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Abstract
The pressure dependences of the structural, thermoelastic and vibrational properties of SnO2
in its rutile phase are studied, as well as the pressure-induced transition to a CaCl2-type phase.
These studies have been performed by means of ab initio (AI) density functional theory
calculations using the localized basis code SIESTA. The results are employed to develop a
shell model (SM) for application in future studies of nanostructured SnO2. A good agreement
of the SM results for the pressure dependences of the above properties with the ones obtained
from present and previous AI calculations as well as from experiments is achieved. The
transition is characterized by a rotation of the Sn-centered oxygen octahedra around the
tetragonal axis through the Sn. This rotation breaks the tetragonal symmetry of the lattice and
an orthorhombic distortion appears above the critical pressure Pc. A zone-center phonon of
B1g symmetry in the rutile phase involves such rotation and softens on approaching Pc. It
becomes an Ag mode which stabilizes with increasing pressure in the CaCl2 phase. This
behavior, together with the softening of the shear modulus (C11 − C12)/2 related to the
orthorhombic distortion, allows a precise determination of a value for Pc. An additional
determination is provided by the splitting of the basal plane lattice parameters. Both the AI
and the experimentally observed softening of the B1g mode are incomplete, indicating a small
discontinuity at the transition. However, all results show continuous changes in volume and
lattice parameters, indicating a second-order transition. All these results indicate that there
should be sufficient confidence for the future employment of the shell model.

(Some figures may appear in colour only in the online journal)

1. Introduction

Tin dioxide (SnO2 or stannic oxide) is a material with
important technological applications in solar cells, gas
sensors, optoelectronic devices, and lithium-ion batteries [1].
It was one of the first oxides considered, and is still the
most frequently used, for gas sensing applications exhibiting
high sensitivity by variation of the electrical conduction. The

gas sensitivity of these oxides is in a close relationship with
their surface chemical activity, i.e. a larger surface-to-volume
ratio implies a more sensitive sensor. Actually, electronic
properties of SnO2 nanodevices are strongly influenced by
surface processes, with a sensitivity superior to those of their
thin film counterparts [2]. Thus, it would be desirable to model
the structure and the physical behavior of the nanostructured
material. With the purpose of performing such modeling in
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Figure 1. Schematic representation of the rutile structure of SnO2.
The arrows indicate the rotation of the oxygen octahedron
corresponding to the B1g soft mode.

future work, we focus now on the development of an atomistic
model for SnO2.

Stannic oxide belongs to the rutile-type group and
undergoes the following sequence of structural phase
transitions under increasing high pressure: rutile-type phase
→ CaCl2-type phase→ α-PbO2-type phase→ fluorite-type
cubic phase [3]. The low-pressure phase of SnO2 is a
rutile-type structure with two formula units in a simple
tetragonal cell. Each Sn atom is at the center of a
regular oxygen octahedron (see figure 1). The transition
to the CaCl2-type structure with pressure corresponds to
a small rotation of these octahedra around the tetragonal
axis and the deformation to an orthorhombic cell occurring
in a continuous way, which indicates a second-order
transition [3]. This transition has been studied by several
experimental [4–6] and theoretical methods [7–9]. It has been
also found and extensively analyzed for other isomorphous
compounds [10–15]. Raman spectroscopy under pressure has
revealed for SnO2 a critical pressure Pc ≈ 14.8 GPa [6],
which is somewhat higher than the previous value determined
using x-ray diffraction, of 11.8 GPa [3]. Brillouin and Raman
scattering spectroscopy determined that this transition may be
described as pseudoproper ferroelastic. It can be explained by
a bilinear coupling of the order parameter associated with a
B1g soft phonon, which involves precisely the aforementioned
octahedra rotations, and an acoustic mode with the same
symmetry [6]. Theoretical ab initio calculations at the B3LYP
level [7] have predicted Pc ≈ 12 GPa. A study using the
linearized augmented plane-wave method (LAPW) [8] leads
to Pc = 12.4 GPa (GGA) and 10.1 GPa (LDA).

Detailed investigations of the lattice dynamics in the
low-pressure rutile phase of SnO2 have been carried out
in the past. Katiyar and co-workers have measured the
polarized infrared reflection, absorption and Raman spectra,
and from these data dielectric parameters and the optically
active phonon frequencies were determined [16]. In the same
work, the dispersion curves for phonons in various symmetry
directions were obtained with a rigid-ion model, in good
agreement with the experimentally observed frequencies.
Using a previously derived shell model for TiO2, Gervais
and Kress slightly readjusted some parameters for SnO2 and
calculated the optical frequencies at the Brillouin-zone center,
in rather good agreement with the available experimental

data [17]. The temperature dependence of the A1g mode
linewidth in the first-order Raman spectrum of SnO2 was
also analyzed in terms of a shell model [18]. Later, the
phonon dispersion relations for rutile SnO2 were determined
from ab initio calculations as a function of pressure [9]. The
latter calculations showed the soft behavior under pressure of
the B1g mode. This couples with a transverse acoustic (TA)
phonon branch along the 0–M direction of the Brillouin zone,
associated with the elastic shear modulus Cs = (1/2)(C11 −

C12), which also softens with increasing pressure and leads to
a ferroelastic phase transition [6]. The elastic constants have
been determined from experiments at normal pressure [19]
and their pressure dependences were also derived from
experimental data [6], and calculated theoretically from first
principles [20].

It is worth mentioning here that the structural and
vibrational properties of an SnO2 nanoparticle depend
on stresses induced by the morphology and surface
termination. Therefore a reliable modeling requires the
detailed reproduction of the structural and dynamical behavior
under pressure. On account of the restructurations occurring
at the nanoscale, it is particularly important that the model
describes the structural transition driven by pressure.

Although ab initio (AI) calculations are a powerful tool
for accurate studies of static, elastic and vibrational properties
in the bulk of crystals, the application of these techniques to
systems with a large number of atoms (nanoparticles, surfaces,
crystals with defects, crystals exhibiting phase transitions,
etc) are usually precluded. Moreover, first-principles studies
of the dynamic behaviors of systems comprising large
number of atoms are almost prohibited, since the CPU
time required to perform these simulations is exceedingly
large. To overcome this limitation, atomistic models fitted to
first-principles and experimental data were usually developed
with the requirement of accurately describing the physical
properties of the bulk crystals. Such models make the
above mentioned large-scale and/or long-time simulations
feasible [21–25]. Therefore, in the present work we have
determined interatomic potentials for the well-known shell
model (SM) applied to the case of SnO2. Unlike the situation
for previous works [17, 18], interatomic potentials are needed
in the present case to describe structural transitions and large
distortions under pressure.

We report here the results of a study of structural,
thermoelastic and vibrational properties under pressure as
well as ferroelastic instabilities in SnO2 based in AI and
SM methods. To the best of our knowledge, this is the first
study of a ferroelastic transition induced by pressure in SnO2
performed with the combined use of first-principles and shell
model calculations. It can be considered as a test of the
capabilities of each method for reproducing the ferroelastic
structural instability and other properties under pressure. The
SM developed will serve in a future work as a model for
studying SnO2 nanoparticles with different morphologies.

The paper is organized as follows. In the next section we
describe the computational methods (ab initio and atomistic
simulations). Section 3 is devoted to the description of the
results for the rutile structure, the rutile–CaCl2-type transition
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and elastic properties with pressure. We also describe in this
section the phonons in the rutile phase and the lowest Raman
mode in both structures. We analyze their dependences with
pressure, and also determine the phonon dispersions and the
density of states in the low-pressure phase. Finally, we discuss
and elaborate on the conclusions in section 4.

2. Computational methods

2.1. Ab initio calculations

The SIESTA code [26] is used in this paper for calculating
total energies, atomic forces and stresses. This is achieved
by solving the electronic quantum-mechanical equations
by means of the density functional approach in the local
density approximation (LDA) parameterized by Ceperley
and Alder. The interactions between electrons and core ions
are simulated through separable Troullier–Martins norm-
conserving pseudopotentials [27]. The basis set is constructed
with pseudoatomic orbitals (PAOs) of Sankey–Niklewski
type, generalized to include multiple-zeta decays which
are used to represent the valence wavefunctions. We have
generated the atomic pseudopotentials for the atoms of
the compound. After extensive tests with 4d10 electrons
in the core or in the valence set of the Sn atom, we
found that the inclusion of the 4d shell in the core
provides better equilibrium volumes, electronic structures
and phonon frequencies compared with experiments. We
recall that reliable pseudopotentials are required for phonon
calculations. With our selection of pseudopotential, basis set
(DZ), orbital confinement (100 meV) and cutoff energy grid
(350 Ryd) we found a root mean square error of ≈2% in
the comparison with eight measured phonon frequencies [5,
17]. Thus, we have generated the atomic Sn pseudopotentials
using the [Kr 4d10

] 5s2 5p2 atomic configuration. The cutoff
radii selected for ab initio generated atomic pseudopotentials
were 2.37, 2.43 and 2.75 au for the 5s2, 5p2 and 5d0

angular momentum pseudopotentials respectively. For oxygen
we have used 1.15 au for the s and p channels and
0.8 au for the d and f channels. All pseudopotentials are
transformed according to the methodology prescribed by
Kleinman and Bylander [28]. The elastic constants were
determined at the equilibrium rutile phase structure which
was obtained by minimizing the total energy with respect to
the atomic coordinates and cell parameters. The Kohn–Sham
eigenstates were expanded in a numerical orbitals basis set.
Our calculations are based on extensive tests of the following
basis sets: double-zeta (DZ), double-zeta polarized (DZP),
single-zeta (SZ) and single-zeta polarized (SZP), including
different degrees of atomic orbital confinement. The best
compromise between accuracy in the Raman frequencies and
efficiency was found with the use of the DZ basis set. The real
space cutoff energy Ec corresponding to 350 Ryd was used to
expand the electronic wavefunctions, and the reciprocal space
includes 567 k-points in a 20 × 20 × 20 uniform grid for the
six-atom primitive cell of rutile with two formula units. The
total energy and stress differences were converged to better
than 0.1 meV and 0.02 GPa per formula unit.

A conjugate gradient scheme was used to relax the
ions, and steepest descents were employed to optimize cell
parameters. The details of the method have been given
elsewhere [29]. Elastic constants were determined by the
method described in [30–32], where a set of small strains eij
are applied to the cell to obtain the elastic constants Cijkl. Due
to the symmetry of the rutile structure, six elastic constants
are independent [31, 33], which are calculated as functions
of pressure. The zone-center phonons were determined by
diagonalization of the dynamical matrix D within the frozen
phonon approximation using the Vibrator utility of the
SIESTA code. The results are compared to findings from
Raman and IR experiments [6, 34]. Only the primitive cell
is needed for the calculation of the zone-center phonons.
Using symmetry information of the tetragonal rutile phase of
SnO2, 36 displacements (six atoms with six displacements
each) were needed to construct the required force constants
matrix and from it the dynamical matrix. Diagonalization of
the calculated dynamical matrix yielded the frequencies and
eigenvectors of 18 zone-center phonons.

2.2. The shell model

The electronic polarizabilities of the ions are represented
in the shell model by an electronic shell of charge Y
coupled harmonically with a constant K to the core. In the
present model the electronic polarizability of the Sn+2 ion
is neglected, while an isotropic polarizability is assigned
to the O−2 ion. For the interactions between different ions
this model takes into account the short-range shell–shell
repulsive interactions arising from the wavefunction overlap
between neighboring ions up to a certain cutoff as well as the
long-range Coulomb interactions between all charged shells
and cores [21–25]. In contrast to the Sn atoms, the O atoms
are located at sites without inversion symmetry, and hence
the equilibrium values of their core and shell positions are
different. The short-range repulsive pair potentials for the
Sn–O and O–O interactions are taken to be of the Buckingham
type, A exp(− r

ρ
) − C

r6 , with a cutoff of 9 Å for all pairs. We
distinguish two types of oxygen in the oxygen octahedron
surrounding each Sn1 site: four O2s lying in a vertical plane
through the central Sn1 atom; and two O1s located on an
xy-axis through Sn1 perpendicular to that plane, on both sides
of the Sn1 (see figure 1). Due to the anisotropic environment
of the Sn1–O1 and Sn1–O2 bonds in the structure, we consider
different short-range Sn–O Buckingham potentials for these
pairs of atoms. We additionally include a three-body angular
potential of the form 1

2 k(θ − θ0)
2 for the O1–Sn–O2 bonds

inside the octahedron, on account of their partially covalent
character. Thus, the model contains 14 adjustable parameters,
including the total charges Z of the ions and considering the
charge neutrality condition. The calculations of the different
quantities corresponding to this model were performed with
the GULP code [35].

3. Results

We first determined the model parameters by adjusting them
to reproduce the experimental internal structures and lattice

3



J. Phys.: Condens. Matter 25 (2013) 135404 R A Casali et al

Table 1. Shell model parameters as defined in the text. The first four columns correspond to the parameters of the Buckingham-type
potential between a pair of atoms. The next four columns display charges and spring constants of the ions. Z denotes the total charge of each
ion. The last three columns show the parameters of the three-body angular potential.

Bond A (eV) ρ (Å) C (eV Å
6
) Ion Z (e) Y (e) K (eV Å

−2
) Ang. bond k (eV rad−2) θ0 (◦)

Sn1–O1 4166 0.260 10.00 Sn 2.88 0 ∞ O1–Sn–O2 2.00 90.00
Sn1–O2 1350 0.305 0.00 O −1.44 −1.37 143.51
O–O 3200 0.285 169.00

Table 2. AI and SM results for the zero-pressure structural parameters of the rutile phase: lattice constants a and c, the equilibrium volume
V , axial compressibilities ka and kc, the bulk modulus B and its derivative B′. a and c are in units of Å, and B in GPa. ka and kc are in units of
10−4 kbar−1, and the cell volume V in Å

3
. Experimental data and other theoretical calculations are added for comparison.

AI SM FP-LMTOa Calc.b Calc.c Calc.d Exp.e Exp.f

a 4.725 4.580 4.761 4.699 4.715 4.58 4.737 4.738
c 3.263 3.195 3.184 3.165 3.194 3.08 3.186 3.186
u 0.308 0.312 0.306 0.306 0.306 0.304 0.307 —
c/a 0.691 0.698 0.669 0.673 0.677 0.672 0.673 0.673
ka 1.89 1.51 — 1.389 — — 1.86 —
kc 0.74 1.07 — 0.673 — — 0.99 —
V 72.84 67.03 72.17 69.88 71.01 64.61 71.49 71.42
B 214 200 181 242.4 221 212 205 212
B′ 4.5 — — 4.76 6 — 7.42 5.13

a Reference [37].
b Reference [20].
c Reference [7].
d Reference [8].
e Reference [3].
f Reference [19].

constants [3] of the tetragonal rutile-type phase at P = 0 and
the orthorhombic CaCl2-type phase at P = 12.6 GPa. To this
end, we have used the fitting functionality available in the
GULP code [35], which enables the structure optimization
of the systems at zero temperature and different external
pressures. Once the set of parameters was satisfactory for
reproducing the structure of both phases, we further refined
the model to better adjust some phonons to the ab initio data,
and to improve its pressure behavior up to 20 GPa, particularly
that related to the tetragonal–orthorhombic transition. The
final set of SM parameters is presented in table 1.

3.1. The rutile phase and its pressure behavior

Structure. The rutile-type structure of the tin dioxide mineral
cassiterite at ambient pressure has the tetragonal space
group P42/mnm (see figure 1). The structure is completely
determined by three structural parameters: the two lattice
constants a and c, and the internal parameter u which defines
the oxygen position (u, u, 0). The model structural parameters
obtained for ambient pressure are compared with our ab initio
results calculated with SIESTA in table 2. Also comparison is
made with other ab initio results and experimental data. The
overall agreement is satisfactory; only the lattice parameter a
and the volume are somewhat underestimated by the model.
The volume dependence of the total energy is obtained ab
initio with SIESTA. These calculations are performed by
fixing different values of the target pressure and relaxing the
structure until the stress differences converge to below the

tolerance. These results are interpolated using the third-order
Birch–Murnaghan E(V) equation to obtain the bulk modulus
B and its pressure derivative B′. The result for B is compared
with the model value obtained with GULP in table 2. Other
ab initio and experimental values of this magnitude are also
shown in this table. Both AI and SM values obtained with
our calculations are in better agreement with experiments
than previous ab initio results. The theoretical AI value of
the pressure derivative B′ is in good enough agreement with
respect to the experimental value.

Elastic properties. The six elastic constants of the rutile-
structured stania were derived from the ab initio computed
stresses generated by the strain [30]. The behaviors with
pressure of the uniaxial, biaxial and shear elastic stiffnesses
are shown in figures 2(a)–(c), respectively. Experimental
results are available for C11, C12,C44 and C66 up to
approximately 12 GPa [6, 16]. All pressure behaviors show
an excellent agreement among the AI, SM and experimental
results, with the only exceptions being for C13,C33 and C44.
Here there are some differences between AI and SM data,
but nevertheless very good agreement in the tendencies is
shown. The calculated values of C44 are the smallest as
compared to the other elastic constants and are nearly pressure
independent in the whole range studied (see figure 2(c)).
This is in accordance with the experimental data of Hellwig
et al [6] and previous calculations [20, 36].

The results for the zero-pressure elastic constants and
their pressure derivatives are compared to results from
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Figure 2. Pressure dependences of (a) uniaxial, (b) biaxial and (c) shear elastic constants for the rutile structure of SnO2. The solid line and
circles represent the AI values while dashed lines and empty circles show the SM results for (a) C11, (b) C12 and (c) C44. The AI results for
(a) C33, (b) C13, and (c) C66 are shown by solid lines and squares while the SM results for these magnitudes are represented by dashed lines
and empty squares. The experimental values [6] of (a) C11, (b) C12 and (c) C44 are denoted by star symbols, and those of (c) C66 by cross
symbols. Also shown are calculations from [16] of (b) C12 (cross symbols) and (b) C13 (solid diamonds) at zero pressure.

Table 3. AI and SM results for the zero-pressure elastic stiffness Cij and its pressure derivative C′ij at P = 0 GPa in the rutile phase. The

results were taken from a fit to a second-degree polynomial Cij(P) = a+ bP+ cP2 where a = Cij and b =
dCij
dP |P=0 ≡ C′ij. We also show in

the last column results for the derivative of the elastic shear modulus C′s ≡ (C
′

11 − C′12)/2. Available experimental data and theoretical
calculations are added for comparison. The unit of Cij is GPa, while C′ij is dimensionless.

C11 C12 C13 C33 C44 C66 C′11 C′12 C′13 C′33 C′44 C′66 C′s

AI 261 211 161 483 107 232 3.32 5.05 4.07 5.62 0.53 1.11 −0.86
SM 260 197 117 429 131 225 2.23 5.45 3.46 4.68 0.50 3.20 −1.61
Calc.a 261 180 150 472 109 223 7.39 7.17 5.05 7.18 1.04 4.27 0.11
Calc.b 217 191 134 313 55 194
Exp.c 261 186 — — 103 207 2.94 4.2 — — 0.60 1.82 −0.63
Exp.d 262 177 156 449 103 207 4.66 6.14 4.51 6.28 0.88 3.15 −0.74

a Reference [20].
b Reference [16].
c Reference [6] up to 14.6 GPa.
d Reference [19] up to 1 GPa.

experiments and other calculations in table 3. All magnitudes
show a general good agreement in the comparison of the
AI and SM results with experimental data. In particular,
C11 is in excellent agreement with experimental and other
calculated values, as is seen also in its pressure behavior

(see figure 2(a)). As an exception, the rigid-ion model
calculated C11 is underestimated [16]. Actually, we see a
general underestimation of the elastic constants calculated
in [16]. A good accordance is observed as well in table 3
between the elastic constant derivatives calculated here and
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Table 4. Polycrystalline thermoelastic properties: bulk (B0), Young (E0), and shear (G0) moduli; Poisson constants (ν); transverse (vt),
longitudinal (vl) and averaged (vm) sound velocities; and Debye temperatures (θD). All magnitudes were calculated from the elastic
constants Cij at P = 0 GPa obtained by the AI and SM methods, and using the Reuss–Voigt–Hill approach as explained in the text (for
details see [30]).

AI SM Calc.a Exp.b Exp.c Exp.d

B0 (GPa) 225 200 212 203 212 225
G0 (GPa) 96 108 106 98 101 105
ν 0.31 0.27 0.28 0.29 0.29 0.30
E0 (GPa) 253 276 273 — 262 273
vt (m s−1) 3707 3811 3898 3750 3809 3879
vl (m s−1) 7167 6794 7119 6910 7046 7232
vm (m s−1) 4150 4241 4346 4184 4252 4332
θD (K) 542 549 567 — 555 566

a Reference [36].
b Reference [42] (P = 1 kbar).
c Reference [19] (P = 0 GPa).
d Reference [6] (P = 3 GPa).

the experimental ones, as is apparent also in their pressure
dependences shown in figure 2. Other ab initio calculations
give rather overestimated values of these derivatives (see
table 3) [20]. The AI result for the derivative of the elastic
shear modulus C′s is in good agreement with the experimental
data, although the SM value is overestimated (see the last
column of table 3). Unlike previous calculations [20], both
AI and SM values are negative, which is consistent with the
soft behavior of the transverse acoustic mode associated with
the elastic shear modulus on approaching Pc.

We have also calculated polycrystalline mean values of
elastic properties on the basis of the knowledge of the different
elastic constants. To this end, we followed the procedure
explained in [30] and used the Reuss approximations to obtain
the arithmetic means of these extremes (the Reuss–Voigt–Hill
approach) [31, 33, 38–40]. We show in table 4 the mean values
of different elastic moduli, Poisson constants, sound velocities
and Debye temperatures calculated with this procedure.
These magnitudes are compared to available experimental
and theoretical data, showing very good overall agreement.
The large values (approaching the upper limit 0.5) found for
the Poisson coefficients indicate the ductile character of the
material. This is consistent with the results obtained for the
B0/G0 ratio, 2.34 (AI) and 1.85 (SM), which are larger than
the critical value 1.75. The latter signals the ductile/brittle
(larger/smaller) behavior of the material [41]. This fact is also
verified experimentally, with values in the range 2.07–2.14
(see table 4). Our AI result for the Poisson constant ν is
slightly above the SM one, while the experimental data lie
in between. The smaller SM value of ν may be ascribed to a
slight overestimation of the bending three-body forces acting
on the angular O1–Sn–O2 bond (see table 1). This is also
consistent with the fact that the B0/G0 ratio for the SM is
closer to the critical value than the corresponding AI result.
Thus, the SM predicts a slightly less ductile material than the
AI result.

The Debye temperatures obtained by both methods in this
work are smaller than the corresponding experimental data,
although differences are of≈4%. This is also related to a small
underestimation of the calculated mean sound velocities, as is
observed in table 4.

Zone-center phonons, dispersion curves and the density of
states. We have determined the zone-center phonon
frequencies in the rutile phase in the pressure range
0–18 GPa by both AI and SM approaches. The Raman-active
phonons do not involve Sn displacements since they occupy
centrosymmetric positions in the lattice [37], while the
infrared-active modes involve opposite motions of the Sn and
O sublattices. We show in table 5 the AI and SM results for
the zone-center optical phonon frequencies at P = 0 GPa,
and compare them to other theoretical and experimental
data. A general good agreement is observed between AI and
experimental values, while major differences appear in the
comparison with SM results, although the overall agreement
is also good. The best agreements with experiment (<10%),
and also between our AI and SM results, are found for the B2g
and B1g Raman modes, and the A2u and lowest E3

u infrared
modes. Additionally, good agreement is seen between our AI,
SM and previous AI results for the higher B1

1u mode, which
unfortunately has not been measured.

On the other hand, our SM results for the remaining
infrared Eu modes and the Raman A1g and Eg modes exhibit
discrepancies of 14%–25% with the experiments. The largest
SM discrepancy corresponds to the A2g silent mode, which
is overestimated by ≈60% as compared to our AI and other
theoretical results. The overall SM phonon performance is
satisfactory considering that the model was adjusted mainly
to the experimental rutile and CaCl2 structures.

The dispersion relations were calculated along several
symmetry directions in the Brillouin zone by means of the SM
developed. The results are displayed in figure 3. This approach
leads to stable phonon frequencies throughout the Brillouin
zone. A qualitative good overall agreement between our SM
results and the AI results of Parlinsky and Kawazoe [9]
is attained for the low-frequency region. The slopes of the
acoustic branches along different Brillouin-zone directions
obtained by the two methods are in good accordance. These
slopes are related to the SM results for the average sound
velocities and the Debye temperatures shown in table 4, which
are found to be in good agreement with the experimental
values. However, an intermediate-frequency gap present in
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Table 5. Zone-center optical phonons in rutile SnO2 obtained at P = 0 by AI and SM calculations, compared with other theoretical and
experimental assessments. All units are cm−1.

Mode AIa SMa LDAb GGAb Calc.c Calc.d Exp.d Exp.e Exp.f

B2g 785 765 734 688 762 752 782 781 777
A1g 677 728 617 577 638 646 638 637 636
Eg 500 402 462 432 470 441 476 476 475
B1g 110 104 82 90 105 100 — 121 119
A2g 372 589 320 314 366 398 — — —
B1

1u 501 508 553 520 585 505 — — —

B2
1u 160 202 138 134 147 140 — — —

A2u (TO) 510 495 457 424 461 512 477 — —
E1

u (TO) 646 558 584 538 615 651 618 — —

E2
u (TO) 301 410 270 253 286 297 293 — —

E3
u (TO) 226 253 200 196 242 236 244 — —

a Present work.
b Reference [43].
c Reference [9].
d Reference [16].
e Reference [5].
f Reference [6].

Figure 3. SM dispersion curves along symmetry directions of the
Brillouin zone in SnO2.

the AI results of [9] between 400 and 460 cm−1 is not
reproduced by the SM. Also the SM dispersion in the
high-frequency range shows major discrepancies with these
AI results. Nevertheless, according to our experience in the
study of nanostructure properties by means of bulk-developed
SMs, such discrepancies in the high-frequency phonons do
not appear to be a major problem for their applications at the
nanoscale, as long as the overall agreement achieved with the
model is qualitatively satisfactory. For example, a nice SM
simulation of KNbO3/KTaO3 superlattices [44] was obtained
even though the high-frequency phonons of KNbO3 [45] were
in only qualitatively good agreement with AI results [46].
The same occurred in SM simulations of nanostructured
BaTiO3 [47] and PbTiO3 [48].

We have calculated the partial phonon density of states
(PDOS) projected over different atoms with the present SM.
We plot in figure 4 the PDOS for the Sn and O atoms. The
Sn PDOS is also compared to available experimental data
obtained from inelastic nuclear resonant scattering [49]. The

calculated Sn band shows up in the low-frequency region
from 0 to ≈400 cm−1 with four main peaks in fair qualitative
agreement with experiments. Actually, the positions of the
two highest peaks in the calculated Sn spectrum agree well
with the experiment but there is no agreement in their relative
intensities. The same is found for the lowest two peaks
and also a shift of ≈40 cm−1 towards higher frequencies.
Nevertheless, the agreement is satisfactory considering that
the model was adjusted to reproduce mainly the rutile
structure and not the phonon data. On the other hand, the O
band is visualized mostly in the high-frequency region up to
frequencies of ≈800 cm−1. There is a mixture of the Sn and
O peaks at ≈300 cm−1 and a smaller mixture of Sn and O
characters in the broad band centered at≈200 cm−1. The large
dispersion of the optical branches, which could be ascribed to
the strong O–O interaction, may explain these mixtures and
the absence of a gap (see also figure 3).

The behavior with pressure of the different phonon modes
is another important issue studied in this work. The pressure
dependences of the B2g,A1g and Eg Raman modes in the
rutile phase were calculated up to pressures of ≈12 GPa. At
pressures above the rutile–CaCl2 transition pressure the rutile
structure was retained as metastable. We compare in figure 5
the SM and AI results with corresponding experimental
frequencies [6] for these Raman modes. We see that all
frequencies increase linearly with increasing pressure in
accordance with experiment. Moreover, the slopes of the
phonons for the AI calculation are in excellent agreement
with experiment for all modes. The SM results show also
an excellent Eg mode slope agreement. The slopes of the
remaining modes are less pronounced in the SM results than
in those from experiment (see figure 5).

We have also studied the behavior with pressure of
another Raman mode of B1g symmetry. We plot in figure 6
the squared frequency of this mode as a function of pressure.
Both AI and SM calculations show a soft behavior in the
low-pressure rutile phase in accordance with the experiments.
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Figure 4. Partial phonon density of states (PDOS) calculated by
means of the shell model developed in this work. We show the
results for Sn (dashed lines) and O (dotted lines). Also shown is the
experimental PDOS for Sn from [49] (solid lines). The spectra are
normalized such that the area under the Sn curve is equal to 1.

Figure 5. Frequencies of the B2g,A1g and Eg Raman modes as a
function of pressure for the rutile phase of SnO2. The AI and SM
calculations are shown by solid and dashed lines respectively. The
solid circles represent the experimental data from [6].

This soft mode is precisely related to the rotation of the
oxygen octahedra and couples to the shear elastic mode
leading to the rutile–CaCl2 phase transition [6]. The softening
of the rutile B1g mode with pressure is followed by hardening
of the CaCl2 Ag mode above Pc. This issue will be
discussed in the next section in connection to the rutile–CaCl2
ferroelastic transition.

We have evaluated the Grüneisen parameters γi using the
following expression: γi = (∂ωi/∂P)0B/ωi, where B is the
Bulk modulus and ωi is the frequency of phonon i. The B
values used in the above formula are those listed in table 2.
The derivatives ∂ωi/∂P at P = 0 for the Raman modes of
B1g,B2g,A1g and Eg symmetries were determined by a linear
regression of the curves depicted in figure 5. For the soft mode
B1g the linear regression was restricted to the range 0–2 GPa
because of the non-linear behavior of this mode near Pc.

The AI and SM results for the Grüneisen parameters are
compared in table 6 with other theoretical and experimental

Figure 6. Pressure dependence of the squared frequency of the
Raman soft mode of B1g/Ag symmetry as a function of pressure.
The AI and SM calculations are shown by solid and empty circles
respectively. Linear fits to the AI and SM results are shown by solid
and dashed lines respectively. The star symbols represent the
experimental results from [6] while the dotted lines are linear fits to
this data. The change in slope for each curve indicates the critical
pressure for the rutile–CaCl2 phase transition in each case (see
explanations in the text).

Table 6. AI and SM results of the Grüneisen parameters γ for the
Raman modes in the rutile phase of SnO2 compared with other
theoretical and experimental values.

Mode AIa SMa Calc.b Exp.c Exp.d

B2g 1.70 0.71 1.49 2.58 1.56
A1g 2.08 1.00 1.33 3.64 1.73
Eg 1.46 1.23 1.29 3.20 1.52
B1g −10.67 −12.86 −14.17 −10.44 −8.56

a Present work.
b Reference [9].
c Reference [5].
d Reference [6].

data. As a general feature, all Raman mode values of γi are
positive except those of the soft mode, which are negative
and substantially larger. Our AI results are in good agreement
with experimental data [6]. Other experimental results show
the same tendencies but in generally larger values of γi [5].

The Grüneisen constant value for the Eg mode obtained
from the SM calculations shows the same good agreement.
However, the SM γi values for the B2g and A1g modes are
smaller than the experimental ones [6]. As for the soft B1g
mode, the value of γi is more negative than the AI and
experimental data. This facts are visualized in figures 5 and
6 through the comparison of the SM, AI and experimental
pressure dependences of the mode frequencies, as previously
commented.

3.2. The rutile–CaCl2 phase transition

In order to study the rutile–CaCl2 phase transition as
a function of pressure, it is important to choose an
appropriate quantity to determine Pc. The second-order
character of the transition prevented us from determining

8
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Figure 7. Pressure dependences of the elastic shear modulus Csm
obtained by fitting AI (solid circles and full line) and SM (empty
squares and dashed line) results, compared with the analysis of
experimental data (stars and dotted lines) [6].

the critical pressure by the usual common-tangent method,
since the energy–volume curves of the two phases practically
superpose. An alternative natural choice is the order parameter
of the transition, i.e. the rotation angle of the oxygen octahedra
around a z-axis through each Sn atom, since these rotations
characterize the appearance of the CaCl2-type structure upon
overcoming Pc. However, as a consequence of its coupling
to the lattice, this undergoes an orthorhombic distortion and,
as a feedback effect, the oxygen octahedra distort. Thus, the
rotation angle is not well defined in the high-pressure phase
and therefore is not suitable for determining the transition
pressure.

On the other hand, the B1g mode of the rutile phase
softens with increasing pressure and corresponds precisely
to rotations of the oxygen octahedra. This mode becomes
a mode of Ag symmetry in the high-pressure CaCl2-type
phase, and stabilizes with increasing pressure. The squared
frequencies of these modes are linear functions of pressure

and the intersection of the two lines clearly determines Pc [6].
By performing linear fits of the B1g and Ag mode squared
frequencies at different pressures we have determined the
value of Pc from the intersection of these lines. The results of
the AI and SM calculations are compared to the experimental
findings in figure 6. From this plot, we have determined Pc
as approximately 8 GPa and 11 GPa for the SM and AI
calculations, respectively. These values are somewhat smaller
than the experimental value of [6], ≈15 GPa (see figure 6).
However, our AI result for Pc is in close agreement with the
value of 11.8 GPa inferred from x-ray experiments [3]. Other
first-principles calculations yield results of Pc ≈ 10.1 [8] and
12 GPa [7], in agreement with the x-ray experiments and our
AI calculations.

The underestimation of the SM critical pressure is
related to the large absolute value obtained for the Grüneisen
parameter in comparison to the corresponding value from our
AI calculation. Actually, due to the linearity at low pressures
of the soft mode squared frequency, it can be shown that
smaller critical pressures correspond to larger negative values
of γ (see figure 6 and table 6). This correlation is also verified
in the first-principles calculations of [9].

The transition pressure can also be evaluated by studying
the behavior of the elastic shear modulus Csm = (C11 −

C12)/2, which determines the softening of the TA mode of
B1g symmetry along 110 [33]. We employ the Landau theory
of phase transitions to analyze the pressure behavior of Csm.
We follow the procedure of [6] to fit our data for C11 and C12
as functions of pressure. The results obtained from the AI and
SM data are shown in figure 7 and compared with the same
analysis of experimental data. The value of Pc obtained thus
from the SM is 7.9 GPa, very close to the one obtained from
the softening of the Raman B1g mode. The analysis of the AI
data leads to Pc = 9.3 GPa, somewhat lower than that from the
Raman mode. The SM description of the pressure dependence
of the elastic properties in relation to the structural transition
is remarkable.

We have also studied the behavior with pressure of the
lattice parameters. We show in figure 8 the AI and SM

Figure 8. Normalized lattice parameters a/a0, b/b0 and c/c0 of SnO2 as a function of pressure. a0, b0 and c0 are lattice constants at zero
pressure. SM (a) and AI (b) results for lattice constants a and b are shown by dashed lines, while the corresponding results for c are shown
by solid lines. Also shown in (b) are experimental results for a and b (solid squares) and c (solid circles) from [3].
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results for the lattice parameters at different pressures and
compare them to the experiment. The agreement between
the AI results and experiments is very good. The accordance
with the SM calculation is also qualitatively satisfactory.
The curve of the lattice constant a in the rutile phase for
the AI calculation was split into two curves at a pressure
which is similar to the critical pressures obtained from
figures 6 and 7. This is also verified in the SM case. This
splitting corresponds to a differentiation of the basal lattice
constants a and b in the orthorhombic CaCl2-type structure.
We find continuous changes in volume and lattice parameters
at the transition from the CaCl2 to the rutile structure, in
agreement with previous x-ray diffraction studies [3] and
confirming a second-order phase transition character. The
slopes of the curves for the lattice parameter c are less
pronounced than those of the curves for the basal parameters
in both calculations, in accordance with experiments. This
corresponds to a smaller degree of axial compressibility along
the c direction in comparison to the corresponding value for
the basal plane in the rutile phase, as is shown in table 2.
The experimental degree of orthorhombicity (i.e. a–b) is
qualitatively reproduced in both calculations.

4. Discussion and conclusion

With the aim of allowing future simulations of nanoscopic
structures of SnO2 and their behavior with pressure, we
constructed an atomistic model of this compound in the
framework of the shell model (SM) theory for ionic or
partially covalent materials. In order to determine the
parameters of such a model we performed ab initio (AI)
calculations of the structural behavior of SnO2 under pressure
up to 20 GPa, which includes a structural transition from the
ambient pressure rutile structure to a CaCl2-type structure. We
also studied AI the pressure behavior of the elastic constants,
the phonon dispersion in the rutile phase and the softening of a
zone-center B1g phonon and the elastic shear modulus (C11−

C12)/2 on approaching the critical pressure Pc. Such a phonon
involves a rotation of the Sn-centered O octahedra around
the tetragonal axis of the rutile phase, which is the order
parameter of the transition. A condensation of such a mode
leads to the CaCl2 phase. This mode couples to a transverse
acoustic one of the same symmetry as described with the
above mentioned elastic shear modulus. This also softens
and leads to a pseudoproper ferroelastic transition from the
tetragonal to an orthorhombic lattice. We also determined the
bulk, shear and Poisson’s moduli, the sound velocities and
the Debye temperature. The AI results are in general good
agreement with experimental measurements and previous AI
calculations. The SM parameters have been adjusted primarily
to reproduce the structural behavior with pressure and a good
agreement was obtained with the AI and experimental data.
Also the elastic properties are very satisfactorily reproduced.
The SM calculated zone-center phonons in the rutile phase
also show a satisfactory agreement with AI and experimental
results. The SM phonon dispersion along symmetry directions
of the Brillouin zone is in qualitatively good agreement
with previous AI results [9]. Larger deviations appear

in the high-frequency region; in particular a gap in the
intermediate-frequency range is not present in the SM
calculation. However, such discrepancies did not appear to
be relevant for SM applications to nanostructures in previous
perovskite simulations, as discussed above. On the other
hand, assigning more weight to fit the high-frequency phonon
dispersion reduces the accuracy of the description of the
structure parameters and their distortions at the transition
under pressure; we consider it important to take this into
account to achieve a correct description of the material
distortions at the nanoscale. As for Pc, the SM gives a value
of 8 GPa, while AI and experimentally it was 10–11 and
11–15 GPa, respectively. The theoretical determinations of
Pc were performed in three ways: (1) The crossing of the
soft mode relations ω(B1g) versus P in the rutile phase with
ω(Ag) versus P in the CaCl2 phase. (2) The softening of the
elastic shear modulus (C11−C12)/2. (3) The appearance of an
orthorhombic lattice distortion with increasing pressure. The
AI results, in agreement with experiment, show an incomplete
softening at Pc. Thus, the system jumps from one phase to the
other before the first becomes actually unstable. This suggests
that this phase transition is not completely displacive.
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