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The aims of the present study were to test the accuracy of the fatty acid ratios established by the
Argentinean Legislation to detect adulterations of milk fat with animal fats and to propose a regression
model suitable to evaluate these adulterations. For this purpose, 70 milk fat, 10 tallow and 7 lard fat sam-
ples were collected and analyzed by gas chromatography. Data was utilized to simulate arithmetically
adulterated milk fat samples at 0%, 2%, 5%, 10% and 15%, for both animal fats. The fatty acids ratios failed
to distinguish adulterated milk fats containing less than 15% of tallow or lard. For each adulterant,
Multiple Linear Regression (MLR) was applied, and a model was chosen and validated. For that, calibra-
tion and validation matrices were constructed employing genuine and adulterated milk fat samples. The
models were able to detect adulterations of milk fat at levels greater than 10% for tallow and 5% for lard.

� 2015 Published by Elsevier Ltd.
1. Introduction

Bovine milk fat is regarded as one of the most complex fats con-
taining a wide range of compounds. Lipids in bovine milk fat are
present as globules emulsified in the aqueous phase of milk. The
fat content varies as a result of changes in factors like breed of
cow, diet and stage of lactation, but typically is in the range 3.5–
4.7%. It is composed of triacylglycerols (TAG), diacylglycerols
(DG), free fatty acids (FFA), phospholipids, and other minor compo-
nents (MacGibbon & Taylor, 2006; Jensen, 2002). TAG are the most
important components, accounting for about 98% of the total fat.
They have a complex composition, due to the large number of pos-
sible fatty acids (FA) combinations on the glycerol backbone, more
than 400 different FA have been identified. Most of them are pre-
sent in very small quantities (<0.01%); however, about 15 FA are
present at concentrations above 1.0% (Van Ruth, Villegas et al.,
2010; MacGibbon & Taylor, 2006; Jensen, 2002).

Milk fat (MF) is one of the most expensive components of milk
and therefore its characterization is an important issue in order to
guarantee a constant well-defined quality. Detection of MF adul-
terations with other less expensive oils and fats has always been
a challenge, because of the natural variability of milk fat chemical
composition (Van Ruth et al., 2010; Lipp, 1996). Among the differ-
ent ways of adulteration of milk fat, those made with animal fats
are the most difficult to detect (Kumar, Lal, Seth, & Sharma,
2009; Lipp, 1996; Ulberth, 1995, 1994). Analytical techniques that
have been proposed for this fact include the determination of
physicochemical properties, constituents of unsaponifiable matter
and water-soluble and insoluble volatile fatty acids (Van Ruth,
Bremer, & Frankhuizen, 2010; Ulberth, 2000). Moreover, the gas
chromatography (GC) analysis of TAG or FA profiles of MF in com-
bination with multivariate statistical data processing have been
used to detect adulterations in milk and dairy products with for-
eign fats (Van Ruth, Villegas et al., 2010; Fontecha, Mayo,
Toledano, & Juárez, 2006; Goudjil, Fontecha, Fraga, & Juarez,
2003; Povolo, Bonfitto, Contarini, & Toppino, 1999; Fontecha,
Díaz, Fraga, & Juárez, 1998; Ulberth, 1995, 1994; Precht, 1992).

Milk and dairy products production in Argentina is relevant; our
country is located in the tenth position worldwide in milk produc-
tion and in the second position in Latin America (FAO, 2014). In the
central and east-central regions of Argentina dairy food manufac-
ture is one of the major economic resources as it accounts for
70% of milk production (MinAgri – Argentina, 2015). Adulteration
of MF with animal fats (as tallow or lard) is a serious problem that
has not been solved yet. Despite this fact, there is scarce informa-
tion related to genuine MF characterization and MF adulterations
(Páez, Cuatrin, Taverna, Moretto, & Campos, 2006; Maritano de
Correche, Oxley, & Fernández, 1985); statistical approaches
reported about this topic are not available. The Argentinean
Legislation (Código Alimentario Argentino CAA Art. 555 bis) estab-
lishes some specifications to characterize and detect adulterations
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of bovine milk fat, such as refractive, saponification, iodine,
Reichert-Meissl and Polenske indices, fatty acids relations
(C10:0/C8:0, C12:0/C10:0, C14:0/C12:0 and C14:0/C18:1) and sterols con-
tent (ANMAT, 2011) However, it is known that most of them are
successful to detect only massive adulterations (Ulberth, 2000).

The aims of this work were to check the accuracy of the FA rela-
tions proposed by CAA and to obtain suitable mathematical regres-
sion models employing chromatographically determined fatty acid
data, in order to improve the detection of adulterations of bovine
milk fat with tallow and lard fats.
2. Materials and methods

2.1. Samples analyzed and treatment

Seventy genuine milk fats (MF) of fluid milks (n = 20) and but-
ters (n = 50) were collected during a period of three years from
important dairies located in the central dairy area of Argentina.
Seventeen non-milk fats (NMF), ten from tallow and seven from
lard, were obtained from local suppliers and used as adulterants.

Milk samples were centrifuged and thermal treated to release
the cream fraction, which was beaten vigorously to obtain butter
(Murphy, Mc Neill, Convolly, & Gleeson, 1990). All samples (butter,
tallow and lard) were processed according to ISO 14156 (1999). For
that, the samples were placed at an oven at 50–60 �C for 2 h to
allow melting and fat separation, fats were then filtered at the
same temperature in the presence of anhydrous Na2SO4, and stored
at �18 �C until analysis.
2.2. Fatty acid analysis by gas chromatography

The glycerides present in the MF and NMF samples were trans-
esterified by acid-catalyzed ethanolysis according to IDF (IDF,
1999), with some modifications. Briefly, a volume (1 mL) of a solu-
tion of fat in n-hexane (10% w/v) was put into a screw cap tube, and
5% H2SO4–EtOH v/v (3.2 mL) was added. The reaction was per-
formed at 70 ± 2 �C for 3 h. The fatty acid ethyl esters (FAEE) were
extracted from the upper organic phase after addition of water
(6 mL) and analyzed by GC/FID.

Gas chromatograph (Perkin Elmer model 9000, Massachusetts,
USA) with a flame ionization detector and split/splitless injector
was employed. FAEE were separated using a PE-Wax fused-silica
capillary column (polyethylene glycol, 30 m � 0.25 mm �
0.25 lm). The column temperature was held at 50 �C for 4 min,
increased at 10 �C/min to 150 �C, held at 150 �C for 3 min,
increased at 10 �C/min to 230 �C, and held at 230 �C for 5 min.
Nitrogen was the carrier gas with a flow of 3 mL min�1 and a split
ratio of 1/50. The temperatures of FID and injector were 275 and
220 �C, respectively.

Sixteen fatty acids (C4:0, C6:0, C8:0, C10:0, C10:1, C12:0, C14:0, C14:1,
C15:0, C16:0, C16:1, C18:0, C18:1, C18:2, C18:2conj. and C18:3) were quanti-
fied with heptanoic and margaric acids as internal standard
(0.8 mL of C7:0 and 4.0 mL of C17:0 from individual standard solu-
tions of 0.5 mg mL�1; Sigma Aldrich, St. Louis, USA) added to the
samples at the transesterification step.

The FID outsignal was recorded and the chromatograms were
processed using Turbochrom v. 4. Software (Perkin Elmer Corp.
Waltham, Massachusetts, USA). The concentration of each FA was
reported as g per 100 g of anhydrous fat.
2.3. Preparation of adulterated milk fats

Adulterated milk fat samples (AMF) were simulated arithmeti-
cally employing the chromatographic profiles of milk fats (MF)
and non-milk fats (NMF) and applying the following equation
established by Timms (1980):

CiAMF ¼ X CiNMF þ ð1� XÞCiMF

where CiAMF, CiNMF, CiMF are the concentrations of the fatty acid ‘‘i’’ in
the AMF, NMF and MF respectively, and X is the proportion of NMF
in the adulterated milk fat (0.02, 0.05, 0.10, 0.15) which corresponds
to 2%, 5%, 10% or 15% of adulteration. These adulteration percent-
ages were defined taking into account that low levels of adulter-
ation are difficult to detect with conventional methods, i.e.
classical indices (Ulberth, 2000). In this way, to prepare samples
adulterated with 2% of tallow, each tallow profile (n = 10) was
numerically blended with each genuine milk fat profile (n = 70), giv-
ing a total of 700 AMF samples. Similarly, samples adulterated with
5%, 10% and 15% of NMF were calculated, having a total of 700 AMF
samples for each level of adulteration.

For the case of lard, samples adulterated with 2%, 5%, 10% and
15% were obtained by numerically blending each lard profile
(n = 7) with each genuine milk fat profile (n = 70), giving a total
of 490 AMF samples for each level of adulteration.

2.4. Data processing

First of all, we applied an exploratory analysis on the 70 profiles
of genuine MF using the principal component analysis (PCA), in
order to visualize the grouping of samples and identify outliers
(Di Anibal, Odena, Ruisánchez, & Callao, 2009; Purcell, Leonard,
Óshea, & Kokot, 2005).

Subsequently, from the profiles of genuine and adulterated milk
samples the fatty acids ratios established by CAA were calculated.
In addition, the profiles were arranged in data matrices for each
adulterant in order to study the adulteration of milk fat by apply-
ing Multiple Linear Regression (MLR).

The Unscrambler 7.6 (CAMO AS, Norway) and SPSS 17.0 (SPSS
Inc., Chicago, USA) software packages were used.

2.4.1. Principal component analysis (PCA)
PCA was carried out with the correlation matrix, in which vari-

ables were standardized giving them equal weighting. Therefore, it
was possible to capture the effect of all the variables rather than
the effect of a few variables with a comparatively large internal
variance (Coker, Crawford, Johnston, Singh, & Creamer, 2005;
Pripp, Stepaniak, & Sorhaug, 2000).

2.4.2. Fatty acid ratios
Four FA ratios, C10:0/C8:0, C12:0/C10:0, C14:0/C12:0 and C14:0/C18:1,

established by CAA to detect animal fat in milk fat, were calculated
for MF and for all blended samples. The values obtained were com-
pared with those fixed by the legislation.

2.4.3. Multiple linear regression
MLR was applied to generate mathematical models based on

the FA concentrations. The concentrations of sixteen fatty acids
quantified for MF and calculated for AMF were considered as the
independent variables and the percentage of adulteration of milk
fat (A%) was defined as the dependent variable. A value of 0%
was arbitrarily assigned to the genuine milk fat and values of 2%,
5%, 10% or 15% to corresponding AMF samples.

MLR is used to determine the relationship between multiple
independent predictor variables and a dependent variable. At a
first step, calibration is performed to build a mathematical model;
then, the model is validated in a prediction step (Ragno, Ioele, &
Risoli, 2004; Thomas, 1994). If there is collinearity between the
predictor variables the regression coefficients may be poorly esti-
mated as minor fluctuations in the data set have a major impact
on the estimation. In this case, it is convenient to use variable



Table 1
Fatty acid composition of 70 genuine milk fat (g FA/100 g milk fat).

Fatty acids Mean Minimum Maximum

C4:0 3.56 2.83 4.30
C6:0 2.13 1.86 2.37
C8:0 1.11 0.91 1.31
C10:0 2.38 1.74 3.03
C10:1 0.29 0.22 0.35
C12:0 2.96 2.14 3.89
C14:0 10.20 8.69 11.27
C14:1 0.86 0.65 1.01
C15:0 1.36 1.14 1.66
C16:0 24.10 22.78 25.63
C16:1 1.21 0.87 1.42
C18:0 10.71 9.61 12.19
C18:1

* 25.78 23.05 28.87
C18:2 1.68 1.28 2.19
C18:3 0.93 0.49 1.43
C18:2conj.

** 1.45 0.85 2.03

* Mostly 9cis (includes a small percentage of other fatty acids C18:1 that overlap in
the chromatographic runs).

** Mostly 9c – 11t (rumenic acid).
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selection methods, which identify the independent variables (with
a minimal correlation between them) that are highly correlated to
the dependent variable (Coker et al., 2005). In the present study,
for each adulterant, fifty samples were chosen by chance to serve
as a calibration data matrix, and in the same way, twenty samples
were chosen to construct a prediction data matrix. Backward, step-
wise and best subset regression models methods were used and
compared in order to find the best model. In this sense, the statis-
tical significance of the screened models was judged in terms of
mean square error (MSE or S2) and square of the correlation coef-
ficient (R2). Also, the multicollinearity was evaluated by VIF
(Variance Inflation Factor) and the partial correlations between
prediction variables (Hair, Anderson, Tatham, & Black, 1999, chap.
4). Thus, for the selected model from each method, the root mean
square error of calibration (RMSEC) was calculated. It is an indica-
tor of the average error that infers how well the model fits to the
data, and is defined by the following formula:

RMSEC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ŷi � yið Þ2

n

vuut ¼
ffiffiffiffiffiffiffiffiffiffi
MSE
p

¼ S

where ŷi is the predicted percentage of adulteration in the calibra-
tion sample i, yi is the theoretical percentage in the calibration sam-
ple i and n is the number of calibration samples (Rodríguez-Nogales
& Vázquez, 2007; Rodríguez-Nogales, 2006; Ragno et al., 2004; Hair
et al., 1999; Massart, Vandeginste, Deming, Micote, & Kaufman,
1988, Chap. 13; Myers, 1986, Chaps. 3 and 7).

The predictive power of the model was evaluated by RMSECV
(root mean square error of calibration of cross-validation), defined
by:

RMSECV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ŷðiÞ � yi

� �2

n

vuut

where ŷðiÞ is the predicted percentage of adulteration when the
model is constructed without sample i, yi is the theoretical percent-
age in the calibration sample i and n is the number of calibration
samples.

However, an external validation was also applied using the pre-
diction matrix, as the real predictive ability of the model cannot be
judged solely by using internal validation (Rodríguez-Nogales,
2006; Ragno et al., 2004). The root mean square error of prediction
(RMSEP) was the criterion utilized to evaluate the suitability of the
built models, which is defined by the following formula:

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

i¼1

ŷi � yið Þ2

m

vuut

where ŷi is the predicted percentage of adulteration in the predic-
tion sample i, yi is the theoretical percentage in the prediction sam-
ple i and m is the number of prediction samples.In addition, the
prediction intervals were calculated for the samples included in
the prediction matrices applying the following expression (Myers,
1986):

ŷðx0Þ � ta=2;n�k�1 SS ŷðx0Þ

where ŷðx0Þ is the percentage of adulteration calculated with the
model selected for an individual prediction sample (x0); ta=2;n�k�1

is the value of the Student t distribution with n�k�1 degrees of
freedom with a a/2 confidence level, and SS ŷðx0Þ is the standard
error of prediction for the model.
3. Results and discussion

3.1. Fatty acid profile and fatty acid ratios of genuine milk fats

The FA composition of the genuine milk fats (n = 70) character-
ized by 16 FAs are shown in Table 1. The values obtained are com-
parable to those published by the Instituto Nacional de Tecnología
y Agricultura (INTA) for Argentinean milk fat (Páez et al., 2006;
Maritano de Correche & Oxley, 1985).

In Fig. 1 are shown, as an example, three typical chromatograms
obtained for genuine milk fat, lard and tallow. The FA profiles are
characteristic for each type of fat (Gunstone, Hardwood, &
Dijkstra, 2007).

Besides, PCA method was applied to the profiles of 70 genuine
milk samples to display variability. The results showed that
90.6% of the total data variance could be explained using five prin-
cipal components (data not shown). It could be observed that sam-
ples were not separated definitely by season and no outliers were
found.

On the other hand, the concentration ratios proposed by CAA to
characterize milk fat were calculated for all samples and expressed
as ranges; the values obtained were compared with normal ranges
established by CAA (Table 2). As can be seen, the minimum and
maximum values obtained for C12:0/C10:0 and C14:0/C18:1 ratios
were included into the normal ranges for 100% samples; while
for C10:0/C8:0 and C14:0/C12:0 ratios, more than 97.5% of samples
were within normal ranges. Indeed, the majority of genuine milk
fat samples analyzed in this work accomplished the values estab-
lished by CAA. Pinto et al. (2002) and Ulberth (1994) analyzed gen-
uine milk samples from Chile and Austria and calculated several FA
ratios, establishing genuineness ranges to characterize their local
milk FA profiles; however, the values obtained were not compared
with legal values.
3.2. Fatty acid ratios for adulterated milk fat

The four concentration ratios were also calculated for all adul-
terated milk samples and the percentages of samples that were
outside CAA ranges are shown in Table 2. For tallow and lard adul-
terations, admixtures from 2% to 15% AMF could not be detected by
the ratios C10:0/C8:0 and C12:0/C10:0. For C14:0/C12:0 and C14:0/C18:1

ratios, the percentages of samples detected outside the normal
ranges increased as the level of adulteration increased from 5% to
15%. In particular, the percentages of detected samples adulterated
with tallow and lard ranged from 1.8% to 20.0% and 6.9% to 34.3%,
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Fig. 1. Chromatographic profiles of genuine milk fat, tallow fat and lard fat.
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respectively. Indeed, the FA ratios established by CAA were not a
useful tool to detect adulterations with lard and tallow at the
adulterations levels studied; being tallow adulterations the worst
situation observed.
Our results are in concordance with those reported in the bibli-
ography available about the use of FA ratios approaches to identify
MF samples adulterated with tallow and lard. Ulberth (1994)
tested several FA ratios (including C10:0/C8:0, C12:0/C10:0 and



Table 2
Concentration ranges of the FA ratios for genuine milk fats and adulterated milk fats with tallow and lard.

Fatty acid ratios

C10:0/C8:0 C12:0/C10:0 C14:0/C12:0 C14:0/C18:1

Normal ranges (CAA)* 1.85–2.30 0.95–1.30 3.00–4.10 >0.30

Genuine milk fats 0% 1.91–2.39 1.13–1.29 2.89–4.22 0.31–0.48

MF adulterations with tallow 2% 1.91–2.39 (–) 1.13–1.29 (–) 2.91–4.26 (–) 0.30–0.47 (–)
5% 1.91–2.39 (–) 1.13–1.29 (–) 2.92–4.33 (1.8) 0.29–0.45 (3.9)
10% 1.91–2.39 (–) 1.13–1.29 (–) 2.96–4.47 (7.6) 0.27–0.42 (10.0)
15% 1.91–2.39 (–) 1.13–1.29 (–) 3.00–4.61 (11.9) 0.25–0.40 (20.0)

MF adulterations with lard 2% 1.91–2.39 (–) 1.13–1.29 (–) 2.90–4.23 (–) 0.31–0.48 (0.00)
5% 1.91–2.39 (–) 1.13–1.29 (–) 2.90–4.26 (–) 0.29–0.44 (6.9)
10% 1.91–2.39 (–) 1.13–1.29 (–) 2.91–4.32 (1.6) 0.27–0.41 (11.5)
15% 1.91–2.39 (–) 1.13–1.29 (–) 2.93–4.37 (2.3) 0.25–0.38 (34.3)

() Percentages of samples that are outside normal ranges (CAA).
* Values established by CAA.
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C14:0/C12:0) and concluded that they failed to identify non-MF/MF
blends containing tallow and lard at a level less than 10%. In partic-
ular, for tallow adulteration, the author found that C4:0/C6:0 ratio
was useful for detecting 63.4% of the samples with 10% tallow,
and 14.8% samples with 5% tallow. In addition, he detected all
cases of 10% lard adulteration by means of ratios C14:0/C18:2 and
C18:2/C8:0; these ratios were also effective in 61.6 and 71.9 at 5%
of adulteration. Toppino, Contarini, Traversi, Amelotti, and
Gargano (1982) calculated various FA ratios (including C12:0/C10:0

and C14:0/C12:0) and found that four ratios (C18:0/C8:0, C14:0/C18:0,
(C6:0 + C8:0 + C10:0 + C12:0)/C18:0, C18:1/C18:0) were useful to detect
adulterations made with 10% added tallow in 83% of cases.
3.3. Regression analysis

3.3.1. Obtaining the regression models
Backward, stepwise and best subset regression models were

applied to the calibration matrix for each adulterant studied in
order to develop models that could be employed to detect adulter-
ations. It is very difficult to generalize the superiority of one
method over another, because the relative performance of the
methods often depends on the particular data set analyzed
(Ragno et al., 2004).

For tallow adulteration, statistical parameters (R2, adjusted R2,
S2) and the existence of multicollinearity for the best MLR models
obtained by the three methods were summarized in Table 3. In
particular, backward method gave five models. From the five mod-
els, a model with twelve predictor variables was chosen (C4:0, C8:0,
C10.0, C10:1, C12:0, C14:0, C14:1, C16:0, C16:1, C18:2, C18:3 and C18:2conj.), as
it had the highest adjusted R2 and the lowest S2 with a significant
linear regression. On the other hand, only one FA, C16:1, was neces-
sary to predict the percentage of adulteration by stepwise method.
Finally, a model of five predictor variables (C10:0, C10:1, C14:0, C14:1
Table 3
Statistical parameters of different regression models obtained for tallow and lard.

R2 Adjusted R2 S2 Multicollinearity

Regression models for tallow
MLR Backward 0.909 0.871 3.79 (1.95)* Yes

Stepwise 0.591 0.581 12.34 (3.51)* –
Best subset 0.827 0.803 5.80 (2.41)* No

Regression models for lard
MLR Backward 0.961 0.943 1.69 (1.30)* Yes

Stepwise 0.923 0.915 2.50 (1.58)* No
Best subset 0.924 0.916 2.49 (1.58)* No

* Values in parentheses are the RMSEC values in %.
and C16:1) was selected by the best subset regression models
according to the lowest S2 and the highest R2 with a significant lin-
ear regression. As can be seen, the backward and best subset mod-
els were superior to the stepwise model as judged by the R2,
adjusted R2 and S2; however, as the backward model presented
multicollinearity, the best subset regression models was selected.
For the latter, full cross-validation was applied and a value of
2.54% for the RMSECV was obtained.

A similar approach was adopted for lard adulteration: Table 3
shows the statistical parameters for the best MLR models. Four
models from the backward method were obtained. A model with
thirteen predictor variables was selected (C4:0, C6:0, C10:0, C12:0,
C14:0, C15:0, C16:0, C16:1 C18:0, C18:1, C18:2, C18:3 and C18:2conj.), which
showed the best adjusted R2 and the lowest S2 with a significant
linear regression. The stepwise method yielded four models, the
chosen model had four predictor variables (C4:0, C8:0, C16:1 and
C18:2). Furthermore, a model with four variables was selected
(C16:0, C16:1, C18:1 and C18:2) by best subset models method. In all
cases the adjusted R2 was higher than 0.9. Even though slightly
better results (R2 and S2) were obtained by the backward model,
it showed multicollinearity. For this reason, stepwise and best sub-
set models were selected and validated by full cross-validation.
Similar values of RMSECV (1.70%) were obtained for both models.

It is important to notice that the RMSECV values for tallow and
lard obtained are very good as they are lower than 3%. In particular,
the RMSECV for lard adulteration was lower than that obtained for
tallow. This fact is closely related to the higher similarities
between milk fat and tallow FA profiles in comparison to milk fat
and lard FA profiles (Ulberth, 1995).

3.3.2. Application of the selected models to the prediction set
The effectiveness of the regression models for future predictions

was checked by means of the prediction matrix for each adulter-
ant; dimensions of tallow and lard matrices were 340 � 5 and
260 � 4 respectively.

For tallow, when the proposed model was applied to the predic-
tion samples (m = 340), a RMSEP of 2.80% was obtained. This value
is very good, as we can expect an average uncertainty in new sam-
ples of less than 3% in the percentage of adulteration.

Furthermore, prediction intervals for each tallow sample were
calculated and plotted in Fig. 2. It can be seen that the prediction
intervals of all genuine milk fat samples (m = 20) contained the
axis of the abscissa, which corresponds to 0% level of adulteration.
Besides, within the group of 2% adulterated milk fat (m = 80), all
prediction intervals contained the theoretical level of adulteration
and the majority also included the level of 0%; so it was only pos-
sible to detect 12% of the adulterated samples (Fig. A1). The
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Fig. 2. Prediction intervals for adulterated milk fat with tallow. (A1) prediction intervals of genuine and 2% adulterated milk fat, (A2) prediction intervals of genuine and 5%
adulterated milk fat, (A3) prediction intervals of genuine and 10% adulterated milk fat and (A4) prediction intervals of genuine and 15% adulterated milk fat.
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prediction intervals of all 5% adulterated milk fat samples (m = 80)
contained the theoretical adulteration level, but some samples also
included the level of 0%, so it was only possible to detect 46% of
samples adulterated (Fig. A2). Fig. A3 and A4 show the prediction
intervals for 10% and 15% adulterated milk fat samples (m = 80
for each other). In all cases they contained their respective theoret-
ical adulteration levels and none included the level of 0%. Indeed,
100% of the adulterated milk fat samples were detected in both
groups.

For lard, when the two calibration models selected were applied
to the prediction set (m = 260), the lowest RMSEP (1.77%) was
obtained for best subset models. For this reason, this model was
selected and employed for the construction of prediction intervals
(Fig. 3).

The prediction intervals of all genuine milk fat samples (m = 20)
included 0% level of adulteration. The intervals for 2% adulterated
milk fat samples (m = 60) included the theoretical adulteration
level but most of them also included the level of 0%; so the adulter-
ation was detected only in 22% of cases (Fig. B1). For 5% adulterated
milk fat samples (m = 60), Fig. B2 shows that the intervals from all
samples contained the theoretical adulteration levels, being possi-
ble to detect 97% of adulterated milk fat samples. Fig. B3 and B4
reveal that all milk fat samples adulterated (m = 60 for each other)
at levels of 10% and 15% were detected.

According to our knowledge, there is scarce information about
the study of milk fat adulteration based on MLR analysis of FA
profiles. However, as mention above, other multivariate statistical
techniques have been applied to TAG and FA profiles in order to
analyze milk fat genuineness or adulterations. Ulberth (1994)
applied Linear Discriminant Analysis (LDA) to FA data and classi-
fied more than 95% of admixtures containing P3% of tallow and
lard. Likewise, Ulberth (1995) tested MLR and MLR stepwise,
among others methods, to FA profiles obtaining an RMSEP of
approximately 1.5% tallow in milkfat. Thus, the percentage of adul-
teration detected and the average error were lower than the
obtained in our work, probably because differences in the dimen-
sion of data set matrices and/or the statistical technique applied.
More recently, Van Ruth, Villegas et al. (2010) predicted the iden-
tities of milk, cow and pig fats applying partial least square dis-
criminant analysis (PLS-DA) to FA profiles, TAG profile and both
profiles combined. They found that the identity of each type of
fat samples was most successfully predicted (100%) using the com-
bined FA and TAG data set compared to the individual FA and TAG
data sets.
4. Conclusions

The results obtained in this work revealed that the FA
ratios ranges proposed in the CAA were not successful in
identifying less than 15% of adulterations of milk fat with tallow
and lard.
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Fig. 3. Prediction intervals for adulterated milk fat with lard. (B1) prediction intervals of genuine and 2% adulterated milk fat, (B2) prediction intervals of genuine and 5%
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S.R. Rebechi et al. / Food Chemistry 192 (2016) 1025–1032 1031
On the other hand, Multiple Linear Regression applied to FA
profiles proved to be a valid statistical tool for the evaluation of
adulterations of milk fat. One model for each adulterant was pro-
posed, which were able to detect adulterated milk fat samples at
levels greater than 5% for lard and 10% for tallow. The superior per-
formance of the prediction model for lard adulteration was also
observed in the RMSEP values. Indeed, the study shows that tallow
is the most challenging situation in the adulteration study.

Finally, the results reached in this work with the applications of
MLR to FA profiles represent an important advance in the knowl-
edge of milk fat adulterations in Argentina.
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