarly to RQ.1.2, tests that achieve higher EPA coverage are generally also larger, and also,
larger tests tend to cover a larger portion of the code. Thus, the relation between EPA and code
coverage in a ‘by size’ basis is analysed using the same set of bins as in RQ.1.2. Again, it is not
assumed that code coverage achieved by test suites fits a common distribution. Thus, in order to
determine if adequate tests achieve higher code coverage than non-adequate ones, Mann–Whitney
U-tests were performed. As for fault detection, the assumptions made by the test are also met in
this case.

Table IV shows the results for all subjects. Columns 10 to 12 and 13 to 15 exhibit the results for
the relation between EPA transitions coverage and statement and branch coverage, respectively. In
this case, in a given bin, A12 estimates the probability that choosing a test suite of high transition
coverage has higher statement/branch coverage than a test suite chosen randomly from the popu-
lation of low transition coverage. The confidence interval for the effect size is also reported at the
95% confidence level.

Again, results show that statistical significant evidence exists for saying that test suites achieving
higher EPA coverage adequacy are more likely to achieve higher code coverage than the general
population of a given size. Considering the five case studies, there is such evidence in 34 out of 50
bins in the case of statement coverage. Interestingly, 10 of the bins for which there is no evidence
are the bins of ListItr. As explained before, the simplicity of its code makes it easy to achieve
high code coverage, and therefore, covering many transitions does not make a significant difference
(but it does affect positively fault detection, as seen). For Socket and Signature, the evidence
exists in eight out of 10 bins, and for JDBCResultSet and SMTPProcessor in nine out of 10.
Regarding branch coverage, in 43 out of 50 bins, there is statistical evidence of the benefits of tests
with high EPA coverage.
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As with fault detection, those bins for which there is no statistical evidence correspond to very
large test suites (with the exception of ListItr), which is consistent with the fact that the impact
of high coverage tends to decrease as the size of the test suite increases.

Summarizing, results indicate that EPA transition coverage has high correlation with branch cov-
erage (except for the case of JDBCResultSet, which is quite close to 0.7 anyway), and a little
lower correlation with statement coverage (but still with values close to 0.7 in all cases). In addi-
tion, for fixed-size test suites, there is statistical evidence that in most cases those tests with higher
transition coverage perform better in terms of structural coverage.

4.2.2. Research question 2.2. Category partition testing refers to a general family of testing strate-
gies [30]. They consist in dividing the program’s input domain into subdomains in such a way that
they span the domain’s input space. Then the program is tested, selecting some inputs from each
subdomain. Ideally, each subdomain should be such that the program under test behaves as expected
for every element or fails for every element. When all the inputs of a subdomain cause the pro-
gram to fail, the subdomain is called 100% revealing or simply revealing [52]. The purpose is to
make the partition in a way that the resulting test set results in a good representation of the whole
program’s domain.

As an example, given a program P with domain Z, the subdomains Z�; ¹0º and ZC can be
considered (negative integers, zero and positive integers). In this case, the input domain is divided
into disjoint subdomains. However, the partition may also result in overlapping subdomains. Let
us illustrate this with the subdomains derived from the statements of a program. They divide the
input domain into non-disjoint subdomains where each subdomain consists of all test cases, which
cause a particular statement to be executed. A test case causes many statements to be executed and,
consequently, is a member several subdomains.

An important analytical study on partition testing is presented in [30]. The paper compares par-
tition testing against random selection of inputs and shows the conditions under which one of them
outperforms the other. It concludes that a partition testing strategy is neither good nor bad per se. Its
effectiveness lies in how the domain is divided into subdomains. More precisely, it depends on how
the inputs which cause a program to fail are concentrated within the subdomains defined by the par-
tition. As aforementioned, an ideal scenario contains at least one revealing subdomain. No matter
which input is selected from it, the program will fail and be revealed as incorrect. Of course, that
such situation is not realistic: when testing a program, the location of faults is unknown and there
is no guarantee that one subdomain contains only error-revealing inputs. On the other hand, when
only one or a few elements of a subdomain make a program fail, then the density of faults in the rel-
evant subdomains will be relatively low, and therefore, the strategy of picking from all subdomains
will be of low effectiveness. What is more, under the latter circumstances, it may be the case that
the probability of detecting a fault when using category partition is lower than the one resulting of a
random selection of inputs. Still, if there is at least one subdomain that is dense in failures – that is,
that most of its inputs are error-revealing – then the approach is effective [30].

The proposed coverage criterion implicitly divides the input’s domain of an intended protocol
LTS according to the transitions of its associated EPA. A unit test u belongs to the category defined
by a transition t if and only if the ˛-abstracted execution of u exercises t . As with statements, the
subdomains defined by transitions of an EPA may overlap. For instance, the test of Figure 3 belongs
to the subdomains derived from transitions .S0; push; S1/ and .S1; pop; S0/.

In order to determine if there is a subdomain dense for a faulty implementation I , the failure rate
of each subdomain must be known. That is, the proportion of inputs that are error-revealing for I . In
other words, the probability p of a randomly chosen input of each subdomain to be error-revealing.
In the case of finite domains, the calculation is quite simple, because it corresponds to the ratio
between error-revealing inputs and the domain size. In general – and in particular in the selected
subjects – the input domain space for protocols is infinite. Therefore, for each case study, estimate
p is estimated by Op based on experimental observations as follows:

1. for each EPA transition t , the sample size of the subdomain dt derived from it (i.e. the number
of unit tests whose ˛-abstracted execution traverses t ) is calculated;
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Table V. Total and filtered subdomains.

Subject Total Filtered

ListItr 68 14 (20.59%)
Signature 29 2 (6.90%)
Socket 20 4 (20.00%)
SMTPProcessor 85 35 (41.18%)
JDBCResultSet 247 87 (35.22)

Figure 5. Failure rates of the densest subdomain and the entire domain.

2. for each faulty implementation I and subdomain dt , the number of error-revealing inputs of
the sample erdt ;I are counted;

3. for each faulty implementation I and subdomain dt , Opdt ;I D
erdt ;I
jdt j

is calculated.

For determining if there is at least one subdomain dense in failures, for each faulty implementation
I , the value Opdj ;I is selected, where dj is the densest subdomain for I . As a reference, the density
of the entire domain is also provided.

It is worth noting that not all subdomain sample sizes are large enough in order to obtain statisti-
cally significant results. For instance, in some cases, there are EPA transitions reached by only one
unit test ˛-abstracted execution. That is, there are transitions t for which only one unit test was gen-
erated such that its ˛�abstracted execution traverses t . In this case, the estimator Opdt ;I would equal
1 or 0 depending on whether the unit test kills the mutant I or not (and in the first case, it would be
considered that there is a revealing subdomain for I ). In any case, a sample of size 1 is too small
to consider Opdt ;I as a good estimator of pdj ;I . It would be misleading to consider such input as
representative of the entire subdomain dj .

Because the observations are independent, the estimator Op has a binomial distribution. The max-
imum variance of this distribution is 0:25 � jdt j, which occurs when the real parameter is p =
0.5. Because p is unknown, the maximum variance is used for sample size assessments. For suffi-
ciently large jdt j, the distribution of Op will be closely approximated by a normal distribution. Using
this approximation, around 95% of this distribution’s probability lies within two standard devia-
tions of the mean. Using the Wald method for the binomial distribution, an interval of the form
. Op � 2

p
0:25=jdt j; Op C 2

p
0:25=jdt j/ will form a 95% confidence interval for the true proportion.

If this interval needs to be no more than W units wide, the equation 4
p
0:25=jdt j D W can be

solved for jdt j, yielding jdt j D 4=W 2 D 1=B2 where B is the error bound on the estimate. Fixing
B D 5%, samples sizes greater or equal to 400 are required for considering them representative.
Table V shows for each subject the total number of subdomains (or transitions) and how many are
filtered. Note that filtering subdomains does not favour the approach proposed. On the contrary, it
could be the case that there is a subdomain for which there are not enough inputs whose real failure
rate is greater than that of those of the subdomains that are not filtered.

Figure 5 shows boxplots of the failure rates of both, the densest subdomains with statistcally
significant rates – that is, for which there are at least 400 inputs – and the entire domain. Numerical
values of percentiles, means and means excluding outliers are shown in Table VI.
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Table VI. Statistical info of failure rates considering subdomains and the entire domain.

By subdomains Entire domain

Subject Q1 Med Q3 Mean Mean EO Q1 Med Q3 Mean Mean EO

ListItr 0.89 1.0 1.0 0.91 0.95 0.4 0.6 0.88 0.61 0.61
Signature 1.0 1.0 1.0 0.93 0.98 0.61 0.72 0.83 0.67 0.7
Socket 1.0 1.0 1.0 0.94 0.99 0.56 0.87 0.99 0.8 0.8
JDBCResultSet 0.09 1.0 1.0 0.67 0.67 0.01 0.14 0.19 0.14 0.13
SMTPProcessor 0.31 1.0 1.0 0.71 0.71 0.05 0.16 0.86 0.4 0.4

Table VII. Statistical info on failure rate for hard mutants considering subdomains and the entire domain.

By subdomains Entire domain

Subject #MUT #HMUT Q1 Med Q3 Mean Mean EO Q1 Med Q3 Mean Mean EO

ListItr 145 14 0.41 0.53 0.56 0.62 0.62 0.14 0.16 0.16 0.16 0.16
Signature 96 5 0.25 0.31 0.32 0.27 0.27 0.12 0.13 0.15 0.13 0.13
JDBCResultSet 323 201 0.05 0.99 1.0 0.57 0.57 0.01 0.1 0.15 0.09 0.09
SMTPProcessor 259 176 0.0 0.31 1.0 0.49 0.49 0.0 0.01 0.16 0.08 0.08

It is noteworthy that in the five case studies, for at least 50% of the non-conformant implemen-
tations, the division into subdomains according to EPA transitions produces a revealing subdomain.
What is more, in the cases of Signature and Socket, the same observation is valid for at least
75% of the faulty implementations; and in the case ListItr for 75% of versions that are not con-
formant, there is a subdomain with a density of 0.89 or greater. Although it does not happen the
same in the cases of JDBCResultSet and SMTPProcessor, these have in common a significant
increase of density with respect to the density of the entire domain. As aforementioned, half of the
faulty implementations have a revealing subdomain for JDBCResultSet and SMTPProcessor,
but when considering the entire domain, the numbers dramatically decrease: their medians are 0.14
and 0.16, respectively (i.e. in both cases, there is a difference around 85%).

It can also be observed the difference between subdomains failure-rate mean values and entire
domain mean values: they range between 0.14 (for Socket) and 0.53 (for JDBCResultSet). In
the case of Socket, the difference is small. This is explained by the (non-)difficulty of the mutants
generated by �-JAVA for this class: all non-conformant implementations are discovered by at least
40% of the unit tests and 65% of them are killed by 85% of the unit tests or more. That is, all of
them are easy to discover, and therefore, the failure rates considering the entire domain are also high
(mean values removing outliers present only a little difference).

The phenomenon described earlier does not occur in the other case studies, which, incidentally,
all have harder to detect non-conformant implementations. The question that arises is if the phe-
nomenon observed remains when restricting the set of mutants to those that are hard to kill. Thus,
the same analysis is repeated but only considering mutants that are discovered by less than 20%
of the unit tests. Columns 2 and 3 of Table VII show the total number of mutants and number of
mutants that are hard to detect of each case study. Note that there are no such mutants for Socket.
Results are shown in Figure 6 and Table VII.

As expected, when restricting the set of non-conformant implementations to those that are not
easy to detect, failure rate values decrease. Still, the numbers of the subdomains derived from EPA
transitions outperform, by far, those of the entire domain. In the cases of JDBCResultSet and
SMTPProcessor, there are revealing subdomains for at least 25% of the faulty version (in fact,
in the case of JDBCResultSet, for 50% of them, there is a subdomain with failure rate of at least
0.99). Interestingly, these are the two cases in which the number of considered implementations is
relatively high. Regarding failure rate mean values, as before, there are no significant differences
when removing outliers.

Experimental observations show that for a large number of faulty implementations, there are
subdomains with high failure rates. Moreover, in all case studies, there are revealing subdomains
for at least half of them. In other words, for a large number of faults, partitioning the input space
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Figure 6. Failure rates of the densest subdomain and the entire domain of hard mutants.

according to the categories defined by transitions generates subdomains that meet the conditions
under which a category partition approach results effective [30].

4.2.3. Research question 2.3. From RQ.2.2, answer one is tempted to explain the phenomenon as
follows: given a faulty implementation I , there is at least one EPA transition that, when exercised,
it is very likely that I is exposed as non-conformant. Note that the existence of dense subdomains
does not necessarily imply the existence of effective transitions: a transition might only exhibit a
fault after being exercised several times (low effectiveness). However, if most test cases traverse
the transition several times, the subdomain defined by that transition would be dense in failure
detection terms. This research question explores if intuition on the existence of effective transitions
is supported by data.

More formally, suppose that when executing unit tests over an implementation I , every time that
a transition t is traversed by a unit test, the concrete execution raises an exception. That is, that
every time t is traversed, I is exposed as a non-conformant implementation. In such a case, t can be
considered as highly effective for exposing I . It is investigated whether this is the case or not.

Given an implementation I and a transition t , the effectiveness of t for I (notation: efft;I ) is
defined as the ratio between the number of times that I is exposed while traversing t and the number
of times that t is traversed. It is easy to see that efft;I 2 Œ0; 1�. While values near 1 denote that t is
highly effective for revealing I , values near 0 indicate the opposite.

In order to understand the effectiveness of transitions for exposing non-conformant implemen-
tations (i) the effectiveness of transitions were divided into 10 buckets, corresponding to values
in intervals Œ0; 0:1�; .0:1; 0:2�; : : : ; .0:9; 1:0�, and (ii) for each non-conformant implementation, the
percentage of EPA transitions whose effectiveness resides in each bucket was counted. Boxplots
in Figure 7 show the distribution of the effectiveness of transitions across the buckets for the five
case studies.

Something similar happens in the five case studies: given a non-conformant implementation, most
of the transitions have low effectiveness, a few of them have high effectiveness, and in the middle,
there is almost nothing. The fact that in general there is at least one transition of high effectiveness
supports previous observations. Suppose that a transition t is highly effective for exposing an imple-
mentation I as non-conformant – that is, that almost always that t is traversed I raises an exception
or hangs. All the inputs of the subdomain derived from t have in common that at some point they
traverse t . Therefore, it is not surprising that that subdomain results dense for I .

It can be observed that for non-conformant implementations in general, there is a highly effective
transition for it. A key question, thus, is whether there is one (or a small number of) highly effective
transition for all non-conformant implementations or if the highly effective transition varies accord-
ing to the fault. Figure 8 shows the percentage of non-conformant implementations for which each
transition is highly effective in the case of ListItr. There is one bar for each transition, they are
grouped by actions, and for each action, the number of associated transitions is indicated.

Interestingly, the transition that is highly effective for detecting a non-conformant implementation
varies significantly. No transition is of high effectiveness for more than the 22% of the non-
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Figure 7. Effectiveness of transitions for exposing non-conformant implementations.

Figure 8. Percentage of mutants for which transitions are highly effective in ListIterator.

conformant implementations, and the same happens with Signature and SMTPProcessor. In
the case of JDBCResultSet and Socket, no transition is of high effectiveness for more than
the 35% and 39% of the faulty implementations, respectively. In general, different transitions of the
same method are not highly effective for the same number of non-conformant implementation, and
therefore, they are not effective for the same set of implementations.

Summarizing, given a faulty implementation I , in general there is a transition t such that most of
the times t is traversed, I is revealed as non-conformant. Additionally, the highly effective transition
varies across different non-conformant implementations. These observations reinforce the proposed
criterion. For a given faulty implementation, it is unknown which transitions are likely to expose it.
The higher the adequacy level of a test suite, the higher the probability of covering the highly effec-
tive transition. What is more, by adopting a category partition approach – which implies selecting
some from each subdomain – the highly effective ones are covered.

4.3. Research question 3

Each transition of an EPA is associated with a particular action in a many-to-one relation. For
instance, in the EPA of the JDK 1.4 Socket implementation shown in Figure 4, there are two
different transitions corresponding to the method getOutputStream. The difference between
those states is that while in S3 it is legal to invoke getInputStream, that invocation in S4 would
result in a protocol violation. Still, getOutputStream is enabled on both. It is easy to see that as
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Table VIII. Correlation between transitions and actions with fault detection and structural
coverage.

Fault detection Statement coverage Branch coverage

Subject Transition Action Transition Action Transition Action

ListItr 0.84 0.48 0.66 1.00 0.70 0.58
Signature 0.73 0.68 0.63 0.79 0.70 0.75
Socket 0.72 0.76 0.77 0.93 0.77 0.89
JDBCResultSet 0.68 0.77 0.67 0.60 0.66 0.57
SMTPProcessor 0.69 0.55 0.70 0.92 0.73 0.76

coverage metrics transitions properly covers [53] actions. The purpose of this research question is
to understand the improvement of covering transitions over actions, if any.

4.3.1. Covering actions. In the subsequent discussion is an analysis of the effect of covering actions
and compare the results with those of covering transitions. Table VIII shows Spearman’s rank
correlation coefficient values for both actions and transitions with fault detection and structural
coverage.

With regard to fault detection, covering transitions perform better than covering actions in three
out of five case studies. Additionally, the correlation values for transition coverage are more stable
than those of action coverage.

In terms of structural coverage, action coverage perform better than transition coverage in seven
out of 10 cases. This is not surprising because correlation measures how well the relationship
between two variables can be described by a monotonic function. In the case of action and structural
coverage, it measures to what extent is true that as more actions are executed more code is exer-
cised. Every time that an action that had not been executed before is executed, some portion of the
code that had not been exercised before is exercised. This observation does not hold for transition
coverage, because covering two different transitions of the same action may not necessarily imply
covering a new portion of the code.

The case of ListItr is particulary interesting. As already mentioned, it has a quite rich protocol
and an extremely simple code structure. The correlation between action coverage and statement
coverage is the best possible, whereas the one with fault detection is the lowest one. On the one
hand, the poor performance of actions regarding fault detection indicates that just executing different
actions is not enough for killing more mutants. On the other hand, covering more transitions (which
implies executing actions from different enabledness states) has a positive impact on the number of
mutants killed.

4.3.2. Actions versus transitions from a category partition perspective. The failure rates of the sub-
domains derived from covering actions is now analysed in the same way as was performed with
transitions. A unit test u is considered to belong to the subdomain associated with an action a if and
only if a is invoked in u. Note that, as with transitions, the partition may result in overlapping sub-
domains. For instance, the unit test of Figure 3 belongs to the subdomains associated to both actions
push and pop. Figure 9 shows boxplots of failure rates for the densest subdomains for both transi-
tions and actions. Numerical values of percentiles, means and means excluding outliers are shown
in Table IX.

Whereas in the case of transitions there is a revealing subdomain for at least 50% of non-
conformant implementations, in the case of actions, this observation holds for only 25% of them.
Still, failure rates values of actions’ subdomains are acceptable: subdomains’ failure rates for 50%
of the mutants range (at least) between 0.78 and 1.00 depending on the case study.

Also in this case, the analysis restricting the universe of mutants to those that are hard to detect
(i.e. that are killed by less than 20% of the unit tests) was performed. Boxplots are shown in
Figure 10 and numerical values in Table X. Except for the case of ListItr, where clearly failure
rate values of transitions’ subdomains outperform those of actions’ subdomains, results for actions
and transitions do not present major differences.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
DOI: 10.1002/stvr



BEHAVIOUR ABSTRACTION ADEQUACY CRITERIA FOR API CALL PROTOCOL TESTING

Figure 9. Failure rates of the densest subdomains defined by transitions and actions.

Table IX. Statistical info of failure rates considering subdomains derived from transitions and actions.

By transition subdomains By action subdomains

Subject Q1 MED Q3 MEAN MEAN EO Q1 Med Q3 Mean Mean EO

ListItr 0.89 1.0 1.0 0.91 0.95 0.49 0.78 1.0 0.71 0.71
Signature 1.0 1.0 1.0 0.93 0.98 0.79 0.92 1.0 0.87 0.92
Socket 1.0 1.0 1.0 0.94 0.99 0.99 1.0 1.0 0.89 0.96
JDBCResultSet 0.09 1.0 1.0 0.67 0.67 0.09 0.96 1.0 0.65 0.65
SMTPProcessor 0.31 1.0 1.0 0.71 0.71 0.28 0.94 1.0 0.65 0.65

Figure 10. Failure rates of the densest subdomains defined by transitions and actions for hard mutants.

Table X. Statistical info on failure rate for hard mutants considering transition and action subdomains.

By transition subdomains By action subdomains

Subject #MUT #HMUT Q1 MED Q3 MEAN MEAN EO Q1 MED Q3 MEAN MEAN EO

ListItr 145 14 0.41 0.53 0.56 0.62 0.62 0.2 0.21 0.21 0.21 0.21
Signature 96 5 0.25 0.31 0.32 0.27 0.27 0.25 0.31 0.32 0.27 0.27
JDBCResultSet 323 201 0.05 0.99 1.0 0.57 0.57 0.04 0.77 1.0 0.55 0.55
SMTPProcessor 259 176 0.0 0.31 1.0 0.49 0.49 0.0 0.28 1.0 0.46 0.46

The partition of inputs as studied in this section is, however, rather coarse grained for comparing
actions as transitions. Consider, for instance, the unit test of Figure 3. A faulty implementation I
may fail when push is invoked, but because the input belongs to the subdomains derived from
both actions (push and pop), the killing of I is counted for both, although the pop statement is
not even reached when executing the unit test on implementation I . A finer-grained perspective for
evaluating differences between transitions and actions is developed in the following section.
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4.3.3. Effectiveness of transitions versus effectiveness of actions. As with transitions, the effective-
ness of an action a for an implementation I (notation effa;I ) is defined as the ratio of the number
of times that I is exposed as a non-conformant implementation when executing a and the total
number of times that a is executed on I . Note that it is not possible to have an action with greater
effectiveness to all its associated transitions.

Note also that there are some situations in which transitions cannot improve the effective-
ness of actions. There are actions associated with only one transition. While this situation is not
present neither in SMTPProcessor nor in ListItr, this is the case of five out of 14 actions of
Signature, one out of 41 actions of JDBCResultSet and one out of seven actions of Socket.
When the most effective transition is the only transition of some action, there is no distinction
between their highest effectiveness. In all such cases, it is meaningless to study the distinction
between transitions and actions. Besides, there are some faulty implementations such that there is
an action a whose effectiveness equals 1 – that is, every time a is executed, the implementation
is revealed as non-conformant. Again, no transition can improve actions in this case. Still, there
are many implementations for which the described situations do not hold, and therefore, transitions
may improve the effectiveness of actions. Table XI shows information regarding improvable and
not improvable faulty implementations. The second column of the table specifies the number of
mutations that resulted in non-conformant implementations; the third and fourth columns show the
number of faulty implementation for which there is an action with effectiveness 1 and for which
the most effective transition is the only transition of that action; the fifth and sixth columns expose
the number of faulty implementation for which transitions cannot and can improve actions, respec-
tively. Note that column 5 does not always correspond to the sum of columns 3 and 4, because there
are implementations for which there is an action a of effectiveness 1 and a has only one associated
transition. For instance, action bind of Socket has effectiveness 1 for 15 faulty implementations,
and it has only one associated transition (Figure 4).

What happens where there is a chance for improvement? For each faulty implementation such
that transitions could improve actions, the highest effectiveness of both is calculated, transitions and
actions. Boxplots of Figure 11 shows the percentage of improvement of transitions over actions for

Table XI. Improvable and not improvable non-conformant implementations.

Subject #Total #EFFa;I D 1 (%) #1A–1T (%) #Filtered (%) #Improvable (%)

ListItr 145 45 (31.03) 0 (0) 45 (31.03) 100 (68.97)
Signature 96 36 (37.5) 26 (27.08) 43 (44.79) 53 (55.21)
Socket 59 44 (74.58) 23 (38.98) 52 (88.14) 7 (11.86)
JDBCResultSet 259 116 (44.79) 0 (0) 116 (44.79) 143 (55.21)
SMTPProcessor 317 206 (64.98) 0 (0) 206 (64.98) 111 (35.02)

Figure 11. Improvements of transitions over actions.
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Table XII. Numerical values of improvement of transitions over actions.

Subject Q1 (%) Median (%) Q3 (%) Mean (%) Mean EO (%)

ListItr 97.25 260.23 773.77 708.52 350.49
Signature 20.98 64.34 125.37 81.32 81.32
Socket 32.96 102.52 103.43 90.39 90.39
JDBCResultSet 10.27 15.73 345.83 193.78 163.51
SMTPProcessor 2.02 6.27 128.16 110.10 54.76

the five case studies. Numerical values of Q1, median, Q3, mean and mean excluding outliers are
shown in Table XII.

The level of improvement of transition over actions varies significantly across case studies. Nev-
ertheless, the improvement is considerably high in all cases for a large number of non-conformant
implementation. Mean values of improvements range between 81.32% and 708.52 and when
excluding outliers between 54.76% and 350%. From this, it can be concluded that transitions
are much more effective than actions. This observation reinforces the idea of covering transitions
(instead of just executing actions) for revealing non-conformant implementations.

4.4. Research question 4

Results of RQ.3 indicate that there may be an opportunity at combining action and EPA transition
coverages in order to define the level of adequacy of a test suite. This section defines and reports
how such a combined level of adequacy performs for metrics studied in RQ.1 and RQ.2.

Definition 7 (EPA action–transition adequacy level)
Let L be a protocol LTS, A its EPA and TS a test suite. The action–transition adequacy level of TS
with respect to A is defined as the ordered pair .j; k/ where j indicates the percentage of actions
and k the percentage of transitions of A that are covered by the ˛-abstracted execution of the unit
tests of TS .

Two values are involved in this definition: number of actions invoked by a test suite and number
of transitions that are exercised by the ˛-abstracted execution of the test suite. To calculate how this
criterion correlates with fault detection and structural coverage, a lexicographical ordering of test
suites is used.

Definition 8 (action–transition adequacy order)
Let L be a protocol LTS, A its EPA, and TS1 and TS2 two test suites with adequacy .j1; k1/ and
.j2; k2/, respectively. If j1 > j2 or j1 D j2 and k1 > k2, then TS1 has a greater level of adequacy
than TS2. If j1 D j2 and k1 D k2, both are equally adequate. Otherwise, TS2 has greater level of
adequacy than TS1.

The rationale behind this combined criterion is that if an enabled action has not been executed,
then choose to execute it. Covering a new action improves code coverage and additionally also
implies to exercise a new transition. When all available actions have already been executed, then
choose one such that its execution may cover a yet uncovered transition. This way, strengths of both
transitions and actions are being exploited. Spearman’s correlation values for fault detection and
structural coverage are shown in Table XIII for the three criteria: action coverage (A), transition
coverage (T) and the combined coverage criterion ((A+T)).

Regarding fault detection, in four out of five case studies, the combined criterion outperforms
action and transition criteria. For the remaining case study (Socket), the correlation for the com-
bined criterion is just 0.01 less than the best one for this subject. With respect to statement coverage,
action coverage is the best in four out of five case studies. As mentioned before, this is not surprising
considering that always that a yet unexecuted action is executed some yet unexercised statements are
exercised (some of those corresponding to the action). More interestingly, in the case of branch cov-
erage in three cases, criteria involving covering transitions have higher correlation values than those
of action coverage. Executing different branches is often related to the internal state of objects. The
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Table XIII. Correlation between transitions and actions with fault detection and structural coverage.

Fault detection Statement coverage Branch coverage

Subject A+T T A A+T T A A+T T A

ListItr 0.84 0.84 0.48 0.71 0.66 1.00 0.50 0.70 0.58
Signature 0.73 0.73 0.68 0.78 0.63 0.79 0.79 0.70 0.75
Socket 0.75 0.72 0.76 0.74 0.77 0.93 0.70 0.77 0.89
JDBCResultSet 0.80 0.68 0.77 0.78 0.67 0.60 0.91 0.66 0.57
SMTPProcessor 0.69 0.69 0.55 0.69 0.70 0.92 0.66 0.73 0.76

existence of different transitions of the same action in the EPA also reflects differences on internal
object states. Therefore, covering more transitions implies executing actions from distinct internal
states, which in turn increases the chances of covering more branches.

4.5. Summary of results

Results suggest that the EPA transition criterion is a good predictor of mutant detection (RQ.1.1)
with correlations between 0.68 and 0.84 depending on the case study. Results also show that EPA
transition correlations are comparable with or better than those of structural (rather than behavioural)
white box criteria. To avoid benefitting from bias in the selection of the specification language and
model to be structurally covered, the (unmutated) code itself was chosen as the specification. This
choice does not favour (on the contrary) the hypotheses proposed in this paper as the code can be
considered as the most detailed specification and most likely constitutes an upper bound on what
structural criteria on specifications can achieve as test suite quality predictors. Results suggest that
the EPA transition coverage criterion, which is behavioural and hence independent of specification
language bias, performs comparably in terms of predictability of test suite fault detection, resulting
in higher values for all case studies against statement coverage and is better than branch coverage in
two out of five case studies.

Results also suggest that for fixed size, test suites with the highest behavioural adequacy are
statistically better (RQ.1.2). In all the five case studies, the test suites were divided in 10 different
bins grouping those of similar size. Mann–Whitney U hypothesis test was performed, and in 39 out
of 50 bins, there is statistical evidence that those of higher adequacy perform better. Those for which
no such evidence exists correspond to bins of the largest test suites. As expected, the impact of EPA
transition coverage diminishes as size increases. Additionally, to obtain a quantitative measure of
this fact, the Vargha–DelaneyA12 effect size was calculated, which measures the difference between
two populations in terms of the probability that a score sampled at random from the first population
will be greater than a score sampled at random from the second.

Results for RQ.2 aiming at getting a deeper understanding of the observed phenomena reinforce
the results of RQ.1. Results indicate that the proposed criterion is a good predictor of structural
coverage criteria (statement and branch coverage) when applied over code under test (RQ.2.1).
Correlation of EPA transition coverage and branch coverage are all 0.7 or above except for one case
study which yielded 0.67. It is also shown that for fixed size, test suites with the highest behavioural
adequacy are statistically better in terms of structural coverage (RQ.2.1); however, as expected, the
impact of EPA coverage diminishes as size increases. These results suggest that a first and early shot
at producing high code coverage test suites (which could then be extended if necessary when code
is available) can be achieved through EPA transition coverage.

Results also indicate that the domain partition implicitly derived from EPA transitions is likely to
produce subdomains that are dense in failures, that is, a subdomain with high failure rate (RQ.2.2).
This is close to what is known to be optimal in the context of partition testing [30].

More specifically, in all case studies for at least 50% of the faults, partitioning subdomains
according to EPA transitions produces a 100% revealing subdomain, and that for 75% of the faults,
partitioning subdomains results in at least a sixfold failure rate (i.e. density) improvement over the
entire domain. Average (eliminating outliers) density per best subdomain is also high (> 67%) and
significantly better than for the full domain. Looking only at the hardest faults, for 50% of the faults,
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subdomains start from 31% revealing and are at least a twofold (but up to two orders of magnitude)
improvement over the complete domain. The Q1 percentile and average without outliers also shows
a significant improvement.

A finer-grained study (RQ.2.3), investigating effectiveness of transitions (the likelihood of reveal-
ing a mutant when traversing the transition) rather than the subdomains defined by them reveals that
for each fault there is almost always one transition that is highly effective in detecting it (> 90%
effectiveness), while nearly all the rest of the transitions have poor effectiveness (< 10%). Further-
more, it is shown that the effective transition is not always the same one; it depends on the fault. This
is in line with previous results: as faults are a priori unknown, it makes sense to consider more ade-
quate those tests that cover more transitions. Test suites with highest adequacy cover all transitions,
and consequently, the one highly effective is exercised. However, a more significant implication is
that, as uniqueness of effective subdomain per fault does not hold but does for transitions, there is
an opportunity to improve on EPA transition coverage criterion.

Experimentation regarding RQ.3 aimed at investigating that promising results for EPA transition
coverage are not simply because the criterion is a refinement of action coverage provides positive
indicators. Results suggest that for correlation with fault detection and structural coverage, in most
cases, EPA transition coverage performs comparably or better than action coverage.

Also, results indicate that subdomains defined by actions are less dense than those derived from
transitions. The most interesting results arise when comparing effectiveness of individual transitions
and actions; here, the former significantly improves the latter. The average after eliminating outliers
shows improvements starting at 50% and up to 350%; while looking at percentiles, for 50% (resp.
75%) of faults transition, effectiveness improves over action effectiveness in four out of five case
studies between 15% and 260% (resp. 10% and 97%). The last case study shows a smaller improve-
ment 6% (resp. 2%). These results suggest that EPA transition coverage can provide benefits over
action coverage and justify studying a combined criterion.

The last set of results (corresponding to RQ.4) shows that a coverage criterion based on actions
and transitions outperforms the criteria of those of actions and transitions (when considered in iso-
lation) as a fault detection predictor in all the case studies except for one, in which the highest
correlation is only 0.01 greater. Values for the combined criterion range between 0.69 and 0.84.

In conclusion, this paper is a step to understanding how behavioural coverage of protocol
behaviour correlates with fault detection in the context of call protocol conformance testing. Results
show, to the extent of the external validity threats of the experiments, that the proposed mixed cri-
terion is a good predictor for fault detection and for classical structural coverage criteria such as
statement and branch coverage.

The implication being that the criterion could help improve random testing, test-driven develop-
ment, test case selection and, in general, techniques for tests generation from formal specifications
when applied to API code with rich protocols. The results seem to indicate that such approaches
would benefit from introducing heuristics that aim to maximize action and EPA coverage.

5. THREATS TO VALIDITY

The results presented in this paper are subject to threats to validity including internal, external and
construct validity threats.

Threats to external validity concern the ability to generalize the results. The proposed approach
is not suitable for testing code which has trivial requirements regarding the order in which meth-
ods or procedures must be called. Furthermore, even fixing the code to that which has rich intended
protocols, the results cannot be generalized to identification of faults other than the ones captured
by the failure model embedded in the notion of protocol conformance discussed in this paper. The
expectation is that the results can be generalized to classes featuring rich intended protocols and
faults that are expressed as unexpected occurrence of exceptions or non-terminating methods. How-
ever, the study presented only covers five subjects which may not be sufficiently representative of
rich protocol code artefacts. Moreover, restricting faulty implementations to those that unexpectedly
raise exceptions or timeout is limitating, because APIs may fail in other ways too. Still, despite its
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weakness, it is still considered relevant by the software engineering community in typestate
verification [4, 31–33] and concurrent systems [54, 55].

A threat to the generalization of the results to the breadth of EPA coverages is that for some
subjects, high EPA coverage was not achieved by any test suite (maximum coverage for one test
suite achieved in subjects are 65%, 78%, 90%, 56% and 100% for SMTPProcessor, ListItr,
Socket, JDBCResultSet and Signature, respectively). Not achieving very high coverage
is due, firstly, to the use of random generation of test units which makes reaching ‘deep’ EPA
states unlikely. Possibly, a much larger number of much longer test units could have achieved more
coverage. Secondly, there is an essential difficulty in reaching deep states due to the complexity of
code under test. In fact, these problems appear when trying to achieve high structural coverage in
general [2] and for the subjects chosen in particular. Guided test case generation could have been
used to address this issue; however, the threat of a biased pool of test suites would have increased.

Another threat to generalization is due to the choice of restricting the scope of this work to deter-
ministic APIs. Extending the work to implementations that may exhibit non-deterministic failures
would require to revisit the coverage criteria and the conformance relation. Besides, it would cer-
tainly require a more sophisticated experimental strategy. If non-deterministic API implementations
were included, the notion of test effectiveness (killing a mutant) would require probabilistic treat-
ment because a non-deterministic mutant could behave differently in terms of failing or not to accept
a given sequence of calls. Therefore, each test would have a probability of killing each mutant.

Threats to internal validity appear as a consequence of how the experiments were conducted.
One major threat is the validity of the EPAs of the actual protocol LTS for the subjects studied.
The use of LTS that do not abstract appropriately the behaviour of the subject implementations
could lead to skewed results regarding coverage (although not for detecting faults, as for this the
reference implementation itself and not its abstraction is used). The risk of having used models that
are not proper abstractions of the subjects (i.e. not EPAs) is mitigated by our systematic construction
process, validation against third party constructed models and manual inspections performed.

Another threat to internal validity appears as a consequence of the adopted fault model. The
faults are introduced using a mutation tool. Whether mutation analysis is a realistic fault model or
not is still open and beyond the scope of this paper. Nevertheless, some work has shown statistical
evidence of the validity of using mutation analysis for the evaluation of testing techniques [56], and
it is a very widespread approach for evaluating testing techniques.

Another threat to internal validity is due to the adopted failure model. Incorrect computations can
go unnoticed and exceptions can be triggered later: this is a problem that affects unit test in general
and not something particular of this work. The goal is, in this case, to see if the sequences generated
according to the proposed criteria produce inputs that not only reach the state infection but also its
manifestation. It could be the case, that reduced oracle power might worsen this general phenomena
and thus imply the need of longer test cases to detect manifestation but this is mitigated by using a
set of long unit tests.

As with other experiments using mutants and unit tests, the threat of using weak tests that fail
to identify fault-inducing mutants exists. This could lead to different results if these harder to kill
mutants were included. However, the correlations over subsets of mutants found were analysed, and
in particular, those least killed showed no significant changes in correlation.

Threats regarding unintended effects of general experimental infrastructure needed for mutant
generation and fault detection are minor because standard tools such as �-JAVA and RANDOOP

were used whenever possible and simple code instrumentation techniques using AspectJ to record
mutant detection.

Threats to construct validity mainly appear from the choice to compare the proposed criterion
with code coverage criteria. Code coverage as a measure of effectiveness of a test suite is still being
studied by the testing community. However, in order to asses if the correlations with fault detection
for EPA coverage are reasonable, some well-accepted baseline is needed, and structural code cov-
erage criteria were chosen. However, the comparisons with code coverage in the experiments were
complemented with the study of EPA coverage against fault detection.

On the other hand, the proposed criteria are black box and they are compared with what in princi-
ple could be considered white box criteria in RQ1 (i.e. structural code coverage). It could be argued
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that a more suitable baseline would be some other black box criteria such as structural coverage over
a specification. The question here would be what specification language would be suitable. Given
that the intended protocol LTS of the subjects that are of interest for this study are infinite state, a
rich specification language such as extended finite state machines (essentially, LTS with variables)
as used in other works [11, 12] is required or even combined with programming languages such as
C# or Java – as used in model-based testing approaches such as SpecExplorer [57] and ConformiQ
[9]. Unfortunately, there is no de facto standard black box baseline for rich modelling languages
and any choice of language, tool and specification style will introduce bias as it is known that spec-
ification structure can have significant impact on coverage criteria adequacy [16–21]. Taking the
most detailed specification (the code itself) constitutes an upper bound on what structural criteria
on specifications can achieve as test-suite quality predictor. In fact, it is highly likely that in model-
based development, there will be more structural discrepancy between specification and code under
test. Hence, it could be argued that choosing the code as the specification hinders validation of the
hypothesis being proposed in this paper.

6. RELATED WORK

6.1. Models for testing

Generation of test sequences for software with internal state has captured the attention of researchers
in recent years [27, 28, 58–60]. Those works aim at generating internal states that improve struc-
tural coverage by constructing a set of test sequences. Pure random testing approaches like the one
of Pacheco et al. [44] are based on reusing previously returned values. Those approaches are truly
black box and thus are applicable to conformance testing and offline test generation. In fact, the
work of Pacheco et al. [44] constitutes the baseline for the experiments conducted. Evolutionary
approaches [58] represent initial randomly generated method sequences as a population of individ-
uals and evolve this population by mutating its individuals until a desirable set of method sequences
is found. Although they do not use program structure or semantic knowledge to directly guide test
generation, they do require coverage achieved by test sequences on the system under test (SUT) for
computing the fitness function. This makes them less portable to the problem setting studied in this
paper. Recent genetic techniques instead aim at finding settings to parameters which control aspects
of randomized testing [59]. The systematic and randomized method of Inkumsah et al. [60] is even
less applicable to the problem setting because it requires access to the program code of SUT to
generate inputs by demand by the use of some symbolic computation approaches.

Much research effort on testing has focused mainly on test case generation by exploiting to
various degrees the code-under-test: from purely systematic white box approaches [61]) to search-
based approaches [62] in which fitness functions are based on achieved coverage. None of these
approaches can tackle conformance checking to its full extent: they are not driven by any form of
actual or intended behaviour. However, some works explicitly or implicitly define or mine models
to improve the quality of tests. For instance, in the work of Liu et al. [27] the state space of a class
is quotiented based on its parameterless boolean observers. Visser et al. [28] proposed an approach
where abstract states are computed using shape abstraction, that is, ignoring the concrete values in
containers and taking into account only the shape in which the container nodes are connected. Note
that this work requires access to the internal state of the SUT. In a work of Dallmeier et al. [26],
a type-state model – similar to our EPA – is inferred and used to guide the generation of new test
cases that try to cover uncovered transition of the type state. The goal is to dynamically discover
typestate models. The quality of such models is then measured in the context of detecting misuse of
the class protocol by client programs.

The work presented herein differs substantially in various ways: The mentioned approaches do
not (i) look at the problem of black box conformance testing; (ii) articulate equivalence criteria
declaratively as an adequacy criterion (rather, they are tightly coupled to the particular technique);
(iii) provide statistical evidence on the effectiveness of covering such abstractions in terms of fault
rate detection.

In previous work [63], it was shown that the EPA transition coverage criterion is a good predictor
for fault detection and structural coverage. This paper extends it in several ways. Here, the results
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are studied from a category partition perspective and, as shown, the partition of the domain accord-
ing to the criterion produces dense subdomains. Also, the effectiveness of transitions for detecting
conformance faults is studied and it is shown that in most cases, given a faulty implementation, there
is a transition highly effective for detecting it. The results of covering EPA transitions are compared
with those of covering actions, and results indicate that the former outperforms the latter. Finally, in
this paper, a new criterion is defined which involves covering both, actions and transitions, and it is
even more effective than previously defined ones in terms of fault detection predictability.

6.2. Conformance testing

There has been plenty of work focused on defining coverage from formal specifications and mod-
els [3]. Works range on a plethora of languages: algebraic specifications [64–66], Z [13], VDM
[14], boolean specifications [67], tabular notations [68], reactive modelling language like SDL [69],
EFSM [12, 16, 70], sequence charts [71] temporal logics [15, 72, 73], C# [57], ADL [74], simu-
lation code [17], and so on. The rest of the section focuses the discussion on approaches able to
straightforwardly aim at testing object protocols.

Existing approaches can be classified in two categories: structural (or specification-based) and
behaviour (or semantic) coverage criteria. Structural coverage criteria are either defined in terms of
the specification [11–15, 69] or of the executable code generated from the specification or simulation
model [16, 17]. There are many representative examples [11, 12, 20] where criteria are defined
over syntactic elements as transitions and predicates featured in expressive state-based specification
languages like EFSMs or UML state machines.

Although empirical studies looking for statistical evidence on the suitability of coverage criteria
are rather common for code coverage criteria [75] yet are scarce for state-based specification lan-
guages [3] which are particularly appropriate for conformance testing. Nevertheless, there are some
notable exceptions [16, 17, 20]. Interestingly enough, in these, experiments were conducted on cri-
teria based on covering code generated from models [16] or simulation code [17]. In the work of
Mouchawrab et al. [20] handmade test suites based on UML state machines are compared against
test suites based on structural testing. As mentioned in the work of Pretschner et al. [16], it may
be the case that difficulties on automation criteria over specification could be a symptom of a lack
of comprehensive definitions and tools for specification-based coverage criteria for rich state-based
languages. The work presented herein is a step forward in this direction.

On the other hand, in behavioural approaches, coverage is defined in terms of formalisms which
straightforwardly denote the intended protocol behaviour. This line of work is that of seminal work
on black box testing in the context of finite state machine and protocol testing [11, 12, 20, 22–25,
35]. In foundational work, the conformance problem is stated in terms of Mealy machines. However,
in contrast to the approach presented in this paper, coverage and failure models assume finiteness of
both the specification and the actual implementation.

A work that drops the finiteness assumption is that of LTS-based testing [76] where IOCO is a
well-established notion of conformance. In IOCO, it is required that for any valid sequence (accord-
ing to the specification), the implementation’s outputs after the sequence should be a subset of the
specified outputs. In the presented approach, if {OK, ERROR} are considered as valid outputs, then
the notion of conformance is the same as the one used in IOCO. If the specification says OK, then
the implementation must say OK too; and if the specification says ERROR, also, the implementation
should do the same. However, no notion of behaviour coverage has been defined in this setting of
infinite state space.

A way of dealing with infinite behaviour models is by introducing abstraction. This is the case for
some application domains of testing, like protocol testing [77] and architecture-based testing [74],
where the level of abstraction in which the designer expresses the specification leads to the finiteness
of underlying LTS semantics. However, if the underlying semantic model is truly infinite, then some
sort of finitization is made available to the tester and so on. Several finitization techniques exist:
unfolding [69], domain bounding and slicing [6, 57], and state pruning [6]. However, no statistical
studies on coverage for these finitizations are available. Other relevant work in this line is that of
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automatic under approximation of infinite behaviour from concrete [78] or symbolic [79] executions
that can be later used for regression testing. Here, again, no statistical study is available.

Mori et al. [37] use the term ‘cover’ in the topological sense, defining a finite number of subspaces
that cover an infinite metric space. Covering (in the testing sense) a representative of each of these
subspaces amounts to defining a coverage criterion over an abstraction of the infinite state space,
which is what is also performed in this paper. As discussed in the paper, the positive impact of
partitioning an input space to defining coverage criteria is highly dependent on how failures fall
within these partitions. Thus, experimental evaluation of coverage criteria is important. We have not
found experimental evaluation of the predictive power of criteria defined over finite abstractions of
infinite input spaces for API call protocols.

Summarizing, the approach studied statistically in this paper fits in the category of behaviour
or semantic approaches to conformance testing in which infinite state space is handled by means
of an abstraction that over-approximates the state space much in the vein of typestates [34]. This
abstraction produces a partition of states and transitions thus constituting a case of category partition
[80] for infinite LTS.

7. CONCLUSIONS AND FUTURE WORK

This paper is a step towards defining and understanding how semantic coverage of infinite state
behaviour specifications relates to effective testing techniques for call protocol conformance. This
was addressed by studying coverage achieved on an abstraction of such behaviour, more specifically
on EPAs (much in the vein of typestates [34]). A good understanding of the relation between fault
detection, white box coverage criteria and coverage of abstractions of the semantic space of specifi-
cations could help to improve random testing, test case selection and prioritization techniques and,
in general, heuristics to generate tests from formal specifications.

The results obtained in the experiments reported in this paper are promising and suggest that EPA
coverage performs well in term of predictability of test-suite fault detection. This is particularly
important in a black box testing setting, and it constitutes an opportunity for defining criteria that
are independent of modelling notation and accidental characteristics of models themselves. Results
also suggest that EPA coverage criterion can make a difference in terms of fault detection for tests
suites of the same length.

In addition, results lead to believe that EPA coverage is a good predictor of statement and branch
coverage and that, for same-sized test suites, high EPA coverage is more likely to achieve high
code coverage. This may have practical implications in the context of development approaches
which advocate test development before coding (e.g. test driven development, interoperability) or
automated generation of test suites (model-driven development). In these contexts, developing tests
according to the EPA of the intended protocol would allow a first (and early) shot at producing
high code coverage test suites. These test suites could later be extended, if necessary, when code is
available. As far as we know, existing approaches for generating high code coverage test suites are
all white box, and therefore, they typically need the source code to be applied. It is important to note
that the construction of EPA abstractions of intended protocol behaviour is feasible, practical and
tool supported from contract-based specifications [36] or code [29]. Furthermore, EPA abstractions
could be provided directly by testers as advocated by typestate approaches [4].

Besides, results show that the domain partition implicitly derived from EPA transitions tends to
produce subdomains that are dense in failures, which is near to an ideal scenario from a category
partition viewpoint [30]. Furthermore, for each fault there is almost always one transition that is
highly effective in detecting it and that the effective transition varies from fault to fault. Additionally,
it is shown that the positive results are not just a consequence of covering actions, and that when
both actions and transitions are taken into account, the resulting criterion has highest correlation
values regarding fault detection.

The results could also be the basis for arguing for test case generation strategies based on
abstractions of behaviour rather than code itself (which requires significantly more heavyweight
machinery). In addition, they also make a case for stating that test case generation for rich call pro-
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tocol artefacts (from random black box to sophisticated concolic white box techniques) can benefit
from the heuristics that are implied by the results discussed in this paper.

Future work should aim at looking at other protocol abstractions and comparing them with EPAs
in terms of their effectiveness for testing protocol conformance. Besides, we want to conduct exper-
iments in a more general setting that includes both APIs with non-deterministic expected behaviour
and output values as part of the conformance relation considered. We also plan to study cost/benefit
analysis when these ideas are instantiated to a guide the generation of test suites. In fact, we specu-
late that random generation could benefit from EPAs not only due to the results shown in this paper
but also the availability of an abstract protocol would help in implementing heuristics aimed at the
early execution of particular actions or functionalities.
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