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Abstract

A crack on a structural member introduces a local flexibility which is function of
the crack depth. This new flexibility condition changes the dynamic behavior of
the structure. The knowledge of the influence of the crack on the characteristic
dynamic parameters makes it possible to determine both the crack position and
its magnitude. A large number of research papers have been written on the
subject, most of them on straight beams of a single segment. However, despite
the importance of L-shaped beams in a variety of technological applications,
very limited information is available for the case of such structures. In this
article, a cracked L-beam structure is studied by an analytical approach which
is validated by experimental measurements. The Euler–Bernoulli beam theory
is assumed to describe the transversal displacements and the crack is modeled
by means of an elastically restrained hinge. A special device was designed to
measure experimentally the natural frequencies of steel L-beams structures.
The natural frequencies of in plane vibrations of L-beam structures are
obtained considering a crack at different positions as well as of different
depths. Values obtained with the analytical solution are satisfactorily compared
with experimentally measured frequencies and the values reported in previous
studies on the subject published by other authors.

Introduction

The problem of the influence of a crack in a welded

joint on the dynamic behavior of a structural member

has been studied in a thorough paper by Chondros

and Dimarogonas.1

The static and dynamic analysis of beams with

single or multiple concentrated damages, produced by

cracks, has received an increasing interest in recent

years.

A very complete description of the state of the art in

the field with the mention and description of the most

important work was done by Caddemi and Morassi,2

whose reading is recommended.

There it is explained that generally, it is assumed

that the amplitude of the deformation is enough to

maintain the crack always open, this model offers the

great advantage to be linear and, therefore, it leads

to efficient formulations for solving both static and
dynamic problems.

From earliest studies, it is clear that localized
damage produces a local reduction in the stiffness
of the beam.3 Many models have been proposed in
the literature to describe open cracks on beams, the
flexibility modeling of cracks is quite common.4 In
the case of beams under plane flexural deformation,
a crack is modeled by inserting a massless rotational
elastic spring at the damaged cross section.5,6

Many researchers have studied the topic of
equivalent flexibility of the spring which models
the crack.7–15 Among them, it can be mentioned
that the expression of Chondros et al.15 is the most
widely used.

Most of the papers deal with straight beams
of a single stretch. Far less are related with
frames.16–18
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Figure 1 L-frame structure.

The use of the L-shaped structures is widespread
in many fields of engineering, including modern
applications in robotics.19

In present work, an L-shaped beam with a crack in
one of the sections is studied. In order to perform this
study, it is important to have an analytical procedure
which allows determining the dynamic parameters
of cracked L-beams structures. And it is known that
an essential condition to ensure the reliability of an
analytical procedure is the experimental verification
of its accuracy, especially in a case like this in which
the values available in the literature are scarce.

The objective of this study is twofold: The
proposition of a classical elastic model where the
crack is modeled by a rotational spring calculated
following Chondros’ theory and shows the excellent
concordance that the proposed model exhibits with
experimental measurements performed on a device
specially designed.

In addition, information is provided about the
variation of the natural frequencies of an L-beam
produced by a crack at different positions and of
different depths and the usefulness of the combination
of the posed analytical approach and experimental
measures in crack detection is demonstrated.

Structural Model and Analytical Solution

The study deals with the vibration of L-shaped beams
assuming an internal crack in different positions in
one of the beams of the system.

The two parts of the L-shaped structure are joined
at right angle, with the end of one of them clamped
and the end of the other elastically restrained. Figure 1
depicts the structure under study.

The position of the crack is defined by the
coordinate l2 and locally affects the flexural stiffness
of the L-beam. It is modeled as a massless, rotational
elastic spring at the damaged cross section connecting
the two adjacent segments of the beam.

The magnitude adopted for the flexibility constant
of the equivalent spring (βC), is obtained by means of
the expression proposed by Chondros et al.15 which
was found with fracture mechanics methods:

βC = 6π
(
1 − ν2

)
h

EI
φC (z) (1)

with

φc (z) = 0.6272 z2 −1.04533 z3 + 4.5948 z4 − 9.973 z5

+20.2948 z6 − 33.0351 z7 + 47.1063 z8

−40.7556 z9 + 19.6 z10

and z = hC/h, while h is the height of the cross section
and hC is the depth of the crack.

Three beam members are defined in the structure:
the beam FO of length l1, the beam OP of length l2
and the beam PH of length l3; each of them having
uniform properties. The beams are modeled using the
Euler–Bernoulli beam theory.

The external end H is a classical clamped support
and the external end F is supported by two
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Figure 2 Sign convention for positive shear force (Q) and bending

moment (M).

translational springs of stiffness tw and tu and a
rotational spring of stiffness rz. At section P, there
is the crack. To model the crack, it is supposed an
internal hinge elastically restrained against rotation
between beams 2, OP, and 3, PH, this semirigid
connection is materialized by a rotational spring of
stiffness:

rm = 1/βC. (2)

The flexural rigidity, the mass density, the length,
and the area of the cross section of each beam are EiIi,
ρi, li, and Ai, with i= 1, 2, 3.

Three coordinate systems are located as they are
shown in Fig. 1, and its origins are taken to be
at points F, O, and P in each beam. At abscissa xi
(0≤ xi ≤ li), wi is the transverse displacement of the
beam i, and θ i = ∂wi/∂xi is the section rotation at any
time t. The deformation of a beam in x direction is not
taken into account, because the beams are considered
infinitely rigid in the axial direction.

The sign convention used for the positive shear
force spins an element clockwise (up on the left and
down on the right). Likewise the normal convention
for a positive bending moment elongates the bottom
fiber of the beam. Figure 2 shows the sign convention
to be employed.

For free vibration, the bending moment and the
shear force expressions are:

Mi (xi, t) = EiIi
∂2wi (xi, t)

∂x2i
;Qi (xi, t) = EiIi

∂3wi (xi, t)

∂x3i
(3)

To express equations in dimensionless form, the
nondimensional parameter is introduced:

Xi = xi/li; with Xi ∈ [0, 1] ∀i = 1, 2, 3 (4)

The displacements wi, and θ i may be expressed in
terms of the dimensionless coordinates as follows:

Wi (Xi, t) = wi (xi, t)

li
; θi (Xi, t) = ∂Wi (Xi, t)

∂Xi

= ∂wi (xi, t)

∂xi
(5)

The characteristics of beam 1 are used as
‘‘reference’’:

EI = E1I1, ρA = ρ1A1, l = l1 (6)

to define the ratios:

νEIi = EiIi
EI

, νρAi = ρiAi

ρA
, νli = li

l
(7)

the dimensionless spring stiffness:

Tw = tw
l3

EI
,Tu = tu

l3

EI
,Rz = rz

l

EI
,Rm = rm

l

EI
(8)

Under the described conditions and applying the
technique of variational calculus,20 the governing
differential equations of the problem and the
boundary and continuity conditions are:

∂4W1

∂X4
1

(X1, t) + k41
∂2W1

∂t2
(X1, t) = 0 (9)

∂4W2

∂X4
2

(X2, t) + k42
∂2W2

∂t2
(X2, t) = 0 (10)

∂4W3

∂X4
3

(X3, t) + k43
∂2W3

∂t2
(X3, t) = 0 (11)

with k4i = ρiAi
EiIi

l4i , i = 1, 2, 3.

vEI1(
vl1

)2 ∂3W1

∂X3
1

(0, t) + Tw vl1 W1 (0, t) = 0 (12)

vEI1
vl1

∂2W1

∂X2
1

(0, t) − Rz

(
∂W1

∂X1
(0, t)

)
= 0 (13)

vEI2(
vl2

)2 ∂3W2

∂X3
2

(0, t) + Tu vl2W2 (0, t)

− k41vl1vl2
∂2W2

∂ t2
(0, t) = 0 (14)

vl1W1 (1, t) = 0 (15)

∂W1

∂X1
(1, t) = ∂W2

∂X2
(0, t) (16)

vEI1
vl1

∂2W1

∂X2
1

(1, t) = vEI2
vl2

∂2W2

∂X2
2

(0, t) (17)

vl2W2 (1, t) = vl3W3 (0, t) (18)

vEI2
v2
l2

∂3W2

∂X3
2

(1, t) − vEI3
v2l3

∂3W3

∂X3
3

(0, t) = 0 (19)
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Figure 3 (a) and (b) Experimental

device: clamped-lamped L-beam.

vEI2
vl2

∂2W2

∂X2
2

(1, t) − Rm

(
∂W3 (0, t)

∂X3
− ∂W2 (1, t)

∂X2

)
= 0

(20)

vEI3
vl3

∂2W3

∂X2
3

(0, t) − Rm

(
∂W3 (0, t)

∂X3
− ∂W2 (1, t)

∂X2

)
= 0

(21)

vl3W3 (1, t) = 0 (22)

∂W3

∂X3
(1, t) = 0 (23)

The last term in Eq. 14 is due to the rigid body
axial translation of beam 1 of length l1, which is a
consequence of assuming infinity axial rigidity.

Using the well-known separation of variables
method to solve Eqs. 9 to 11, free vibrations of the
system can be expressed in the form:

W1 (X1, t) =
∞∑
n=1

W1n (X1) eiωt (24)

W2 (X2, t) =
∞∑
n=1

W2n (X2) eiωt (25)

W3 (X3, t) =
∞∑
n=1

W3n (X3) eiωt (26)

The functions W1n, W2n, and W3n represent the
corresponding transverse modes of natural vibration
of each beam member and are given by:

W1n (X1) = C1 cosh (λnα1X1) + C2senh (λnα1X1)

+ C3 cos (λnα1X1) + C4sen (λnα1X1) (27)

W2n (X2) = C5 cosh (λnα2X2) + C6senh (λnα2X2)

+ C7 cos (λnα2X2) + C8sen (λnα2X2) (28)

W3n (X3) = C9 cosh (λnα3X3) + C10senh (λnα3X3)

+ C11 cos (λnα3X3) + C12sen (λnα3X3) (29)

where αi = vli 4
√

vρAi/vEIi is a mechanical and geomet-

rical parameter, with i=1, 2, 3; λn = 4
√
l4ω2

n
ρA/EI is

the dimensionless frequency coefficient of mode of
vibration n and C1, C2, . . . , C12 are arbitrary constants
to be determined.

Replacing Eqs. 27, 28, and 29 in Eqs. 24, 25, and
26; and these ones in Eqs. 12 to 23, a linear system of
equations in the unknown constants C1, C2, . . . , C12

is obtained.
For a nontrivial solution to exist, the determinant

of the coefficient matrix in the linear system
of equations should be equal to zero and the
roots of the transcendental frequency equation are
the dimensionless frequency coefficients λn of the
mechanical system in Fig. 1.

The results were determined by using the Mathe-
matica software21 with six significant figures.

Experimental Device

Two particular cases were modeled, a free-clamped
(F-C) and a clamped–clamped (C-C) L-beam.

A bar of steel 5/8 ‘‘× 1/8’’ (b= 15.875mm,
h=3.175mm) was employed.

Both members the same length (l1 = l2 + l3),
cross-sectional area, and material properties:

vρAi = 1; vEIi = 1; ∀ i = 1, 2, 3;
vl1 = 2vl2 = 2vl3 = 1

The length of each member was 420mm for the
F-C case and 446mm for the C-C.

Figure 3(a) and (b) shows the clamped–clamped
model tested.

The crack was modeled with a thickness of 1mm.
All precautions were taken so that the cut is made
smoothly and its depth be uniform: A piece of hard
steel was employed, with a gap where the beam
is embedded up to the desired depth (Fig. 4(a)
and (b)).
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Figure 4 (a) and (b) Crack

produced in the strip.

The beamwas excited with an impact hammer near
the clamped end, where there are no nodes of the
modal shapes of the first five frequencies.

In order not to disturb the behavior of the struc-
ture, measurements were taken with a proximitor.
A Provibtech device, TMO 180, was employed. The
displacement signal was read and processed with a
two channel vibration analyzer Vibxpert II, with 24
bits of resolution and 1000Hz of sample frequency.

To evaluate the measured values, it is needed to
know the Young modulus E and the density ρ of the
employed material.

Because these two parameters, in dynamical
applications, are always involved by means of the

ratio
√

E
ρ
, the following procedure was followed:

A value widely verified in solid mechanics was
taken as reference: the fundamental frequency of a
cantilever beam. It is known that the corresponding
eigenvalue is 1.8751.22

A cantilever beam of length 417mmwas built with
the same strap of the L-beam.

The measured frequency: 14.85Hz, then:

f = 1

2π

λ2

l2

√
EI

ρA
, 14.85Hz = 1

2π

(1.8751)2

(0.417m)2

√
Eh2

ρ 12

⇒
√

E

ρ
= 5034.7

m

seg

This value, which is the speed of a longitudinal
wave in steel, is employed in the numerical
determinations.

Numerical Results

In order to verify the accuracy of the procedure, two
particular cases of the proposed analytical approach
are modeled:

Free-clamped L-beam, without internal hinge:
Tu =Tw =Rz = 0; Rm → ∞;

Clamped–clamped L-beam,without internal hinge:
Tu =Tw =Rz =Rm → ∞.

Table 1 presents the first five natural frequencies
of vibration. The values obtained by means of the
analytical approach are in very good agreement with
results available in the literature.

Experimental determinations are also performed
and data show a striking agreement with aforemen-
tioned values.

Tables 2–6 compare the results between experi-
mental measurements in a device with a crack artifi-
cially produced and the proposed analytical procedure
with a crack modeled following Chondros’ criterion.
A free-clamped L-beam with l1 = l2 + l3 is considered,
different locations (l2/l1) and depths (hc/h) of the
crack are taken into account. Applying Eqs. 1, 2, and
8, one obtains Rm for each particular situation.

As it can be seen, the experimental values are
again in excellent agreement, from an engineering
viewpoint, with those obtained by means of the
analytical procedure. There are just five situations
where differences are upon 5%, but in no case exceed
than 10%.

Figure 5 shows the effect of the depth of a crack at
different locations on the natural frequencies.

The magnitudes of frequencies in the damaged
structure f are related to the frequency of the structure
without crack which is named f 0.

In general, the frequencies decrease as the depth of
the crack increases

As it can be observed, the second frequency is not
affected by the crack when occurs in the middle
of the second member. It can be deduced that
the corresponding modal shape of the undamaged
structure has no curvature at that point.

Figure 6 shows the effect that the position of a
crack (hc/h=0.75) causes in the first three natural
frequencies of the free-clamped L-beam structure.
Again, it is observed that the second frequency does
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Table 1 First five natural frequencies for F-C and C-C L-beams

Free-clamped L-shaped beam

i 1 2 3 4 5
λi 1.0880 1.7869 3.9685 4.8021 7.0915 Lin and Ro23 (eigenvalue)
λi 1.0821 1.7863 3.9684 4.8037 7.0982 Analytical (eigenvalue)
(fi) 4.85 13.22 65.25 95.62 208.79 Analytical (Hz)
(fi) 4.77 13.04 65.14 95.16 207.74 Experimental (Hz)

Clamped–clamped L-shaped beam

i 1 2 3 4 5
λi 3.9222 4.7145 7.0376 7.7588 10.007 Albarracı́n et al.24 (eigenvalue)
λi 3.9331 4.7235 7.0540 7.8255 10.149 Analytical (eigenvalue)
(fi) 56.62 82.08 183.07 225.29 378.99 Analytical (Hz)
(fi) 56.76 83.01 182.50 228.88 382.08 Experimental (Hz)

Table 2 First five natural frequencies for F-C L-beams with a crack in the sixth of the second member

l2/l1 hc/h Rm 1 2 3 4 5

1/6 0.25 220 λi 1.0812 1.7862 3.9680 4.8015 7.0935 Analytical (eigenvalue)
(fi) 4.84 13.22 65.24 95.53 208.15 Analytical (Hz)
(fi) 4.77 13.04 65.14 95.10 207.58 Experimental (Hz)

0.50 41 λi 1.0800 1.7769 3.9619 4.8020 7.0660 Analytical (eigenvalue)
(fi) 4.83 13.08 65.04 95.55 206.90 Analytical (Hz)
(fi) 4.66 12.93 65.02 95.09 207.42 Experimental (Hz)

0.75 7.9 λi 1.0698 1.7416 3.9356 4.7905 6.9521 Analytical (eigenvalue)
(fi) 4.74 12.57 64.18 95.10 200.28 Analytical (Hz)
(fi) 4.34 12.60 64.58 95.10 207.48 Experimental (Hz)

Table 3 First five natural frequencies for F-C L-beams with a crack in the third of the second member

l2/l1 hc/h Rm 1 2 3 4 5

1/3 0.25 220 λi 1.0810 1.7857 3.9661 4.8035 7.0947 Analytical (eigenvalue)
(fi) 4.84 13.21 65.18 95.61 208.58 Analytical (Hz)
(fi) 4.77 13.04 65.14 95.05 207.14 Experimental (Hz)

0.50 41 λi 1.078 1.7831 3.9529 4.7961 7.0783 Analytical (eigenvalue)
(fi) 4.82 13.17 64.75 95.32 207.62 Analytical (Hz)
(fi) 4.66 12.98 64.92 94.45 204.22 Experimental (Hz)

0.75 7.9 λi 1.0633 1.7709 3.8920 4.7657 6.999 Analytical (eigenvalue)
(fi) 4.68 13.00 62.77 94.12 203.04 Analytical (Hz)
(fi) 4.38 12.93 64.15 93.47 196.32 Experimental (Hz)

Table 4 First five natural frequencies for F-C L-beams with a crack in the middle of the second member

l2/l1 hc/h Rm 1 2 3 4 5

1/2 0.25 220 λi 1.0814 1.7862 3.9666 4.8003 7.0977 Analytical (eigenvalue)
(fi) 4.85 13.22 65.20 95.49 208.76 Analytical (Hz)
(fi) 4.71 13.01 64.98 94.83 207.63 Experimental (Hz)

0.50 41 λi 1.0770 1.7861 3.9558 4.7801 7.0942 Analytical (eigenvalue)
(fi) 4.81 13.22 64.84 94.68 208.56 Analytical (Hz)
(fi) 4.66 12.99 64.50 93.89 207.46 Experimental (Hz)

0.75 7.9 λi 1.0550 1.7856 3.9026 4.700 7.080 Analytical (eigenvalue)
(fi) 4.61 13.21 63.11 91.50 207.72 Analytical (Hz)
(fi) 4.33 12.99 60.98 89.97 206.79 Experimental (Hz)
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Table 5 First five natural frequencies for F-C L-beams with a crack in the second third of the second member

l2/l1 hc/h Rm 1 2 3 4 5

2/3 0.25 220 λi 1.0810 1.7860 3.9684 4.8033 7.0924 Analytical (eigenvalue)
(fi) 4.84 13.22 65.25 95.61 208.45 Analytical (Hz)
(fi) 4.77 13.04 65.03 95.10 207.41 Experimental (Hz)

0.50 41 λi 1.0750 1.7850 3.9671 4.7950 7.0661 Analytical (eigenvalue)
(fi) 4.79 13.20 65.22 95.28 206.91 Analytical (Hz)
(fi) 4.77 12.98 64.48 94.94 205.80 Experimental (Hz)

0.75 7.9 λi 1.0450 1.7803 3.9593 4.7578 6.9434 Analytical (eigenvalue)
(fi) 4.53 13.13 64.96 93.81 199.78 Analytical (Hz)
(fi) 4.49 12.43 59.70 94.16 192.59 Experimental (Hz)

Table 6 First five natural frequencies for F-C L-beams with a crack in the fifth sixth of the second member

l2/l1 hc/h Rm 1 2 3 4 5

5/6 0.25 220 λi 1.0800 1.7849 3.9684 4.8047 7.0982 Analytical (eigenvalue)
(fi) 4.84 13.20 65.26 95.66 208.79 Analytical (Hz)
(fi) 4.77 13.04 65.14 95.16 207.36 Experimental (Hz)

0.50 41 λi 1.0720 1.7791 3.9652 4.8021 7.0975 Analytical (eigenvalue)
(fi) 4.76 13.12 65.15 95.56 208.75 Analytical (Hz)
(fi) 4.77 12.88 64.97 95.05 205.79 Experimental (Hz)

0.75 7.9 λi 1.0330 1.7557 3.9523 4.7919 7.0939 Analytical (eigenvalue)
(fi) 4.43 13.77 64.73 95.15 208.54 Analytical (Hz)
(fi) 4.66 12.16 63.15 94.11 196.37 Experimental (Hz)
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not vary when the crack is in the middle of the
segment.

Then, we use the available information in order to
demonstrate the usefulness of the proposed analytical
model in crack detection.

The inverse method, widely used in the scientific
literature (Rosales et al.25, Labib et al.26), is employed
to predict position (l2) and depth (hc/h) of a crack
from measured values of frequency in the damaged
structure.

As is known (Owolabi et al.27), measuring the
first three natural frequencies (f n, with n= 1, 2, 3)
will be enough to determine the crack location
and depth for a beam-like structure with a single
crack. Each of the first three dimensionless values:

λn = 4
√
l4 (2π fn)

2 ρA/EI of every measured frequency
is introduced into the frequency transcendental
equation formed with the system of Eqs. 13 to 22.
Plotting in a curve, the results of the frequency

transcendental equation for a particular mode n is
obtained a contour line (Rm versus l2). Each point of
the curve represents a combination of different crack
locations l2 and crack depths (identified by Rm), that
according to the analytical model, correspond to the
measured frequency.

Three contour curves are obtained for the first, sec-
ond, and third modes. Overlaying those three graphs,
it is possible to obtain an intersection point. The cross
point has particular coordinates: l2 and Rm. The posi-
tion of the crack is represented by l2 and Rm represents
the crack depth according to Eqs. 1, 2, and 8.

The situation, identified with: l2/l1 = 1/2,
hc/h= 0.25, f1 = 4.71Hz, f2 = 13.01Hz, f3 =64.98Hz
(Table 4), is used to illustrate the procedure.

Figure 7 shows three curves which are contour
lines, according to the analytical model, of each
measured frequency, (n= 1, 2, and 3). They do not
intersect exactly at a point, but they describe a small
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Figure 7 Set of values Rm, l2 corresponding to every measured

frequency in a damaged free-clamped L-beam.

triangular zone, that allows to estimate the position
of the crack l2 and the crack depth Rm.

There are different procedures for estimating
the crack position and its depth (l2, Rm). In the
present analysis, the triangle enclosed by the points
of intersection of each pair of curves (Fig. 8)
is analyzed and its centroid is determined, it
is the sought point: l2 = 208.5mm (l2/l1 = 0.496),
Rm =213.6 (hc/h= 0.254).

Those estimated values are in excellent agreement
with the real position of the crack and its depth, an
error of 0.36% of the length of the whole beam OH
in the position and 0.4% of the section height in the
crack depth.
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Figure 8 Enlarged view of the area of intersection of curves.

The analytical approach was also verified, for some
cases of the cracked clamped–clamped L-beam struc-
ture, comparing with experimental measurements.

Tables 7–9 show the obtained values by both paths.
As it can be seen, the experimental values are again

in surprising agreementwith those obtained bymeans
of the analytical procedure. There is no case where
the difference exceeds than 5%, and generally it is
less than 2%

Conclusions

The convergence between the experimental and
analytical values showed that a classical elastic model
of the L-beam behavior in combination with the

Table 7 First five natural frequencies for C-C L-beams with a crack in the third of the second member

l2/l1 hc/h Rm 1 2 3 4 5

1/3 0.50 44 λi 3.9195 4.7144 7.0155 7.7862 10.1331 Analytical (eigenvalue)
(fi) 56.45 81.67 180.86 217.40 377.32 Analytical (Hz)
(fi) 56.45 83.01 181.88 225.22 382.26 Experimental (Hz)

0.75 8.4 λi 3.9117 4.6886 6.9269 7.7234 10.093 Analytical (eigenvalue)
(fi) 56.22 80.78 174.25 217.64 374.35 Analytical (Hz)
(fi) 56.15 80.57 167.24 217.9 377.81 Experimental (Hz)

Table 8 First five natural frequencies for C-C L-beams with a crack (hc/h = 0.75) in the middle of the second member

l2/l1 hc/h Rm 1 2 3 4 5

1/2 0.75 8.4 λi 3.8482 4.6617 7.03645 7.8254 9.9059 Analytical (eigenvalue)
(fi) 54.41 79.18 181.44 224.73 360.59 Analytical (Hz)
(fi) 52.49 78.13 183.72 227.05 348.51 Experimental (Hz)
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Table 9 First five natural frequencies for C-C L-beams with a crack (hc/h = 0.75) in the second third of the second member

l2/l1 hc/h Rm 1 2 3 4 5

2/3 0.75 8.4 λi 3.8420 4.7007 6.9814 7.7194 10.136 Analytical (eigenvalue)
(fi) 54.02 80.86 177.82 217.27 376.77 Analytical (Hz)
(fi) 52.49 81.18 173.95 217.29 380.86 Experimental (Hz)

Chondros’ representation of a crack constitutes a
simple and reliable tool that allows to attack in a
straightforward way the problem of an L-shaped
structurewith a crack. Its usefulness in crack detection
is demonstrated.

The approach can be easily adapted to study all
possible outer boundary conditions of the L-beam
structure taking into account elastic constraints at
both ends. Further cracks may be incorporated by
including additional internal elastic hinges.

It is interesting to note the importance of carrying
out experimental procedures as they are a sure way
to verify analytical approaches.
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