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Abstract The formalism of generalized contexts for quantum histories is used to investigate
the possibility to consider the survival probability as the probability of no decay property at
a given time conditional to no decay property at an earlier time. A negative result is found for
an isolated system. The inclusion of two quantum measurement instruments at two different
times makes possible to interpret the survival probability as a conditional probability of the
whole system.

Keywords Quantum histories · Decay process · Quantum logic

1 Introduction

In many physical systems it is necessary to consider expressions that involve properties at
different times. For example, a property of a microscopic system at a given time before a
measurement has to be related with a property of the pointer of the instrument after the
measurement. A formalism of quantum histories is useful to describe this type of situations.
In a series of papers that were written from 1984, Griffiths [1], Omnès [2], Gell-Mann and
Hartle [3] developed an interpretation of quantum mechanics known as consistent histories.
The notion of history is defined in these papers as a sequence of properties at different
times. The histories that can participate in the description of a physical system must satisfy
a consistency condition that guarantees well defined probabilities.

One of us and Vanni [4] developed a formalism of generalized contexts. It is a history
formalism based on the notion of time translation of properties. The compatibility condition
imposed for properties at different times is the commutation of the corresponding projectors
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when they are translated to a common time. This condition is a natural extension of the usual
notion of context of properties at a fixed time, and it replaces the consistency conditions of
references [1–3].

Situations related with quantum measurements can be faced without the need of the col-
lapse hypothesis, and therefore quantum histories can be a valuable contribution to non-
collapse interpretations of quantum mechanics. Our formalism of generalized contexts not
only avoid collapse, but also some difficulties of the formalism of consistent histories [4].

The aim of this paper is to apply the formalism of generalized contexts to describe decay
processes. In the usual approach [5], a quasi-stationary state of a quantum system with
continuous spectrum is defined when the mean value of energy has a small dispersion. In the
orthodox interpretations, which postulate the collapse of the state vector due to the process
of measurement, the survival probability of the initially prepared quasi-stationary state is
defined as the probability for the system of still be found in the same quasi-stationary state
in a future time. The time for which the survival probability is e−1 is called lifetime.

For a description of a decay process which emphasizes the relevant properties of the
system and its probabilities, it is possible to define the property of decay (or no decay),
mathematically represented by suitable projectors. The survival probability may be identi-
fied with the probability of the property of no decay at a given time t2, conditional to the
same property of no decay at a previous time t1, for an arbitrary state prepared at a different
time t0. As the conjunction of properties at different times is involved, it seems natural to ap-
peal to a formalism of quantum histories. R. Omnès proposed to describe the decay process
with the theory of consistent histories. He found the problem that the consistency condition
is not satisfied [6].

In this paper we propose to analyze the decay process with our formalism of generalized
contexts. In Sect. 2 we review the usual definitions of decay process, survival probability and
lifetime in the orthodox interpretations. Modal interpretations are considered in Sect. 3. In
Sect. 4.1 we show that our formalism of generalized contexts cannot be applied to the decay
process without quantum measurement instruments. The unstable system together with two
consecutive ideal quantum measurements of the non-decay or decay properties is analyzed
with the formalism of generalized contexts in Sect. 4.2. The main conclusions are presented
in Sect. 5, and in the Appendix we provide a brief summary of our formalism of generalized
contexts.

2 Decay Process and Orthodox Interpretations

The decay processes has a characteristic time, named lifetime. To understand the relation of
this characteristic time with the survival probability it is convenient to introduce the notion
of a quasi-stationary state [5].

Let us consider a quantum system S with a Hamiltonian ̂HS : HS −→ HS having con-
tinuous spectrum. We indicate by |E〉 the generalized eigenvector of the Hamiltonian with
eigenvalue E ( ̂HS |E〉 = E|E〉, 0 < E < ∞,

∫ ∞
0 dE|E〉〈E| = ̂IS ).

A quasi-stationary state |χ〉 ∈ HS is defined as a linear combination of energy eigenvec-
tors with a small dispersion ε from the mean value E0 (ε � E0). We can write

|χ〉 =
∫ ∞

0
dE|E〉〈E|χ〉,
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where, for example, 〈E|χ〉 may be

〈E|χ〉 = 1

2π

ε

(E − E0)2 + 1
4 ε2

.

In the Schrödinger representation, the state vector |χ〉 at the time t1 transforms into the
state vector |ϕ(t2)〉 = e− i

�
̂HS(t2−t1)|χ〉 at time t2.

The projection (or collapse) postulate of the orthodox interpretations prescribes a non
unitary reduction of the total state vector in the measurement process. The probability to
measure the state |χ〉 at the time t2 > t1 is

W(t2 − t1) ≡ ∣

∣〈χ |e− i
�

̂HS(t2−t1)|χ〉∣∣2 =
∫ ∞

0
dE

∣

∣〈E|χ〉∣∣2
e− i

�
E(t2−t1), (1)

called the survival probability at the time t2 of the quasi-stationary state |χ〉 prepared at the
time t1. The lifetime T is defined in such a way that the survival probability (1) is decreased
by a factor e (W(T ) = 1

e
W(0)).

If 〈E|χ〉 is a distribution with small dispersion ε with respect to the mean energy E0

(ε � E0), and we consider a time interval (t2 − t1) which is not too large nor too small so that
neither Zeno or Kalflin effects are involved, the survival probability has the approximated
expression

W(t2 − t1) ∼= e− ε
�

(t2−t1). (2)

The probability to find the initial state |χ〉 is decreased by a factor e after a time interval
equal to �/ε, and therefore the approximated expression T = �/ε is obtained for the lifetime.
The lifetime T and the energy indeterminacy �E = ε are related by the uncertainty relation
T �E 
 �.

For a system prepared in state |χ〉 at time t1, the orthodox interpretations give the value
W(t2 − t1) to the probability for the system to collapse to state |χ〉 when it is measured at a
later time t2.

The orthodox interpretations emphasizes the role of the collapse of the state vector in the
measurement, a process which has a strong “black box” character [7].

In the following sections we are going to abandon the postulate of collapse and con-
sider the decay process from the point of view of interpretations which emphasize on the
actualization of properties.

3 Decay Process and Modal Interpretations

The modal interpretations abandon the rule of standard quantum mechanics stating that a
system must be in an eigenstate of an observable in order for that observable to have a
definite value. There is no projection postulate, and the time evolution of the state vector
is always generated by the Schrödinger equation. New rules are introduced specifying the
possible properties that can be ascribed to a system for a given state.

In the case of a decay process, the quantum no decay property pχ , represented by the
projector ̂Πχ ≡ |χ〉〈χ |, can be associated with the quasi-stationary state vector |χ〉 of the
previous section. The decay property pχ is represented by ̂Πχ = ̂IS − |χ〉〈χ |. The no decay
and decay properties are exhaustive (pχ ∨ pχ = Ω) and mutually exclusive (pχ ∧ pχ = φ).
The properties φ, pχ , pχ and Ω , represented by the projectors ̂Πφ = |0〉〈0|, ̂Πχ = |χ〉〈χ |,
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̂Πχ = ̂IS − |χ〉〈χ | and ̂ΠΩ = ̂IS , form a distributive lattice, i.e. a context of properties in the
usual sense.

If the state of the quantum system S at the time t1 is represented by the vector |χ〉, the
probability of the property pχ is equal to one at this time, as can be easily obtained using
the Born rule

Pr(pχ , t1) = T r
(

ρ̂(t1)̂Πχ

) = T r
(|χ〉〈χ |χ〉〈χ |) = ∣

∣〈χ |χ〉∣∣2 = 1,

and therefore we can safely say that the system S has the property pχ at the time t1.

At time t2 > t1, the state vector is |ϕ(t2)〉 = e− i
�

̂HS(t2−t1)|χ〉, and there is no certainty
about the property pχ , because its probability is smaller than one

Pr(pχ , t2) = Tr
(

ρ̂(t2)̂Πχ

) = Tr
(∣

∣ϕ(t2)
〉〈

ϕ(t2)
∣

∣χ
〉〈χ |)

= ∣

∣

〈

χ
∣

∣ϕ(t2)
〉∣

∣

2 = ∣

∣〈χ |e− i
�

̂HS(t2−t1)|χ〉∣∣2 = W(t2 − t1) < 1. (3)

The expression for W(t2 − t1) was already obtained in the previous section, but modal
interpretations give to it a different interpretation: for the isolated system S prepared in the
state |χ〉 at time t1, it is the probability to have the property pχ at a later time t2.

It should be noted the different roles played by the vector |χ〉 at different times: it is a
quasi-stationary state vector at time t1, and it is a property of no decay at a later time t2.
Moreover, it should be noted that in this approach the prepared state is not arbitrary.

In modal interpretations, it seems reasonable to search for the possibility of considering
the survival probability of the property pχ at both times t1 and t2, for an arbitrary state pre-
pared at a previous time t0 (t0 < t1 < t2). In the following section we discuss this possibility
using the formalism of generalized contexts.

4 Decay Process and Quantum Histories

The central idea of quantum histories is to abandon the fundamental role of measurements
and external observers of the orthodox interpretations, and to study temporal sequences
of quantum properties, represented by time dependent projectors. Families of compatible
histories have to be selected in such a way that each history of the family has a well defined
probability of realization or actualization.

In the following subsections we are going to consider the decay process in the formalism
of generalized contexts, developed by Vanni and one of us [4] (a brief summary of this for-
malism is included in the Appendix). In this approach, the compatibility condition imposed
to properties at different times is that the corresponding projectors commute when translated
to a common time. This condition is an extension of the usual notion of context of properties
at a fixed time.

4.1 Decay Process Without Quantum Instruments

The formalism of generalized contexts, which allows to consider the properties pχ and pχ

for two different times t1 and t2, seems a good candidate to search for the possibility of
considering the survival probability as a conditional probability of properties of an isolated
microscopic system S, with no intervention of measurement instruments or external ob-
servers.
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In such a formalism, the probability for the system S to have the property pχ at the time
t2, conditional to have had the property pχ at the earlier time t1, would be given by

Pr(pχ , t2|pχ, t1) = Pr{(pχ , t2) ∧ (pχ , t1)}
Pr(pχ , t1)

, (4)

which could be identified with the survival probability W(t2 − t1).
With this identification and the linear approximation of (2), the lifetime can be related to

conditional probability

1

T
∼= 1 − Pr(pχ , t2|pχ, t1)

(t2 − t1)
.

But expression (4) for the conditional probability is meaningful only if we can include
the property (pχ , t2) ∧ (pχ , t1) in a set of properties at two times (histories) for which prob-
abilities are well defined.

In the formalism of generalized contexts the properties (pχ , t1) and (pχ , t2) are admitted
if they are represented by commuting projectors when translated to a common time [4] (see
also the Appendix).

Choosing t2 as the common time, we should verify that ̂U(t2, t1)̂Πχ
̂U−1(t2, t1) and

̂U(t2, t1)̂Πχ
̂U−1(t2, t1) commute with the projectors ̂Πχ and ̂Πχ (̂U(t2, t1) = e− i

�
̂HS(t2−t1)).

Let us try to verify if
[

̂U(t2, t1)̂Πχ
̂U−1(t2, t1); ̂Πχ

] = 0. (5)

If the time interval �t = t2 − t1 is very small, we have ̂U(t2, t1) ∼= ̂I − i
�

̂HS�t . Up to
first order in �t , (5) gives

[[ ̂HS; ̂Πχ ]; ̂Πχ

] = 0.

This condition can also be written as

̂HS |χ〉〈χ | − 2|χ〉〈χ | ̂HS |χ〉〈χ | + |χ〉〈χ | ̂HS = 0.

This last equation is only verified if |χ〉 is an eigenvector of ̂HS , but in this case |χ〉 would
be a stationary state with no decay.

The composed property (pχ , t2) ∧ (pχ , t1) cannot be part of the universe of discourse
of a set of histories organized in a generalized context. Therefore, the identification of the
survival probability W(t2 − t1) with the conditional probability Pr(pχ , t2|pχ, t1) is mean-
ingless.

The same difficulties where found by Omnès (see [6], pp. 176 to 180) in his attempt to in-
clude the composed property (pχ , t2)∧ (pχ , t1) in a set of consistent histories. He suggested
to overcome the problem by considering special states and times for which the consistency
condition is approximately valid, but in his approach it is necessary to deal with the concept
of approximated logics.

In the following subsection we are going to consider consecutive measurements (at times
t1 and t2) of the decaying system with quantum instruments. We will show that it is possi-
ble to organize the properties corresponding to the pointer positions of both measurement
instruments in the universe of discourse of a generalized context.
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4.2 Decay Process with Measurement Instruments

Let us consider an ideal measurement of the properties pχ and pχ of the system S, per-
formed by the interaction with a measurement instrument A during a small time interval
[t1, t1 + �t]. We will consider the properties pA0 , pAχ and pAχ

of the measurement in-
strument A. They are represented by the projectors ̂ΠA0 = |A0〉〈A0|, ̂ΠAχ = |Aχ 〉〈Aχ | and
̂ΠAχ

= |Aχ 〉〈Aχ | of the Hilbert space HA. The property pA0 is the initial position of the
pointer, while pAχ and pAχ

are the positions of the pointer correlated with the properties pχ

(no decay) and pχ (decay) of the system S.
We assume that the Hamiltonian generating the time evolution of the composed system

S + A is

̂H = ̂HS ⊗ ̂IA + ̂IS ⊗ ̂HA + ̂HSA.

To make the calculations simpler we also assume that ̂H ∼= ̂HSA during the time interval
[t1, t1 + �t] and ̂H ∼= ̂HS ⊗ ̂IA for all values of time not included in [t1, t1 + �t].

In the short time interval of the measurement process, the evolution of the composed
system is given by the unitary transformation ̂U(�t) ∼= e− i

�
̂HSA�t , producing the correlation

∣

∣Ψ (t1)
〉 ≡ ∣

∣ϕ(t1)
〉|A0〉

̂U(�t)−→ ∣

∣Ψ (t1 + �t)
〉 ≡ (

̂Πχ

∣

∣ϕ(t1)
〉)|Aχ 〉 + (

̂Πχ

∣

∣ϕ(t1)
〉)|Aχ 〉,

where |Ψ (t1)〉 (|Ψ (t1 + �t)〉) is the state vector of the system S + A immediately before
(after) the measurement process.

Using the last equation we obtain

Pr(pχ , t1) = Tr
{∣

∣Ψ (t1)
〉〈

Ψ (t1)
∣

∣(̂Πχ ⊗ ̂IA)
} = ∣

∣

〈

χ
∣

∣ϕ(t1)
〉∣

∣

2
,

Pr(pAχ , t1 + �t) = Tr
{∣

∣Ψ (t1 + �t)
〉〈

Ψ (t1 + �t)
∣

∣

(

̂IS ⊗ |Aχ 〉〈Aχ |)} = ∣

∣

〈

χ
∣

∣ϕ(t1)
〉∣

∣

2
,

where we notice that the probability of the property pχ of the system S at the time t1 has the
same value as the probability of the pointer indicating Aχ at the time t1 + �t .

We are going to consider two consecutive measurements of the system S with two identi-
cal instruments A and B . In a previous paper we discussed the logic of consecutive measure-
ments applied to the deduction of the projection postulate [8]. The interaction between S and
A (S and B) occurs in the time interval [t1, t1 + �t] ([t2, t2 + �t]), where t1 + �t < t2. The
system S is in a state represented by the vector |ϕ(t1)〉 ∈ HS at the time t1. At the same time,
the instruments A and B are in there reference states represented by the vectors |A0〉 ∈ HA

and |B0〉 ∈ HB . Therefore, the state of the composed system S + A + B at the time t1 is
represented by the vector

∣

∣Φ(t1)
〉 ≡ ∣

∣ϕ(t1)
〉|A0〉|B0〉 ∈ HS ⊗ HA ⊗ HB. (6)

The Hamiltonian of the isolated system S + A + B is

̂H = ̂HS ⊗ ̂IA ⊗ ̂IB + ̂IS ⊗ ̂HA ⊗ ̂IB + ̂IS ⊗ ̂IA ⊗ ̂HB + ̂HSA ⊗ ̂IB + ̂HSB ⊗ ̂IA (7)

For simplicity we assume that the dominant term is ̂HSA ⊗ ̂IB ( ̂HSB ⊗ ̂IA) for the time
interval [t1, t1 + �t] ([t2, t2 + �t]), while the free terms dominate outside these two time
intervals.
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The properties of the instruments A and B are represented by projectors having the fol-
lowing form

̂Π(A) = ̂IS ⊗ π̂ (A) ⊗ ̂IB, π̂ (A) : HA −→ HA

̂Π(B) = ̂IS ⊗ ̂IA ⊗ π̂ (B), π̂ (B) : HB −→ HB

In our formalism of generalized contexts [4], the properties of the instrument A at the
time t1 + �t are compatible with the properties of the instrument B at the time t2 + �t

if the time translation of both properties to a common time are represented by commuting
projectors. If the common time is chosen to be t2 + �t , we have to prove the commutation
of the projectors ̂U(t2 + �t, t1 + �t)̂Π(A)

̂U−1(t2 + �t, t1 + �t) and ̂Π(B).
Taking into account the dominant contributions in each time interval we obtain

̂U(t1 + �t, t1) = ̂USA ⊗ ̂IB

̂U(t2, t1 + �t) = ̂US ⊗ ̂UA ⊗ ̂UB (8)

̂U(t2 + �t, t2) = ̂USB ⊗ ̂IA

where

̂USA ≡ e− i
�

̂HSA�t , ̂USB ≡ e− i
�

̂HSB�t ,

̂US ≡ e− i
�

̂HS(t2−t1−�t), ̂UA ≡ e− i
�

̂HA(t2−t1−�t), ̂UB ≡ e− i
�

̂HB(t2−t1−�t).

Therefore

̂Π(B)
̂U(t2 + �t, t1 + �t)̂Π(A)

̂U−1(t2 + �t, t1 + �t)

= (

̂IS ⊗ ̂IA ⊗ π̂ (B)
)

(̂USB ⊗ ̂IA)(̂US ⊗ ̂UA ⊗ ̂UB)
(

̂IS ⊗ π̂ (A) ⊗ ̂IB

)

× (

̂U−1
S ⊗ ̂U−1

A ⊗ ̂U−1
B

)(

̂U−1
SB ⊗ ̂IA

)

= (

̂IS ⊗ ̂IA ⊗ π̂ (B)
)(

̂IS ⊗ ̂UAπ̂(A)
̂U−1

A ⊗ ̂IB

) = (

̂IS ⊗ ̂UAπ̂(A)
̂U−1

A ⊗ ̂IB

)(

̂IS ⊗ ̂IA ⊗ π̂ (B)
)

= (̂USB ⊗ ̂IA)(̂US ⊗ ̂UA ⊗ ̂UB)
(

̂IS ⊗ π̂ (A) ⊗ ̂IB

)(

̂U−1
S ⊗ ̂U−1

A ⊗ ̂U−1
B

)(

̂U−1
SB ⊗ ̂IA

)

× (

̂IS ⊗ ̂IA ⊗ π̂ (B)
)

= ̂U(t2 + �t, t1 + �t)̂Π(A)
̂U−1(t2 + �t, t1 + �t)̂Π(B).

This is the proof of the compatibility of properties of the measuring instrument A at the
time t1 + �t and properties of the measuring instrument B at the time t2 + �t . Therefore
both classes of properties can be included in the same universe of discourse.

For the instrument A we are specially interested in pAχ and pAχ
, correlated with proper-

ties pχ and pχ of the system S at the time t1. For the instrument B , at the time t2 + �t , the
relevant properties are pBχ and pBχ

, correlated with properties pχ and pχ of the system S

at time t2.
The formalism of generalized contexts can be applied to compute the conditional proba-

bility

Pr
{

(pBχ , t2 + �t)|(pAχ , t1 + �t)
} = Pr{(pBχ , t2 + �t) ∧ (pAχ , t1 + �t)}

Pr(pAχ , t1 + �t)
.
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If we choose the time translation of the properties to time t1 we obtain

Pr
{

(pBχ , t2 + �t) ∧ (pAχ , t1 + �t)
}

= Tr
{

ρ̂(t1)̂U(t1, t2 + �t)̂Π(B)
χ

̂U−1(t1, t2 + �t)̂U(t1, t1 + �t)̂Π(A)
χ

̂U−1(t1, t1 + �t)
}

= Tr
{

ρ̂(t1)̂U(t1, t2 + �t)̂Π(B)
χ

̂U(t2 + �t, t1 + �t)̂Π(A)
χ

̂U(t1 + �t, t1)
}

,

where

ρ̂(t1) = ∣

∣ϕ(t1)
〉〈

ϕ(t1)
∣

∣ ⊗ |A0〉〈A0| ⊗ |B0〉〈B0|,
̂Π(A)

χ = ̂IS ⊗ |Aχ 〉〈Aχ | ⊗ ̂IB,

̂Π(B)
χ = ̂IS ⊗ ̂IA ⊗ |Bχ 〉〈Bχ |.

Taking into account (8) and assuming for simplicity ̂HA = ̂HB = 0 in (7), we obtain

Pr
{

(pBχ , t2 + �t)|(pAχ , t1 + �t)
} = ∣

∣〈χ |e− i
�

̂HS(t2−t1)|χ〉∣∣2 = W(t2 − t1) (9)

The expression given in this last equation for the conditional probability is formally iden-
tical to the survival probability obtained in (1), from the point of view of orthodox interpre-
tations. It also coincides with the result obtained in (3), from the point of view of modal
interpretations. However, the physical interpretation of (9) is very different: it is the proba-
bility of the instrument B to have the pointer propertypBχ at the time t2 + �t , conditional
to the instrument A having the pointer property pAχ at the previous time t1 + �t .

5 Conclusions

For a system prepared in a quasi-stationary state the orthodox interpretations name survival
probability to the probability of finding the system collapsed in the same quasi-stationary
state when measured at a later time.

The modal interpretations of quantum mechanics do not postulate the collapse of the
state vector and do not attribute a privileged role to the quantum measurements, but rather
consider the probability of actualization of the possible properties. For a system initially
prepared in a quasi-stationary state, isolated after its preparation, the survival probability can
be viewed as the probability for the system to have at a later time the property represented
by the projector corresponding to the initial quasi-stationary state. This approach needs to
consider a prepared quasi-stationary state at a given time and the properties of decay or no
decay at a later time.

We investigated the possibility of considering the survival probability only in terms of
decay or no decay properties for an arbitrary prepared state. For this purpose we used our
formalism of generalized contexts, developed to deal with quantum histories (i.e. time se-
quences of properties).

Our first attempt was to interpret the survival probability as the probability of a system
prepared in an arbitrary state to have the no decay property at a given time conditional to
have the same property at a previous time. The system was considered to be isolated after
its preparation, i.e. with no measurement instruments. We obtained a negative result: there
is no generalized context including the decay and no decay properties at two different times.
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Finally, we considered the decay process of a system interacting at two different times
with other two quantum systems. These two systems are considered ideal measurements
instruments for the decay and no decay properties. In this case it is possible to construct
a generalized context of properties including the pointer indications of the first instrument
at a given time and the pointer indications of the second one at a later time. Therefore, it
is possible to interpret the survival probability as the probability to measure the no decay
property at a given time conditional to have measured the same no decay property at an
earlier time.

Although quantum histories interpretations do not assume the existence of external ob-
servers, we have shown trough our example of a decay process that in general it is not
possible, using the formalism of generalized contexts, to speak about properties of a system
at two different times. However, if the measurements are represented by quantum interac-
tions, it is always possible to speak in a consistent way (i.e. with well defined probabilities)
about the pointer indications at the two different times.

Appendix: Generalized Contexts

For the sake of completeness we present in this section a brief summary of our formalism of
generalized contexts [4, 9].

Let us represent a quantum property p at time t by the pair (p; t), or equivalently
by (̂Πp; t), where ̂Πp is the projector representing the property p in the Hilbert space
H of the system. The time translation of the property p at time t to time t ′ is defined
by the pair (p′; t ′), or by (̂Πp′ ; t ′), where p′ is the quantum property represented by
̂Πp′ ≡ ̂U(t ′, t) ̂Πp

̂U−1(t ′, t). The unitary operator ̂U(t ′, t) = exp(−i ̂H(t ′ − t)/�) is the time
evolution operator generated by the Hamiltonian operator ̂H of the system. The relation be-
tween time translated pairs is transitive, reflexive and symmetric and, therefore, it is an
equivalence relation. We use [(p; t)] (or [(̂Πp; t)]) to name the class of pairs equivalent to
(p; t) (or to (̂Πp; t)). It is interesting to note that the Born rule assigns the same probability
to all the pairs of the same equivalence class in a given state, i.e.

Pr(p; t) = Tr(ρ̂t
̂Πp) = Tr(ρ̂t ′ ̂Πp′) = Pr

(

p′; t ′) = Pr
[

(p; t)].

By definition, the equivalence class [(̂Π(1); t1)] implies the equivalence class [(̂Π(2); t2)]
if the representative elements of the classes at a common time t0 verify the implication of
the usual formalism of quantum mechanics, i.e.

̂Π(1,0) H ⊂ ̂Π(2,0)H,

̂Π(1,0) ≡ ̂U(t0, t1)̂Π(1)
̂U−1(t0, t1), ̂Π(2,0) ≡ ̂U(t0, t2)̂Π(2)

̂U−1(t0, t2).
(10)

This implication is a transitive, reflexive and antisymmetric relation, being therefore an order
relation.

The conjunction (disjunction) of two classes [(̂Π; t)] and [(̂Π ′; t ′)] can be obtained as
the greatest lower (least upper) bound, i.e.

[

(̂Π; t)] ∧ [(

̂Π ′; t ′)] = Inf
{[

(̂Π; t)], [(̂Π ′; t ′)]},
[

(̂Π; t)] ∨ [(

̂Π ′; t ′)] = Sup
{[

(̂Π; t)], [(̂Π ′; t ′)]}.
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The negation of an equivalence class [(̂Π; t)] is defined by

[

(̂Π; t)] = [

(̂Π; t)] = [(

(̂I − ̂Π); t)].
With the implication, disjunction, conjunction and negation previously obtained, the set

of equivalence classes has the structure of an orthocomplemented nondistributive lattice.
The usual concept of context is a subset of all possible simultaneous properties which can

be organized as a meaningful description of a quantum system at a given time, and can be
endowed with a boolean logic with well-defined probabilities. Our formalism supplies a pre-
scription to obtain, from the nondistributive lattice of equivalence classes of pairs, the valid
descriptions involving properties at different times, which we called generalized contexts.

Let us consider a context of properties at time t1, generated by atomic properties p
(1)
j

represented by projectors ̂Π
(1)
j verifying

̂Π
(1)
i

̂Π
(1)
j = δij

̂Π
(1)
i ,

∑

j∈σ (1)

̂Π
(1)
j = ̂I , i, j ∈ σ (1).

Let us also consider a context of properties at time t2, generated by atomic properties p(2)
μ

represented by projectors ̂Π(2)
μ verifying

̂Π(2)
μ

̂Π(2)
ν = δμν

̂Π(2)
μ ,

∑

μ∈σ (2)

̂Π(2)
μ = ̂I , μ, ν ∈ σ (2).

We wish to represent with our formalism a universe of discourse able to incorporate ex-
pressions like “the property p

(1)
j at time t1 and the property p(2)

μ at time t2”. The conjunc-

tion of the classes with representative elements ̂Π
(1)
i at t1 and ̂Π(2)

μ at t2 is also the con-

junction of the classes with representative elements ̂Π
(1,0)
i ≡ ̂U(t0, t1)̂Π

(1)
i

̂U−1(t0, t1) and
̂Π(2,0)

μ ≡ ̂U(t0, t2)̂Π(2)
μ

̂U−1(t0, t2) at the common time t0.
In usual quantum theory the conjunction of simultaneous properties represented by non-

commuting operators has no meaning. So, it seems natural to consider quantum descriptions
of a system, involving the properties generated by the projectors ̂Π

(1)
i at time t1 and ̂Π(2)

μ at

time t2, only for the cases in which the projectors ̂Π
(1)
i and ̂Π(2)

μ commute when translated
to a common time t0, i.e.

̂Π
(1,0)
i

̂Π(2,0)
μ − ̂Π(2,0)

μ
̂Π

(1,0)
i = 0.

If this is the case, for the equivalence class of composite properties representing “the prop-
erty p

(1)
j at time t1 and the property p(2)

μ at time t2” we obtain

hiμ = [(

̂Π
(1)
i ; t1

)] ∧ [(

̂Π(2)
μ ; t2

)] =
[(

lim
n→∞

(

̂Π
(1,0)
i

̂Π(2,0)
μ

)n; t0
)]

= [(

̂Π
(1,0)
i

̂Π(2,0)
μ ; t0

)]

.

As we can see, the conjunction of properties at different times t1 and t2 is equivalent to a
single property, represented by the projector ̂Π

(0)
iμ ≡ ̂Π

(1,0)
i

̂Π(2,0)
μ at a single time t0.

If the different contexts at times t1 and t2 produce commuting projectors ̂Π
(1,0)
i and ̂Π(2,0)

μ

at the common time t0, it is easy to prove that

̂Π
(0)
iμ

̂Π
(0)
jν = δij δμν

̂Π
(0)
iμ ,

∑

iμ

̂Π
(0)
iμ = ̂I .

Author's personal copy



Int J Theor Phys (2013) 52:1289–1299 1299

Therefore, we realize that the composite properties hiμ, represented at time t0 by the com-
plete and exclusive set of projectors ̂Π

(0)
iμ , can be interpreted as the atomic properties gen-

erating a usual context in the sense described above. More general properties are obtained
from the atomic ones by means of the disjunction operation. For instance, we can represent
the property “p(1)

j at time t1 and p(2)
μ at time t2, with j and μ having any value in the subsets

�(1) ⊂ σ (1) and �(2) ⊂ σ (2)” as

h�(1),�(2) =
[(

∑

i∈�(1)

∑

μ∈�(2)

̂Π
(0)
iμ ; t0

)]

.

The set of properties obtained in this way is an orthocomplemented and distributive lattice.
If the state of the system at time t0 is represented by ρ̂t0 , the Born rule gives the following

expression for the probability of the class of properties h�(1),�(2) ,

Pr(h�(1),�(2) ) =
∑

i∈�(1)

∑

μ∈�(2)

Tr
(

ρ̂t0
̂Π

(0)
iμ

)

.

As a natural extension of the notion of context, we postulate that a description of a physi-
cal system involving properties at two different times t1 and t2 is valid if these properties are
represented by commuting projectors when they are translated to a single time t0. We will
call each one of those valid descriptions generalized context. On each generalized context,
the probabilities given by the Born rule are well-defined (i.e. they are positive, normalized
and additive) and, therefore, they may be meaningful in terms of frequencies.

In summary, our formalism is based on the notion of time-translation, allowing to trans-
form the properties at a sequence of different times into properties at a single common time.
A usual context of properties is first considered for each time of the sequence. If the projec-
tors representing the atomic properties of each context commute when they are translated
to a common time, the contexts at different times can be organized to lead to a generalized
context of properties. A generalized context of properties is a distributive and orthocom-
plemented lattice, a boolean logic with well-defined implication, negation, conjunction and
disjunction. This logic can be used to speak and make inferences about the selected proper-
ties of the system at different times. Well-defined probabilities on the elements of the lattice
of properties are obtained by means of the well-known Born rule.
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