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Abstract

The selection of descriptor subsets for QSAR/QSPR is a hard combinatorial problem that
requires the evaluation of complex relationships in order to assess the relevance of the
selected subsets. In this paper, we describe the main issues in applying descriptor selection
for QSAR methods and propose a novel two-phase methodology for this task. The first
phase makes use of a multi-objective evolutionary technique which yields interesting
advantages compared to mono-objective methods. The second phase complements the
first one and it enables to refine and improve the confidence in the chosen subsets of
descriptors. This methodology allows the selection of subsets when a large number of
descriptors are involved and it is also suitable for linear and nonlinear QSAR/QSPR
models. The proposed method was tested using three data sets with experimental values
for blood-brain barrier penetration, human intestinal absorption and hydrophobicity.
Results reveal the capability of the method for achieving subsets of descriptors with a
high predictive capacity and a low cardinality. Therefore, our proposal constitutes a new
promising technique helpful for the development of QSAR/QSPR models.

1 Introduction

The advantages of using QSAR methods in the drug dis-
covery process have been highly recognized. However, al-
though over the last years the number of scientific publica-
tions in this subject remained high, prediction capacity of
QSAR models still remains to be improved [1-3].

One of the key and first steps in the development of suc-
cessful QSAR models is the selection of relevant descriptors
that relate molecular and chemical information with the de-
sired activity or property [4, 5]. Commonly, the descriptor
selection task could not be completely achieved manually by
experts in biology or chemistry, given that structure —activity
relationships are usually complex and nonlinear [6]. Further-
more, the number of molecular descriptors that may be cal-
culated for a single compound is very large. Thereby, it is im-

Abbreviations: Abbreviations and Symbols: FS feature selection;
MO multi-objective; DT decision trees; KNN k-nearest neigh-
bors; NLR nonlinear regression; MLR multiple linear regres-
sion; ANN artificial neural network; ANNE artificial neural net-
work ensemble
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portant to have a computational procedure for the selection
of the subset of descriptors to be used in a QSAR model.
This kind of procedure is referred to as Feature Selection
(FS) in the literature [7-9] and is a current research area
given that, besides QSAR, applications with many variables
have become frequent. Such is the case with gene selection
from microarray data [10, 11].

1.1. Background: Feature Selection

In order to clarify the many concepts associated with FS
methods, we shall highlight the common taxonomy and
main related issues. A first distinction could be made in re-
lation to whether FS is applied in a supervised or in an un-
supervised way. Applying FS in a supervised way is related
to selecting and assessing variables in terms of their ca-
pacity for predicting a target variable. Applying FS in an

Supporting information for this article is available on

the WWW under www.qcs.wiley-vch.de

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1509



Full Papers

Axel J. Soto et al.

unsupervised way is related to applying clustering methods
using selected variables in the absence of a target variable.
We shall focus on the supervised scenario and for further
reading on unsupervised FS, the reader may refer to refer-
ence [12]. Additionally, a FS method could be categorized
as a filter, wrapper or embedded method [8]. The main dif-
ference between wrappers and filters is in how the useful-
ness of the selected subset of features is assessed. Wrap-
pers use a statistical learning method that is trained using
only the selected subset of variables, and consequently the
prediction capacity of the subset is evaluated (e.g. by
cross-validation using a machine learning method). In con-
trast, filter methods use ‘proxy’ measures in order to assess
the relevance of the selected variables (e.g. information
gain, y>-test) [4, 13]. Finally, embedded methods are pre-
diction methods that apply variable selection as part of
their own training (e.g. decision trees with pruning).
Wrapper methods are the most common choice given
that they are flexible, very effective at decreasing dimen-
sionality of the feature space and at the same time at in-
creasing predictive accuracy [14, 15]. However, they could
lead to overfitting if they are not carefully applied [16].

1.2 Main Issues in Feature Selection

In QSAR, there are two important and coexisting issues
that make the problem particularly hard to solve. Firstly,
we have a huge number of available descriptors (n) and
also little knowledge on which and how many descriptors
are necessary (p). Using an exhaustive sequential forward

n n n
(1)+(5)++(5)
times in order to find the suitable subset of descriptors,
and thus its time complexity is O(2"). It has been shown
that the FS problem is NP-complete [17]; hence a compu-
tational approach for FS must follow an heuristic method
in order to be able to find an appropriate subset of varia-
bles in a reasonable time period. Moreover, chance corre-
lations may occur when a number of descriptors are select-
ed from a large pool of descriptors [18].

Secondly, given that structure-—activity or structure—
property relationships are often nonlinear, the methods
for assessing the predictive capacity of the descriptor sub-
sets are computationally expensive. In this sense, it is im-
portant to carry out the evaluation of the quality of a sub-
set of variables using a method that is not only able to
model any kind of function, but it is also computationally
cheap in order to make a fast assessment of each descrip-
tor subset. The latter is a key feature to allow a good cov-
erage in the method’s search over the space of feasible de-
scriptor subsets. Clearly, there is a tradeoff between the ac-
curacy in modeling any function and the time needed to
train/generate the model.

selection, it is required to try
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1.3 Proposed Work

In this paper, we propose a methodology aimed at select-
ing relevant descriptors for QSAR models. The main ob-
jective of our approach is that it be able to be used when
many descriptors have to be considered regardless of the
linear or nonlinear complexity of the QSAR model. Our
FS technique proposes a two-phase methodology. The first
phase is a multi-objective (MO) wrapper that aims both,
to maximize predictive capacity and to reduce the number
of selected descriptors. The output of the first phase is
used by the second phase, also called validation phase, in
order to determine which subsets of descriptors are the
most relevant for prediction.

The MO approach allows two simultaneous advantages:
first, it is prone to favor subsets with minimal cardinality
and second it selects the appropriate number of descrip-
tors in an automatic way, i.e. without the necessity to se-
quentially iterate trying with different subset sizes. This is
important because it can be shown that the linear increase
in the number of selected features leads to an exponential
increase in the number of feasible learning hypothesis
[19].

The second phase was added in order to assess the pre-
dictive capacity of the subsets selected by the wrapper.
The motivation for this two-phase procedure resides in the
fact that the first phase is responsible for a coarse and fast
selection of the subset of descriptors, and thus it allows
evaluating the immensity of the feasible chemical search
space. Thereby, the output of the wrapper is taken by the
validation phase in order to have a more rigorous assess-
ment of the obtained selected subsets and to apply a stron-
ger and more accurate method of prediction than the ones
used in the wrapper.

1.4 Related work

A large number of papers in the literature have investigat-
ed approaches towards the selection of descriptors in
QSAR [4-6,20-25]. Early works in the area were aimed
at eliminating redundant or correlated variables, and even
though this elimination is important and necessary it is not
sufficient [19].

Many FS strategies use evolutionary algorithms [6, 23,
24], given that they allow a stochastic and parallel search
of the possible solutions of a problem, and hence they
are able to escape from local minima. There are also oth-
er approaches based on stepwise strategies which per-
form a greedy search of the best subsets of variables [22].
A recent work [26] addresses the benefits and tradeoffs
in using deterministic and stochastic FS strategies in
QSAR.

Other recent articles present a similar two-phase meth-
odology [27, 28]. In one of these works [27], the subsets of
descriptors selected by a genetic algorithm are then used
by a neural network model. Unlike our approach, this sec-
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Figure 1. Scheme of the two-phase Feature Selection procedure.

ond phase is not part of the FS process. In the other two-
phase work [28], a genetic algorithm is used in the second
phase, after using a minimum redundancy maximum rele-
vance criterion in the first phase.

MO FS methods were successfully applied to different
scenarios, and are essentially motivated by the fact that
larger feature sets will be prone to overfitting and hence to
have a poor generalization performance [11, 15, 29]. In ad-
dition, MO approaches allow to reduce the search space,
since they aim at giving preference to smaller subsets be-
fore bigger ones. Descriptor selection in QSAR is a new
and suitable scenario for applying MO FS, given that the
correct number of descriptors is not known in advance and
also because models with few descriptors are more inter-
pretable and less prone to produce overfitted models [30].

2 Methods

In this section, we shall describe the method for selecting
subsets of descriptors for QSAR models by applying a
methodology divided in two phases. The first phase applies
MO optimization and acts as a coarse selector of subsets
of descriptors, whereas the second phase is in charge of ac-
curately assessing the subsets from the latter coarse selec-
tion. Figure 1 shows an outline of the overall procedure. It
is worth mentioning that, the proposed methodology is not
restricted to the specific methods used here for the wrap-
per and the validation phases.

2.1 First Phase: Multi-Objective (MO) Wrapper Method

Wrapper methods may be internally divided in two parts:
(1) Feature Searching and (2) Feature Subset Evaluation.
The former is responsible for doing the combinatorial
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search among different feasible subset selections, whereas
the second assesses the usefulness of the selected subset
and hence guides the Feature Searching to a selection of
relevant descriptors.

In the first phase, our MO wrapper is applied so that the
predictive capacity of a chosen subset of variables is in-
tended to be maximized, while maintaining the cardinality
of the selected subset to a minimum. In contrast with
mono-objective wrappers, the Feature Subset Evaluation
of our MO wrapper is composed by two independent ob-
jectives and the Feature Searching must be able to be guid-
ed by more than one objective.

Continuing with this theme, we shall describe each com-
ponent of the MO wrapper. The Feature Subset Evalua-
tion component of the MO wrapper is conformed by a
function that calculates the cardinality of the selected sub-
sets and also by a regression or statistical function that
computes an estimate of the prediction error when using a
selected subset of descriptors. Although the first one is
straightforward to develop, the latter could be applied
with different methods [31, 32]. It is worth highlighting
that the regression algorithm must be continuously in-
voked in order to assess the predictive capacity of each
combination of descriptor subsets chosen by the Feature
Searching. In this regard, it is advisable that this regression
method have a good numerical learning ability and, at the
same time, a ‘fast’ training time, so that time complexity of
the wrapper does not make the problem computationally
prohibitive. For example, neural networks would be ideal
from the point of view of learning capacity, but taking into
account its time complexity it would not be appropriate
for a wrapper unless it is limited to be used for models
with a small number of descriptors.

The Feature Searching function of a mono-objective
wrapper is usually implemented by simulated annealing
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[33] or evolutionary algorithms [34]. However, in the MO
optimization field, studies on evolutionary algorithms and
their application outnumber those on simulated annealing
[35]. According to the literature, MO evolutionary algo-
rithms may be applied following a Pareto or a non-Pareto
strategy, such as aggregation [36].

2.1.1 Feature Subset Evaluation

In our evolutionary scenario a selected subset of descrip-
tors is represented by an individual. As it was previously
mentioned, in order to assess the relevance of the subset
selection associated to an individual two objective func-
tions were defined. The first objective function Fj, calcu-
lates the number of selected descriptors associated to each
individual. The second objective function F,, estimates the
performance (i.e. accuracy) of a prediction method when a
given set of descriptors is used. In particular, the function
F, for the j™ individual is:

Py (%) 1)

1

i 1
Fz(@zfpzjz):_ Z i —

? ez

This formula computes the mean square error of predic-
tion (MSEP) applied to a set of molecules not used for
training, where:

— Z is a matrix that represents the entire compound data
set, where each row and column corresponds to a com-
pound and a descriptor respectively. The last column of
Z stores the experimental target values for each com-
pound. This column vector is denoted as y.

— Z, and Z, are compound data sets, that are used here as
training and validation sets respectively, with corre-
sponding sizes m; x n and m, x n. Also Z,NZ,=O and
Z, U Z,="Z.

— @, is a predictor method trained with data set Z;.

— Superscript j, as in Z/, is a filtered data set according to
the descriptor selection encoded in the /" individual. In
other words, Z;/ only contains those variables of Z;
whose corresponding loci of the j™ individual’s chromo-
some are set to ‘1’ (see Section 2.1.2).

— X; is a vector that represents the values of the descriptors
for the i™ compound of a given data set. In this way,
%,,(¥;) is the predicted value of X; using % trained with
data set Z,.

— y,is the target value for the /™ compound of a given data
set.

Four different predictors are used here as %, namely: deci-
sion trees (DT), k-nearest neighbors regression (kNN), a
nonlinear regression function (NLR), and a multiple linear
regression function (MLR). DT are used in this work as re-
gression trees [31] without using any kind of pruning. The
second method is kNN regression as used in reference
[10]. A nonlinear regression model was also applied as one
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of the predictors of the fitness function. It is conformed by
a linear combination of nonlinear basis functions where
their coefficients f;; are adjusted with a nonlinear least-
square fitting by the Gauss—Newton method (Eq. 2):

> ( ﬁ,»,/xif) +y @

i

Finally, an MLR method was also used to evaluate the pre-
dictive capacity of the molecular descriptors. The choice
for these four predictors was based on their use in previous
works on FS [10, 27, 37, 38]. A discarding of linear-corre-
lated variables is applied prior to the application of the
wrapper algorithm. This allows discarding linear redun-
dancies among the descriptors, and hence making the
wrapper’s task easier.

We may see that when F, is calculated (Eq. 1) a set Z; is
used for training the regression function %, but a set Z, is
used for assessing the predictive capacity of a subset. This
data separation is applied so that the wrapper does not
overfit the data used for training [39]. This data separation
is applied once for each run of the evolutionary algorithm.

2.1.2 Feature Searching

We applied two different approaches for the Feature
Searching: aggregation and Pareto. One important differ-
ence between these searching strategies resides in how the
multiple objectives are managed. The first one aggregates
all the objectives in a single fitness function, whereas the
latter methods have as many fitness functions as the num-
ber of multiple objectives. Pareto-based methods optimize
each objective separately according to the dominance
ranking concept (we further describe this concept below).

As we said, aggregation approaches combine multiple
objectives that result in a single fitness function. Despite
their simplicity, these methods usually have good perfor-
mance when tackling certain combinatorial optimization
problems [40, 41]. Thereby, we propose the following ag-
gregating formula:

Fao=aF,+(1-a)F, Filp, (3)

Here, a is a weighting parameter for each objective (0<
a<1), and p,, is a parameter that represents an upper
bound to the cardinality of a subset. The first term of the
fitness function F,g (Eq.3) returns the prediction error
obtained with a given % and the second term reflects the
ratio of selected descriptors to p,, scaled by F,. It is worth
noting, that the aggregation strategy may be viewed as a
regularization procedure that balances the complexity of
the model (assessed by the number of descriptors used for
the model) and the accuracy of prediction. Therefore, a
controls the sparseness of the method.

QSAR Comb. Sci. 28, 2009, No. 11-12, 1509 -1523
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The other approach for the Feature Searching uses the
concept of domination. Dominance is a partial order that
could be established among vectors defined over an Rf
space, where k is the number of objectives to optimize. In
our case, each individual is associated with a vector in R,
such that its first component is F; and the other one is F,.
A nondominated set of an entire feasible search space is
called Pareto-optimal set. The MO optimization algo-
rithms that use the concept of domination for the selection
mechanism to move a population toward the Pareto front
are commonly named Pareto-based algorithms.

In this sense, Nondominated Sorting Genetic Algo-
rithm-II (NSGA-II) [42] and Strength Pareto Evolutionary
Algorithm 2 (SPEA2) [43] were proposed here as Pareto-
based algorithms to be used within the wrapper.

The NSGA-II begins creating a random parent popula-
tion P, of size S. The population is sorted out based on the
nondomination concept. Each solution is assigned a rank
equal to its nondomination level (1 if it belongs to the first
front, 2 for the second front, and so on). After ranking the
solutions, a population Q, of S offspring is created using
binary tournament selection, recombination and mutation.
The i-th generation follows three basic steps. First, a com-
bined population R;=P; U Q, of size 2§ is formed. Second,
R; is ordered according to its nondominance. Since all pre-
vious and current population members are included in R;,
elitism is ensured. Solutions belonging to the best front,
i.e. Di(R)), are the best solutions in the combined popula-
tion R,. Finally, if the size of D(R,) is smaller than S, all
members of the set D;(R;) are chosen for the new popula-
tion P; ;. The remaining members of the population P,
are chosen from subsequent nondominated fronts in the
order of their ranking until no more sets can be accommo-
dated. If D(R;) is the last front from which individuals can
be accommodated in the population, but not all the mem-
bers can enter in the population, then a decision needs to
be made to choose a subset of individuals from D;. In or-
der to decide which members of this front will win a place
in the new population, the NSGA-II uses a selection crite-
rion based on a crowded-comparison operator that favors
solutions located in less crowded regions. This crowded
comparison is applied based on the objective space R*.

The SPEA2 algorithm starts with an initial population
P,, of size S and an empty external population P, with a
maximum capacity of S. The i-th generation repeats four
basic steps. First, the nondominated set of P, i.e. D{(P;), is
calculated and copied to P; (i.e., P;=P; U D,(P;)). Second,
all dominated solutions of P; are removed. If the number
of nondominated external solutions exceeds S, P; is pruned
selecting a representative by means of a clustering method.
That is, the individuals are grouped in S classes or clusters
based on a crowded distance. Then, the individual with the
lowest distance to the others within each cluster is selected
as the representative of the cluster. In the third step, the fit-
ness of each individual within P; U P; is calculated. Then,
individuals from P; U P; are selected using binary tourna-

QSAR Comb. Sci. 28, 2009, No. 11-12, 1509 -1523

www.qcs.wiley-vch.de

QSAR & Combinatorial Science Qc s

ment selection until the mating pool is filled. Fourth, a
population of S offspring, P, ,, is created applying prob-
lem-specific recombination and mutation as usual.

The precedent steps of both algorithms are repeated un-
til some termination criterion is reached. These Pareto-
based evolutionary algorithms are two of the most promi-
nent MO evolutionary algorithms used when comparing a
newly designed MO algorithm [40].

We include here a summary of the implementation of
the Feature Searching with a GA. Binary strings are used
to represent the individuals. Each string of length » stands
for a feasible descriptor selection, where n is the number
of considered descriptors. A nonzero (zero) value in the i
bit position means that the i descriptor is selected (not se-
lected). The algorithm was developed using the MATLAB
genetic algorithm library and the PISA (Platform and Pro-
gramming Language Independent Interface for Search Al-
gorithm) framework [44, 45].

The initial population is randomly generated with the
number of nonzero bits initially set to a value between 0
and p,,. A one-point crossover is used for the recombina-
tion and a bit-flip is used for the mutation operation [46].
When as a result of an evolutionary operation the number
of selected descriptors of an individual is greater than p,,,
randomly selected loci are set to zero. In this way, the max-
imal cardinality of any individual is always bounded by p,,.
This kind of domain constraint is commonly used in opti-
mization problems, since it avoids wasting CPU cycles in
solutions that will not be interesting for the problem [26,
47].

The selection scheme depends on the searching function
applied for the MO wrapper. For the aggregation strategy,
we performed different experiments with typical selection
methods and we concluded that the tournament method is
appropriate. Furthermore, this method is more preferred
than others, because it is particularly easy to implement
and its time complexity is O(n) [46]. In the Pareto ap-
proach, selection operators correspond with the NSGA-II
or the SPEA2 ones respectively. All Feature Searching
functions include elitism, which protects the fittest individ-
uals in any given generation, by moving them to the next
generation. The replacement strategy works following the
classical procedures used in evolutionary computing.

2.2 Second Phase: Validating Wrapper Results

After a combination of any Feature Searching and Subset
Evaluation method is applied within the wrapper, a front
of nondominated individuals is conformed from each inde-
pendent run. It is worth noting that the conformation of
this front of nondominated solutions is carried out regard-
less whether an aggregation or a Pareto-based strategy
was used for the Feature Searching. In this way, all nondo-
minated subsets are treated as the most ‘interesting’ set of
selections obtained in that run by the wrapper. This is indi-
cated in Figure 1 as the ‘Coarse Selection of Subsets’.

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1513
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Each subset of descriptors contained in the front is used
for being assessed by a validation method. For this work,
an Artificial Neural Network Ensemble (ANNE) was
chosen as the validation method, since ANNEs are meth-
ods that were widely and successfully applied in the
QSAR literature [48]. Thus, it is expected that the accura-
cy obtained using ANNE:S is greater than the accuracy ob-
tained using the regression methods applied within the
wrapper. In addition, using a different method for valida-
tion in FS is important, given that selected descriptors may
be optimal for a specific method but the same can not be
guaranteed when using other methods [5]. Thereby, the
ANNE performs the role of an independent assessment of
the predictive capacity of the selected descriptors. More-
over, an MLR is also applied for this second stage in order
to use it for comparison reasons.

In addition to the potential of ANNES, this second stage
is a more rigorous assessment of predictive capacity, be-
cause a same subset of descriptors is evaluated many
times. This validation involves performing many trials of
an f-fold cross validation, where in each trial each fold is
randomly obtained. It is worth noting that the application
by the wrapper of a large number of replications on a
same subset would not be feasible, due to complexity rea-
sons. Thereby, this replication is only possible and profita-
ble for the second phase.

We used an ANNE consisting of 5 artificial neural net-
works (ANN), given that ensembles improve stability of
the predictions [5, 49]. The ANN’s architecture depends
on the size of the data set and its complexity. Every ANN
used for this work was trained using the Levenberg-Mar-
quardt algorithm with a Bayesian regularization procedure
[50] which is a learning procedure that was also applied in
other QSAR proposals [21, 51]. Bayesian regularized neu-
ral networks tend to perform quite well and they do not
need the ensemble approach to give good models. Never-
theless, yet at the expense of additional computing time,
ensembles yield slight improvements in stability and pre-
diction capacity of models.

3 Data

The three data sets used for our analysis were compiled
from scientific publications which provided descriptors
that were selected by FS methods. These data sets are at-
tractive, since they have different ratios of the number of
descriptors to the number of compounds. Small data sets
were avoided, since their validation generates controversy
[21, 39].

Data Set 1 (DS1): This data set was used by Konovalov
et al. [25, 52], and named therein as ‘KS289-logBB’. The
target variable is logBB which is a common measure of
the blood brain barrier (BBB) penetration. DS1 is com-
posed of 289 compounds and 1501 descriptors, plus a de-

1514  © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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scriptor Iv that distinguishes whether logBB was calculat-
ed from an in vivo or an in vitro assay.

Data Set 2 (DS2): The compounds and descriptors of
DS2 were also extracted from reference [25] and named
therein as ‘KS172-HIA’, where the target variable in this
data set is logHIA. This target variable is a nonlinear
transformation of the intestinal absorption expressed as
fraction absorbed (% HIA), i.e. percentage of dose appear-
ing in the portal vein. This data set has 127 compounds
and 1499 molecular descriptors. DS2 contains chemical en-
tities with different degrees of % HIA, but in the work of
Konovalov et al. [25], those with 0 and 100 % HIA were re-
moved.

Data Set 3 (DS3): This set of compounds was extracted
from reference [53] and the target variable is the logarithm
of octanol/water partition coefficient (logP) at 25°C. This
data set has 442 organic compounds that belong to differ-
ent chemical classes. In contrast to the other data sets, far
fewer descriptors are here considered. The original article
reports 12 descriptors that were selected by a FS method.
We aimed at recreating their original condition, so we ad-
ditionally incorporated 61 simple descriptors using Dragon
[54].

4 Results

4.1 Design of the Experiments

We applied our proposed method to the three data sets
mentioned in Section 3. The parameters of the evolution-
ary algorithm were fixed for all the data sets and Feature
Searching functions. The population size was fixed to 145
individuals, the crossover probability was set to 0.75 and
the mutation probability was established as 2/n. As is rec-
ommended in the literature [55], a phenotypic criterion
was selected for the stopping of the evolutionary algo-
rithm: it stops when the improvement during 15 genera-
tions of the average fitness of the population is less than a
given tolerance value (£€=107'%). Additionally, the maxi-
mum number of generations was set to 200 generations. In
particular, for the aggregation strategy the tournament
size was set to 4 and the number of elite individuals per
generation was set to 5.

We proposed 12 different MO wrapper methods, which
come from the combination of the different Feature
Searching (the aggregation strategy, NSGA-II, SPEA?2)
and the Feature Subset Evaluation functions (DT, kNN,
NLR, MLR). In the first phase, we performed 10 runs of
the MO wrapper for each one of these feasible combina-
tions. In each run we only retained the solutions that be-
longed to the front of nondominated subsets. In the second
phase of our method, we took each descriptor subset of
the nondominated fronts, and we applied an ANNE using
an f-fold cross validation that was performed 50 times and
then the predictions were averaged. Tables with the com-
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prehensive information and results obtained in every ex-
periment may be accessed from the Supporting Informa-
tion files.

In relation to the architecture of the ANNs, we used
three-layer networks where the number of hidden nodes
was first optimized according to the best descriptor subsets
reported in the papers out of which we extracted the data
sets [25, 53]. The number of hidden nodes was kept con-
stant while testing all other subsets of descriptors of a
same data set. Generally, a fixed internal network archi-
tecture might be considered as a design flaw, but rather
than providing perfectly optimized regression models it in-
creases comparability and saves computing time while pro-
viding insights into effects of descriptor selection. As a re-
sult, for DS1 and DS2 we used two hidden nodes, whereas
for DS3 we used five hidden nodes. Also network inputs
and targets were normalized so that the Bayesian regulari-
zation is correctly applied.

We compared our models to the models obtained from
the descriptors reported in the papers out of which we ex-
tracted the data sets [25, 53]. Besides, we also compared
our subsets of descriptors to the descriptors obtained from
a Bayesian feature selection method which applies a re-
gression method using a sparse prior (Jeffreys’ prior in this
case) [56]. This approach was also applied for selection of
descriptor subsets in a recent descriptor selection article
[21].

Since that in the work of Konovalov et al. [25] they re-
ported predictive capacity in terms of an MLR method, it
could be argued that a comparison between a neural net-
work and an MLR method is not fair. However, it is worth
highlighting that the ANNE models can be used here,
since a preselection of subsets using ‘fast’ methods is first
applied, and only a reduced number of potential relevant
subsets are left to the ANNE. Anyway, we also provide
the results obtained using an MLR for the second phase,
and we trained ANNE:s for the subsets of Konovalov et al.
[25].

Regarding to the comparison with Figuereido’s method
[56], we applied an analogous procedure as the one ap-
plied for our evolutionary work. We used a validation data
set (equivalent to Z,) in order to determine the parameter
o, which controls the sparseness of the method. We per-
formed 20 runs of this algorithm, where a new training-val-
idation splitting was applied before each run. Data were
standardized before applying the selection procedure and
no transformation was applied to the design matrix.

For DS1 a special consideration was taken, that guaran-
tees that descriptor ‘Iv’ be always considered for any mod-
el. This decision is based on the claim of Konovalov et al.
[25] that a systematic difference of about 0.5 logBB units
difference exists between the in vivo and the in vitro ex-
perimental values. On the basis of the selected subsets re-
ported in this work, we set p,,=20. In accordance with the
work of Konovalov et al., the size of Z; was equal to the
size of Z, for the MO wrapper; and the number of folds
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for the Monte Carlo cross-validation of the second phase
was set to 2 (50% for training, 50% for testing). The same
considerations and parameters were kept for DS2.

For the last data set, the estimated number of necessary
descriptors is expected to be higher than in both previous
cases, so we set p,,=50 Yaffe et al. [53] used a fixed hold-
out set with 17% of the data. It can be showed, that this
hold-out data are completely contained within the convex
hull of the training/validation data, which does not allow
an unbiased evaluation of the generalization capacity of
the model. So, we considered that, given the size of the
data set, a 5-fold Monte Carlo cross validation is more ap-
propriate for evaluating the subsets in the second phase. In
the same way for the wrapper, Z, and Z, comprise 80%
and 20% of the data respectively.

4.2 Analysis of the Best Selected Subsets of Descriptors

Tables 1-3 comprise the information of the best selected
subsets, the associated methods and the errors obtained in
their validations for each data set. In each table, we show
the best subset reported in the referenced articles [25, 53]
(first row of Tables 1-3), the best subset using Figuerei-
do’s method (row 2) and the best subsets obtained with
our method, showing two aggregation (rows 3 and 4) and
two Pareto-based (rows 5 and 6) selections. Table 4 enu-
merates all the descriptors selected for Tables 1-3.

For DS1 (Table 1), we found that Subset III has better
prediction capacity than the one reported in Konovalov
et al. (Subset I) using the same number of descriptors. The
best subset that was obtained using Figuereido’s method
(Subset II) is slightly better than Subset I when MLR is
used for validation, but the number of descriptors is great-
er than any considered subset. Using more descriptors
than in Subset I we find that Subsets IV, V and VI allow a
better prediction capacity regardless whether they are pre-
dicted with an ANNE or with an MLR validation method.

For the second data set (Table 2), even though no subset
was found with a strictly better prediction capacity than
the proposed in Konovalov (Subset VII), very interesting
subsets were found. Subsets IX, X and XII have a slightly
worse prediction capacity than Subset VII, but they have
much fewer descriptors. Subset XI also has a comparable
prediction capacity and uses one less descriptor than Sub-
set VII. When MLR was used to calculate the predictive
capacity of the preceding subsets, all predictions were
slightly worse compared with the MSEP using the ANNE:s.
The subset obtained using Figuereido’s method (Subset
VIII) was outperformed by the other presented subsets for
this data set.

Unlike Konovalov et al. [25], we did not preselect any
descriptor, except for Iv in DS1, which necessarily must be
always taken into account.

DS3 results are motivating since the complexity of the
model for the hydrophobicity prediction in terms of the se-
lected descriptors is higher than the complexity of the
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Table 1. Comparison results for selected subsets of DS1. MSEP and ¢° columns refer to results obtained on the hold-out fold. N,/N.
is the number of weights in the neural network and the number of effective weights in the model. Subset I corresponds to the best
subset reported in reference [25], whilst Subset II was obtained using Figuereido’s method [56].

Subset Feature searching Regression function Cardinality Validation method MSEP q Ny /Nt

1 MCVS [a] MLR 6 ANNE* 0.1265 0.645 17/13
MLR 0.1225 0.6752 -

11 Jeffreys’ prior MLR 20 ANNE 0.1302 0.6528 45/34
MLR 0.121 0.6757 -

111 MO-Aggreg, a=0.3 MLR 6 ANNE 0.1205 0.6816 17/15
MLR 0.1281 0.6525 -

v MO-Aggreg, a=0.7 MLR 15 ANNE 0.1103 0.7198 35/31
MLR 0.1113 0.703 -

v NSGA-II MLR 8 ANNE 0.1140 0.6993 21/18
MLR 0.1178 0.6727 -

VI NSGA-II MLR 11 ANNE 0.1052 0.7352 27/23
MLR 0.1124 0.6821 -

[a] Monte Carlo Variable Selection.
* These ANNE results were not reported in the original article [25] but they were calculated for this work to allow a fairer comparison.

Table 2. Comparison results for selected subsets of DS2. MSEP and ¢° columns refer to results obtained on the hold-out fold. N,/N,«
is the number of weights in the neural network and the number of effective weights in the model. Subset VII corresponds to the best
subset reported in reference [25], whilst Subset VIII was obtained using Figuereido’s method [56].

Subset Feature searching Regression function Cardinality Validation method MSEP 7 NN

VII MCVS [a] MLR 8 ANNE* 0.1191 0.6813 21117
MLR 0.09 0.7532 -

VIII Jeffreys’ prior MLR 4 ANNE 0.1715 0.5733 13/7
MLR 0.1380 0.6404 -

X MO-Aggreg, a=0.1 MLR 3 ANNE 0.0984 0.7421 11/9
MLR 0.1282 0.65 -

X MO-Aggreg, a=0.3 DT 3 ANNE 0.1055 0.7092 11/9
MLR 0.1512 0.57 -

XI NSGA-II MLR 7 ANNE 0.0915 0.6459 19/16
MLR 0.1112 0.6623 -

XII NSGA-II kNN 2 ANNE 0.1013 0.6174 911
MLR 0.1374 0.6186 -

[a] Monte Carlo Variable Selection.
* These ANNE results were not reported in the original article [25] but they were calculated for this work to allow a fairer comparison.

Table 3. Comparison results for selected subsets of DS3. MSEP and ¢* columns refer to results obtained on the hold-out fold. N,/N,
is the number of weights in the neural network and the number of effective weights in the model. Subset XIII corresponds to the
best subset reported in reference [53], whilst Subset XIV was obtained using Figuereido’s method [56].

Subset Feature searching Regression function Cardinality Validation method MSEP ¢ N/N
XIII GA [a] [b] 12 ANNE* 0.247 0.884 71/61
ANNE |[c] 0.29 - -
X1V Jeffreys’ prior MLR 16 ANNE 0.2052 0.9097 91/80
MLR 0.2724 0.8804 -
XV MO-Aggreg, a=0.9 MLR 24 ANNE 0.154 0.9297 131/95
MLR 0.286 0.8795 -
XVI MO-Aggreg, a=0.1 MLR 13 ANNE 0.164 0.9317 76/64
MLR 0.2617 0.8698 -
XVII SPEA2 MLR 15 ANNE 0.1778 0.9135 86/74
MLR 0.299 0.8649 -
XVIII NSGA-II MLR 20 ANNE 0.1696 0.9240 111/94
MLR 0.3426 0.8496 -

[a] Genetic Algorithm.

[b] Regression function was not reported in the original work.

c] Result reported in the original work using a fixed hold-out test set.

* These ANNE results were not reported in the original article [52] but they were calculated for this work to allow a fairer comparison.
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models inferred from the previous data sets. However,
comparisons with the original work are cumbersome to be
established, given that different prediction and validation
methods are involved for each work. Also, we incorporate
descriptors not considered in the original work, so the sub-
sets obtained for DS3 may not be directly compared with
the results of the work of Yaffe et al. [53]. However, to
quantify the improvement obtained with our new subset of
descriptors, we took the descriptors chosen in the work of
Yaffe et al. [53] (Subset XIII) and we applied the same val-
idation and the same prediction method that was applied
to our subsets.

Therefore, we may observe that any of the proposed
subsets of descriptors (Subsets XV, XVI, XVII and XVIII)
enhances the predictive capacity of the Subset XIII (Ta-
ble 3). Even though our subset increased the number of
descriptors the obtained difference in MSEP is important.
The ANNE prediction capacity of the subset obtained us-
ing Figuereido’s method (Subset XIV) is better than the
one of Yaffe’s method, but worse than the subsets using
our evolutionary approach.

For this data set, we may observe that the MSEP using
MLR for the second phase are rather higher than the
MSEP when using ANNESs. Thus, it may be inferred than
the relationship among the selected descriptors and logP is
highly nonlinear.

4.3 Analysis and Comparison of the Different MO
Wrappers

In this subsection we will compare the performance of the
subsets obtained after the second phase, in terms of the
different combinations of the MO wrapper. Table 5 gives
an idea about which regression function and searching
strategy of the wrapper performs better in finding relevant
subsets for each data set. In order to eliminate the effect
of subsets with low predictive capacity, the 50" percentile
of the data is considered for this table. We applied multiple
comparison tests in order to statistically compare the aver-
age values of each combination of the wrapper. We used
the Tukey-Kramer test with an experiment-wise error rate
of 5%. When analyzing DS1 and DS2 we found that the
MLR method was better than the remaining methods, and
that in most cases Pareto-based strategies were better than
the aggregation strategy. Also, no differences were found
between NSGA-II and SPEA?2 for DS1.

For DS3, when we analyzed the searching strategies for
each regression method, we found that the aggregation
strategy is the best searching strategy regardless of the ap-
plied regression method. Moreover, when we examined
the regression methods for each searching strategy, we
found that MLR is the best regression method for NSGA-
II; whereas MLR and kNN were significantly better than
the remaining methods — though no significant differences
were found between them — for the aggregation strategy
and SPEA2.
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Taking this analysis a bit further, we applied two-way
ANOVA tests so that focusing on variance contributions
we may determine whether the regression methods or the
searching strategy have a stronger impact on its prediction
capacity. One factor was represented by the different
searching strategies and the other one was represented by
the different Feature Subset Evaluators. For the first two
data sets we found that the selection of the regression
method has the strongest impact (variance contribution to
predictive capacity is 95.8% and 56.1% for DS1 and DS2,
respectively). In the case of DS3, the selection of the
searching strategy is the most important for the prediction
capacity of the MO wrapper (variance contribution is
55.3%).

In view of the fact that Pareto-based methods performs
better only for the first two data sets, it is quite likely that
the cause of this outcome is due to the fact that the first
two data sets require fewer descriptors than the logP data
set. This is so because Pareto-based strategies look for
minimums in any objective, irrespective of the value of the
other objective. In other words, a subset that has fewer de-
scriptors than the remaining individuals of the population
will be in the nondominated front, even when its predic-
tion capacity is very low. This feature turns these methods
more prone to find subsets with lower cardinality. To ex-
emplify this claim, the average cardinality of all the subsets
obtained using NSGA-II for DS3 is 12.71, whereas for the
same set using an aggregation approach and a=0.1 is
19.98 (data not shown). In this sense, when the ‘theoreti-
cal’ optimal number of descriptors is high, Pareto-based
methods have to face up with a broader feasible space of
optimal selections in relation to the space in an aggrega-
tion strategy [40].

Considering the results about the good performance of
MLR within the wrapper, this result was especially expect-
ed for DS1 and DS2, where the relationship among de-
scriptors and the target properties are quite linear. For the
logP data set, the good performance of the MLR is inter-
esting, since it shows that MLR could be a very good
method for identifying predictive capacity of the descrip-
tors even when the relationship with the target variable is
nonlinear [27].

Finally, we want to illustrate how « influences cardinali-
ty and prediction capacity when using the aggregation
strategy. In Figure 2, we may appreciate that there is a
tradeoff between these two objectives, but since we are
more interested in prediction capacity, the choice of a
should be based on this latter objective (only shown for
the BBB data set). This figure allows to identify the range
of values of awhere most interesting subsets of descriptors
may be found. Also, it may be appreciated that subsets ob-
tained with a =1.0 (mono-objective wrapper) have always
lower predictive capacity than when using another a, such
that 0<a <1.0. This leads us to state that models con-
formed by subsets with lower cardinality are more prone
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Figure 2. Average cardinality and MSEP of prediction in terms of a for DS1. Results for the first iteration of the validation phase

are considered.

Table 4. Selected molecular descriptors for each subset of Tables 1-3.

Subset Descriptors [a] [b]

1 [Iv], [TPSA(NO)], [Ic], SRW09, BELv4, HATS7v / HATS8e

11 [Iv], TPSA(NO), MLOGP2, SRW09, nROH, EEig05d, C-034, nRCOOH, 0-057, nArNR2, nArCOOH, H-051, Psycho-
tic-80, nRCOOR, HATS8u, nN(CO)2, Infective-50, HATS7u, nArCOOR, Deppresant-50

111 [Iv], TPSA(NO), ALOGP, Mor21v, EEigl2r, Ic

v [Iv], TPSA(NO), SRW07, 0O-057, MATS2p, nOHp, R3u, RDF020p, T(N..I), nArOH, Psychotic-80, RDF050m, HAT-
S8u, CI-087, G3u

A\ [Iv], TPSA(NO), ALOGP, Morl6v, ISIZ, nN(CO )2, BELm4, Ic

VI [Iv], TPSA(NO), ALOGP, R7u+, ARR, H4p, Mor20v, TE2, BELe3

VII [ALOGP], LAI, Neoplastic-80, RDF045m, R5v+, DDI, N-074, IDE

VIII Hy, GVWAI-80, Infective-80, nP(= O)O2R

X MLOGP, TPSA(NO), RDF130m

X ALOGP, C-011, nPyridines

XI ALOGP, Mor13e, RDF045p, Vs, nArCONHR, R5u+, PW5

XII ALOGP, R1v+

XIII MW, D_P, D_H, D_S, E2, EX, ELC, IP, PO, VMC1, VMC2, VMC4

X1V D_H, IP, PO, My, nH, nN, nCL, nR06, nCp, nCaR, nOHp, nOHs, nROR, nRSR, nHDon, PSA

XV D_S, E2, IP, Sv, Se, nAT, nBM, nDB, nAB, nH, nC, nO, nF, nCL, nl, nR03, nR06, nR11, nCp, nCs, nOHp, nOHs,
nOHt, ARR

XVI D_H, IP, PO, nBT, nBM, nAB, nO, nF, nX, nR06, nCaR, nHAcc, Ui

XVII MW, E2, AMW, Mv, Mp, nBT, SCBO, nAB, nC, nBR, nCp, nCaR, nOHs, nHDon, ARR

XVIII MW, E2, PO, VMC2, AMW, My, nBM, SCBO, nDB, nH, nC, nBR, nR03, nR06, nCp, nCaR, nOHp, nOHs, nHDon,

ARR

[a] Complete names of the descriptors may be found in the Supporting Information files and in the E-Dragon web site [54].

[b] Brackets denote preselected descriptors.

to turn into more general models, and hence with higher
predictive capacity.

4.4 Analysis of the Obtained Subsets of Descriptors

One should note here that according to the parallel and
stochastic nature of the proposal, the final subsets of de-
scriptors obtained from the second phase are different and
not necessarily the same among different trials. Horvath
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et al. [26] emphasized that this aspect of stochastic meth-
ods is not a limitation, but it represents the possibility to
offer more than one relevant subset for prediction using a
QSAR model.

Nonetheless, it is noticeable that some descriptors are
repeatedly chosen and some of them are either theoreti-
cally known as relevant or they have also been selected in
other FS works. As a brief analysis of the selected descrip-
tors (Table 4), we may find that the TPSA(NO) (topologi-
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Table S. Performance of the regression functions of the wrapper:
average MSEP of the 50" percentile.

Data Set Feature Searching DT kNN NLR MLR
DS1 Aggregation [a] 0.1504 0.1486 0.1462 0.1261
NSGA-II 0.1437 0.1382 0.1454 0.1277
SPEA2 0.1385 0.1361 0.1368 0.1269
DS2 Aggregation [b] 0.1211 0.1285 0.1212 0.1161
NSGA-II 0.1049 0.1052 0.105 0.101
SPEA2 0.1018 0.1104 0.1064 0.0982
DS3 Aggregation [c] 0.1881 0.1855 0.1877 0.1787
NSGA-II 0.2645 0.2592 0.3080 0.2222
SPEA2 0.2120 0.2067 0.2073  0.1963

[a] Using a=0.7.
[b] Using a=0.3.
[c] Using a =0.9.

cal polar surface area using nitrogen and oxygen polar
contributions) descriptor is highly present in most subsets
for DS1 (see Supporting files for the entire list of selected
descriptors). This fact was to be hoped, since the wide-
known importance of polar surface area in the prediction
of BBB penetration [57]. Generally, lipophilic compounds
are likely to cross the BBB, so it is also expectable that hy-
drophobicity descriptors (like ALOGP) and carboxylic
acid groups descriptors (rRCOOH or Ic) are frequently
present.

Similarly, it is not surprising to find that again descrip-
tors related with water solubility such as ALOGP (Ghose-
Crippen octanol-water partition coefficient) or MLOGP
(Moriguchi octanol-water partition coefficient) are often
selected in the subsets when predicting HIA. Also in the
case of the DS3 subsets, we may detect that descriptors
known to be related with the logP property are repeatedly
chosen, e.g: MW (molecular weight), carbon-related de-
scriptors (nC — number of carbon atoms; nCar — sum of all
the carbons belonging to any aromatic and heteroaromatic
structure; nCs — number of total secondary carbons), de-
scriptors related with dipole moments (D_H - total dipole,
hybridization; or D_S - total dipole, hybridization + point
charge).

4.5 Assessing Probabilities of Chance Correlations

Equally relevant to the descriptor selection issue is the
question of whether chance correlations are likely to occur
when applying our methodology to the preceding data
sets. There are articles [58, 59] that emphasize that chance
correlations are inversely correlated with the object-varia-
ble ratio (number of compounds to the number of selected
descriptors). According to this statement, we may affirm
that chance correlations are not likely to occur in this
work, since firstly, we used data sets with more than a hun-
dred of compounds, and secondly, our MO FS method
aims at minimizing the number of selected features.
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Nonetheless, we have applied y-randomization experi-
ments [58] in order to analyze the risk of chance correla-
tions for our FS methodology. We ran the experiments
with DS1 and DS2, since they have a larger pool of de-
scriptors compared to the pool of descriptors available for
DS3. Also, they have a smaller number of compounds,
thus they are more prone to obtain chance correlations.
We executed 10 runs with a different y-randomization, and
in each run we applied the descriptor selection task in the
same way as we did for our MO two-phase methodology.
Then, we averaged the best results of each run using
ANNE and MLR for the second phase. Using ANNE,
MSEP and ¢ for DS1 were 0.3652, and 0.00685 respective-
ly, whereas for DS2 they were 0.3713 and 0.018261. In
terms of prediction capacity, the results using ANNE are
particularly bad, since Bayesian neural networks tend to
predict roughly a constant value when there is no clear re-
lationship among descriptors and target property. On the
other hand, using MLR for the second phase, MSEP and
q° were 0.2352, and 0.3893 respectively, whereas for DS2
they were 0.2424 and 0.4579. All y-randomization results
were considerably worse than the results obtained when
the original target was used. These experiments highlight
the fact that the results obtained in Sections 4.2 and 4.3
are unlikely of being obtained purely by chance.

4.6 Time-Complexity Analysis

As a coarse analysis of the time-complexity of our method-
ology, the first aspect to point out is that it is bounded by
the time-complexity of the MO wrapper (first phase),
since it corresponds to the part with the highest computa-
tional burden. Particularly, Pareto-based algorithms are
more compute-intensive than the aggregation ones, since
the first ones also need to do some additional tasks: man-
age an additional population of individuals, sort the indi-
viduals according to the nondomination criterion and cal-
culate crowding distances among the individuals.

From reference [36], we may obtain that the worst case
time-complexity for NSGA-II, is O(kS*) where k is the
number of objectives to be optimized (2 for our methodol-
ogy) and S is the population size (145 for our methodolo-
gy). The worst case time-complexity for SPEA2 is O((S+
S)?, where S is the population size of the external popula-
tion (also 145). Deb [36] suggests that this bound is rather
pessimist and the average case time-complexity O((S+S)*
log(S+S)) is much more realistic. These execution orders
are defined for a single generation assuming no complexity
cost for the calculation of the fitness function.

The time-complexity of the fitness functions are reduced
to the time-complexity of the regression methods of the
Feature Subset Evaluation. From empirical observations,
the NLR is the most compute-intensive, and it has an or-
der O(c’) where c is the number of coefficients to be ad-
justed (4p+1 in our case, where p is the number of de-
scriptors in the evaluated subset).
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In order to state the worst case complexity of any specif-
ic combination of a searching strategy and a regression
method for the MO wrapper, we define O(Searching_Gen)
as the order of execution of a generation in a searching
strategy. Similarly, we define O(F,) as the order of execu-
tion of an objective function. Since the fitness function is
computed at the beginning of a generation, the time-com-
plexity of a single generation is O(max(S- O(F,),O(Search-
ing_Gen))). The overall time of a MO wrapper run, will be
the order of a single run multiplied by the number of gen-
erations, which is cumbersome to define it in advance,
since it will depend on the convergence/stopping criteria.

4.7 Analysis of our FS Methodology Using External
Validation

All the results presented so far have been obtained from
the prediction errors of the ANNE in the second phase.
The main goal of this phase is to provide a stronger regres-
sion method in order to assess the subsets of descriptors
selected by the first phase, but it is not intended to be a
validation methodology that estimates the real predictive
capacity of the QSAR models obtained from these de-
scriptor subsets. We may observe that this second phase in-
ternally validates using data that was previously used for
the selection of features in the first phase. This fact might
be considered as a design flaw that introduces an overopti-
mistic estimation of the true prediction capacity of the
subsets. However, we shall show that, even when this sec-
ond phase is not a strict validation procedure, it is reliable
enough to assess the predictive capacity of the selected
subsets of descriptors.

In this sense, we applied an external validation proce-
dure, in order to quantify how different the prediction er-
rors in comparison with our internal validation are. We
randomly segregated a data set Z; (with 20% of the data)
previous to the first phase. Then, we applied the conven-
tional procedure of the first and second phase to the re-
maining data, where we obtained the 20 most promising
subsets of descriptors. The prediction capacity of these
subsets was evaluated as it is mentioned in Section 2.2 and
we also assessed the predictive performance of these 20
subsets of descriptors on the Z; data set.

We want to analyze for the top 20 subsets of descriptors
whether the average errors obtained on Z; are not signifi-
cantly worse than those obtained by our internal valida-
tion procedure. The standard practice to statistically com-
pare the means of both validation procedures is carried
out by using the #-student comparison test for correlated
observations. In this way, we may establish confidence in-
tervals for the averages of the differences between the
average errors of both procedures.

Three different situations may occur:

1. the external validation error is significantly lower than
the internal validation error,
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2. there is no statistical evidence that the external valida-
tion errors are higher than the internal validation er-
rors,

3. anything else different from Situation 1 or 2.

It is clear that Situation 1 may be easily identified (with
a<0.05 or @ <0.01). However, it is not possible to proba-
bilistically quantify the second situation (type-II error).
The usual procedure would be to accept the hypothesis
that the external validation is not higher, when this hy-
pothesis may not be rejected with a probability a <0.025,
or when the average internal validation error is higher
than average error on Z; and Situation 1 does not hold.
Anything else will be assumed that the external validation
error is higher than the internal validation error.

We applied this procedure to the three data sets. In or-
der to take into account the effect of different Z; data sep-
arations, we replicated this same experimentation 10 times,
where we used, without loss of generality, MLR and the
aggregation strategy for the first phase.

We have obtained that in only 3 out of the 30 runs the
Situation 3 holds (1 for DS1 and 2 times for DS3), whereas
in 11 out of the 30 runs Situation 1 holds and in the re-
maining 16 runs Situation 2 holds. These results lead us to
believe that the validation procedure of the second phase
is a good estimator of the prediction capacity of the sub-
sets. The main reason of these results arises from the fact
that, when our internal validation procedure is applied,
only one part of the remaining data is used for training
(Z)) in each iteration of the cross-validation. On the other
hand, when external validation is applied, all the remain-
ing data (80%) is used for training the model. There is
nothing wrong in using all the remaining data for training
with Bayesian neural networks, since it has been shown
that these models do not tend to overfit the data used for
training [51], and hence they do not need a validation set.

Even though external validation is the gold standard for
assessing prediction capacity for a QSAR model, an exter-
nal validation procedure was not used in this work for the
presentation of the results, since it is dependent on the
training-testing data splitting. To illustrate this point we
applied a random effect ANOVA, where each one of the
ten data separations is considered as a random factor that
has the predictive capacity of the top 20 subsets of descrip-
tors as their observations. Our goal is to determine how
important the variance due to the data separation is. These
ANOVA experiments (table not shown) reveal that with a
probability less than 0.5 x 10~° there is a source of variance
due to the data separation in the three cases, where this
factor represents 34.5%, 17.85% and 60.08% of the total
variance, for DS1, DS2 and DS3 respectively. This var-
iance effect due to random training-testing separation, re-
quire to perform a large number of trials in order to get
rid of the variance in results. However, a large number of
trials for each combination of the MO wrapper would
make this work computationally unfeasible. On the other
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hand, our internal validation is computationally cheaper
and, at the same time seems to be comparable with the re-
sults of the external validation.

5 Discussion

A novel approach for addressing the selection of descrip-
tors in QSAR/QSPR methods is presented. The main con-
tributions of this paper reside in two main aspects. First,
our method uses a multi-objective strategy within a wrap-
per method, and according to the authors’ knowledge, a
multi-objective descriptor selection was not previously ap-
plied in the QSAR/QSPR literature. Second, our method
proposes a two-phase FS methodology that attempts to
combine a wide searching of descriptors in the first phase
with accurate methods, like ANNS, for assessing descriptor
relevance. This rigorous assessment is only applied to the
preselected subsets obtained by the wrapper. The second
phase of the FS method, apart from improving accuracy,
allows independency among the regression methods of the
wrapper and thus the final subset selection is not biased in
terms of the regression algorithm applied in the wrapper.

It would be unfair not to mention that our evolutionary
methodology is compute-intensive compared with other
FS methods [8, 22]. However, we argue that for feature se-
lection methods CPU-time is not a crucial issue provided
that the methodology may be executed in a reasonable
polynomial time. One should not forget that feature selec-
tion is not aimed to be applied in real time nor in numer-
ous opportunities.

Taking into account that our FS method is a product of
different statistical or machine learning methods, our pro-
posal agrees with the machine learning literature, which
states that better results are obtained when combining dif-
ferent machine learning approaches than when using a sin-
gle model [49, 60]. In addition, other works [5, 59] also em-
phasize the benefits of using ensembles and combination
of methods in a FS procedure.

A subset of descriptors is considered as relevant here,
depending on its predictive capacity determined by the
MSEP obtained by performing cross-validation several
times. Utilization of MSEP for quantifying error predic-
tion with a cross-validation procedure is in accordance
with the literature for assessing prediction capacity when
using moderate-size data sets [25, 61, 62].

Authors are aware of the criticism and limitations asso-
ciated to assessing relevance of descriptors by only relying
on statistical validations obtained from a machine learning
method [63]. We emphasize that an FS method does not
pretend to give a definite solution to the problem of infer-
ring which the best subset of molecular features that con-
trols the variation of a biological activity or property is.
However, in the absence of theoretical procedures, we ar-
gue that machine learning FS methods allow to circumvent
the problems that emerge from not knowing the rules that
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govern a given activity or property. Moreover, these meth-
ods should represent a tool for scientists, who in turn may
contribute with their knowledge to make a final decision.

The multi-objective approach presented in this work is
prone to obtain subsets with minimal cardinality. Thus, this
favors human interpretability of the results and also it di-
minishes the number of learning hypothesis associated to a
subset of descriptors [19].

We also emphasize that this proposal is not aimed at cre-
ating a ranking of descriptors according to their relevance.
A descriptor is not relevant by itself, but its importance
should be quantified by considering all the descriptors of a
given subset as a whole. In this work, more than a single
subset of descriptors is proposed for prediction; so, the fi-
nal decision would be taken by those who will develop the
QSAR model, who may also consider other objectives
such as interpretability.

It is worth pointing out, that the selection of features for
a prediction method is not a classical multi-objective opti-
mization problem. The best subsets of descriptors (or the
subsets contained in the Pareto front) obtained by the
wrapper are not necessarily optimal selections but, as it
was previously showed by the ANNE results, they provide
subsets of variables that are expected to be relevant and
nonredundant. We may expect them to be highly relevant,
given that they have a good prediction capacity as verified
by the validation with the ANNESs. In the same way, and
having in mind that one of the objectives of the wrapper is
to minimize cardinality, we may expect that they have low
redundancy, given that if a subset had one or more redun-
dant features, that subset would have a low probability of
survival during all generations.

Even though statistical comparisons among results of
the methods are not completely established, the results ob-
tained for DS1 and DS2 show that better or comparable
results than the Monte Carlo Variable Selection (MCVS)
of Konovalov et al. were obtained with our proposal. Fo-
cusing on the hydrophobicity data set (DS3), this one has
an additional difficulty, since the relationship among logP
and the considered molecular descriptors is known to be
nonlinear. Results with the logP data set show that the
method presented here is appropriate regardless of the lin-
ear or nonlinear relationship among descriptors and target
variable. A comparison with a competent deterministic
method [56] was also provided and results show that our
descriptor selection method performs better than the de-
terministic one, at least for the data sets under study.

Another contribution of this work lies in the comparison
among different Feature Searching and Feature Subset
Evaluation methods. Considering the results with the Par-
eto-based and aggregation strategies, we think that both
Feature Searching strategies are an advisable way of doing
FS, at least when using the proposed algorithms.

The parameter p,,, and also o when using an aggregation
approach, have to be established manually. The first one is
based on the theoretical knowledge of an upper bound to
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the number of descriptors expected to be necessary. The
second should be tuned according to the desired balance
between the cardinality and the predictive capacity ob-
tained for a given a value. Although setting manual pa-
rameters may result awkward, No Free Lunch Theorems
indicate that there is no “best” FS method for any data set
[64]. So, incorporating knowledge and restrictions is a
common practice to make a method tailored and efficient
to a specific task. In contrast, Pareto-based strategies have
the advantage of not having to set a parameter that weighs
both objectives. However, these Pareto-based methods are
not the best choice when the number of necessary descrip-
tors is expected to be large (Sec. 4.3).

In conclusion, we think that a two-phase strategy is ad-
visable for feature selection in QSAR/QSPR, in order to
apply light weight methods as a preselection of subsets
and afterwards a stronger method as an ANNE to assess
the predictive capacity of the subsets.
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