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Abstract 

Purpose: Existing micro-structure parameters are able to predict vertebral in vitro failure load, 85 

but for noisy in vivo data more complex algorithms are needed for a robust assessment.  

Methods: A new algorithm is proposed for the micro-structural analysis of trabecular bone under 

in vivo quantitative computed tomography (QCT). Five fractal parameters are computed: (1) the 

average local fractal dimension FD, (2) its standard deviation FD.SD, (3) the fractal rod volume 

ratio fRV/BV, (4) the average fractal trabecular thickness fTb.Th and (5) its coefficient of 90 

variation fTb.Th.CV. The algorithm requires neither an explicit skeletonization of the trabecular 

bone, nor a well-defined transition between bone and marrow phase. Two experiments were 

conducted to compare the fractal with established micro-structural parameters. In the first, 20 

volumes-of-interest of embedded vertebrae phantoms were scanned five times under QCT and 

high-resolution (HR-)QCT and once under peripheral HRQCT (HRpQCT), to derive accuracy 95 

and precision. In the second experiment, correlations between in vitro HRQCT structural 

parameters were obtained from 76 human T11, T12 or L1 vertebrae. In vitro fracture data were 

available for a subset of 17 human T12 vertebrae so that linear regression models between failure 

load and micro-structural HRQCT parameters could be analyzed. 

Results: The results showed correlations of fTb.Th and fRV/BV with their non-fractal pendants 100 

trabecular thickness (Tb.Th) and respective structure model index (SMI) while higher precision 

and accuracy was observed on the fractal measures. Linear models of bone mineral density with 

two and three fractal micro-structural HRQCT parameters explained 86% and 90% (adjusted R
2
) 

of the failure load and significantly improved the linear models based only on BMD and 

established standard micro-structural parameters (68% - 77% adjusted R
2
). 105 
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Conclusion: The application of fractal methods may grant further insight in the study of bone 

quality in vivo when image resolution and quality are less than optimal for current standard 

methods. 

Keywords: local fractal dimension, rod volume ratio, trabecular thickness, failure load, QCT 

Introduction 110 

Quantitative computed tomography (QCT) is a clinical in vivo 3D image modality that allows 

visualization and quantitative assessment of the spongy microstructure of human vertebrae. In 

particular, QCT can be used for diagnosis and monitoring of osteoporosis. Bone quality 

encompasses bone mineral density (BMD), micro architecture, turnover rates, damage 

accumulation, and mineralization
(1)

. While the extraction of BMD from QCT or even dual energy 115 

absorptiometry (DXA) is straightforward, the estimation of micro-structure parameters is more 

challenging. BMD is able to account for up to 70% of variability of vertebral failure load, while 

existing micro-structure parameters yield little additional information. Nevertheless, high 

computational power enables the application of more complex algorithms which are needed for a 

robust assessment of micro-structure parameters under noisy in vivo QCT. 120 

Several refined algorithms have been proposed for dependent
(2)

 and independent 

trabecular separation models
(3-5)

. Algorithms of the rod volume ratio (RV/BV) include scale 

Abbreviations of the new fractal entities 

     ⃗   local fractal dimension obtained with method   {   } at voxel  ⃗ 

        ⃗  local fractal trabecular thickness at voxel  ⃗ 

FDi average of      ⃗  

FDi.SD  standard deviation of      ⃗  

fRVi/BV fractal rod volume / bone volume of      ⃗  

fTb.Th   average of         ⃗  

fTb.Th.CV coefficient of variation of          ⃗  
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space methods
(6)

, fuzzy approaches
(7)

, concurrent assignments of rod- and plate-likeness on the 

same voxel
(8)

, and methods to obtain simultaneously RV/BV and trabecular thickness (Tb.Th)
(9)

. 

However, most of these attempts require a well-defined transition between bone and marrow 125 

phases or a structure preserving 3D skeletonization
(10)

. This makes them more likely suited for 

HRpQCT, rather than HRQCT or QCT resolution realms. In 3D imaging, fractal methods contain 

similar properties as scale space methods. Due to limited computational power, early 

implementations of fractal concepts focused primarily on global parameters, for instance, box-

counting dimensions
(11)

. Nowadays, different kinds of local fractal dimensions exist
(12)

 and have 130 

been obtained from an initial slope in log-log scale between a local measure and the radii of the 

local neighborhood. In particular the trabecular bone score
(13)

, a fractal dimension on the local 

variance of trabecular bone, extracts structural information from 2D projections
(14)

. However, 

trabecular bone score may not be suited to estimate bone strength
(15)

.  

The aim of this work is to introduce new structural parameters from QCT that (1) are 135 

robust against noise, (2) contain a semantic link to existing structural micro-structural parameters, 

and (3) contribute to assess key properties of bone health, such as estimations of bone strength. 

New fractal methods of RV/BV and Tb.Th are proposed, based on local fractal methods of the 

Hölder exponent
(16,17)

. They neither require an explicit skeletonization of trabecular bone, nor a 

well-defined transition between bone and marrow phases. Two experiments were conducted: the 140 

first, to assess robustness against noise on simulated in vivo HRQCT and QCT; the second, to 

obtain correlations between parameters from ex situ HRQCT; additionally experimentally derived 

failure load could be predicted from a subset of the ex situ HRQCT scans.  
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Materials and Methods 

The Hölder exponent in digital images 145 

The 3D Hölder exponent    relates the radius   of a sphere with the number of points (or mass) 

   inside that sphere, by computing the slope between      and      : 

          (
                

     
), (1) 

In the case of infinite thin points,    is independent of  : the Hölder exponent α is 1 on a line, 2 

on a plane and 3 on a sphere. This method has been extended for digital images, where voxels are 150 

not infinite thin and to measure rods and plates instead of lines and planes. Rods and plates 

contain a positive trabecular thickness (      ), causing the slope    to vary with  . Three 

different cases are met when measuring    on the center of a rod (Fig. 1). The slope starts at 

(    ) for       , descends smoothly towards one at               before ascending 

towards three at       . The radius      is the half of the local trabecular thickness and      155 

defines the maximum local radius, which does not intersect with different bone structures. The 

information of the local rod- or plate-likeness is hidden in the interval              . 

Two different methods were defined to extract the fractal dimension, the first method uses 

only information from the slope   , while the second method uses additionally information of the 

 

Figure 1: Evolution of  , the slope of         vs.       , on a rod.   is constant 3 at 

        , descends smoothly towards   at                 and ascends again towards 3 at 

      . (a) spatial illustration of    (b)   as a function of the radius  .  
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curvature   . Firstly, when assuming that the local structure is sufficiently isolated from 160 

neighboring structures (          ), the local fractal dimension      ⃗  at an arbitrary voxel 

 ⃗ can be estimated by the minimum of    at  ⃗:  

     ⃗      {    ⃗ }  (2) 

The estimate      ⃗  yields an overestimation of the real local fractal dimension, in particular in 

combination with image noise. The overestimation can be assessed by the curvature   :  165 

            
  (

                          

       
). (3) 

An adjusted local slope is now estimated from a function              which expresses the 

local fractal dimension in terms of slope and curvature. The local fractal dimension      ⃗  is 

then computed as the minimum of  (    ⃗      ⃗ ): 

     ⃗      { (    ⃗      ⃗ )}  (4) 170 

Since values of     ⃗  are generally larger than the true fractal dimension, which can be estimated 

with      ⃗ , the ratio of      ⃗     ⃗ ⁄  grows towards one with increasing radii  . This allows 

to estimate the limiting radius      from a function                 , which expresses the 

ratio of      and  . The local trabecular thickness         ⃗  is now estimated the minimum of  

    (    ⃗          ⃗ ): 175 

        ⃗        {    (    ⃗          ⃗ )}  (5) 

The final VOI-based aggregates are computed from smoothed signals and a probability-based 

bone-ridge map        ⃗  (Appendix A) using the weighted average and standard deviation
(18)

: 

              
∑              ⃗   ⃗⃗⃗

  
  (6) 

             √
  ∑                      ⃗   ⃗⃗⃗  

  
    

   (7) 180 

with    ∑         ⃗    ⃗ and   the particular local signal. The final structural parameters for 

method   {   } are the average fractal dimension: 
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                  , (8) 

the standard deviation of the local fractal dimension: 

                    ,  (9) 185 

the fractal trabecular thickness:  

                            (10) 

 and the coefficient of variation of the local fractal trabecular thickness:  

            
                

                 
 . (11) 

The range of      ⃗  is decreased in noisy scenarios, inducing an overestimation of rods and an 190 

underestimation on plates or entirely filled regions and      ⃗  collapses to a constant value 

   
      at a signal-to-noise ratio of 1. Under the assumption that the volume contains only rods 

and plates, the fractal rod volume ratio fRVi/BV is defined as 

        
∑    {     

            ⃗ }        ⃗  ⃗⃗⃗  

∑ |   
            ⃗ |        ⃗  ⃗⃗⃗  

, (12) 

with    
          and    

           at a threshold value generating BV/TV=25%. Details of 195 

the structural element, the preprocessing of the input volume, the definition of the ridge map, the 

smoothing procedure and the computation of        and            are provided in Appendix 

A. Figure 2 shows the application of a phantom of three rods and plates under noiseless and noisy 

conditions. The signal      ⃗  contains low variation inside rods or plates, and      ⃗  

minimizes the error with the ground-truth. The algorithm was developed in MATLAB (v8.1, The 200 

MathWorks Inc., Natick, MA, USA). 
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Vertebral specimens and image data 

Two data sets were analyzed: one to obtain robustness of the method with respect to precision 

and accuracy, the other to predict failure load Fexp and to obtain correlations between all 

parameters. For the first experiment, five human T12 vertebral specimens were harvested from 205 

deceased donors, surrounding soft tissue and marrow was removed and the vertebrae were then 

embedded in epoxy resin. The vertebra phantoms were repeatedly scanned on a clinical CT 

scanner under simulated in vivo conditions, see Fig. 3. Two protocols, a high-resolution 

(355mAs) and a standard resolution (140mAs) were applied, both with 120kVp and voxel size 

188×188×300µm³. Three repetitions were performed with image noise as found under in vivo 210 

Figure 2: Application of the fractal method on a synthetic phantom consisting of two vertical 

rods and plates and one horizontal rod and plate of different thickness. Rows: 1) noiseless 

phantom, 2) signal-to-noise ratio=10, 3) signal-to-noise ratio=5. Columns: 1) volumetric 

rendering, 2) middle slice through the phantom, 3)      ⃗ , 4)      ⃗ , 5)         ⃗ . 
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conditions (abdomen phantom) and two with increased image noise (abdomen phantom with 

additional body ring). For reference purposes, HRpQCT scans of the vertebra phantoms were 

obtained (XtremeCT I, Osteoporose Praxis Neuer Wall, Hamburg, Germany, standard patient 

protocol), details of which were published elsewhere
(19,20)

. All scans were calibrated from 

Hounsfield (HU) to mineral scale (mg/cm³), and a cylindrical volume-of-interest (VOI) was 215 

placed within the trabecular region of all vertebrae, sub-divided into four segments (volume≈1.1-

1.7cm³, 1.02∙10
5
-1.64∙10

5
voxels) and automatically registered between all repeated scans (Fig. 4).  

 The second experiment was derived out of a larger ex situ study (BioAsset
(21)

) performed 

in total on 33 deceased patients who had osteoporosis. Each spinal specimen contained three 

vertebrae (T11, T12, L1) and their respective intermediate intervertebral discs. The vertebrae were 220 

scanned and calibrated with the same HRQCT procedure as used for the vertebrae phantoms, but 

segmented with one Pacman-shaped VOI per vertebra. HRQCT data of 76 vertebrae remained 

after excluding not sufficiently large VOIs. Data of the maximum failure load Fexp at T12 was 

experimentally derived from a subset of 20 patients
(22)

. The spinal segments were fixed to a 

servo-hydraulic testing machine (Bionix 858.2, MTS Systems, Eden Prairie, MN, USA). After 225 

 Figure 3: (a) setup for the simulated in-vivo QCT scan of the vertebra phantom containing the 

abdomen and calibration phantom (b) HRpQCT inset for ground-truth scan (c) setup to 

measure the failure load Fexp from the BioAsset specimen. 
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preconditioning, a quasistatic uniaxial compression (6 mm/min) with a 4-degree flexion angle 

was applied on each spinal segment until resulting failure of the middle vertebral body (T12). 

Further details of the loading can be found elsewhere
(23)

. 17 T12 vertebrae remained for 

correlations between Fexp and HRQCT parameters after excluding those with an insufficient size. 

The following standard parameters were computed: bone mineral density (BMD), bone 230 

volume fraction (BV/TV) and tissue mineral density (TMD); with a model dependent method 

trabecular number (Tb.N), mean intercept length (MIL) and bone surface ratio (BS/BV); and 

model independently
(24)

 trabecular separation (Tb.Sp), trabecular thickness (Tb.Th) and structure 

model index (SMI, http://bruker-microct.com/next/CTAn03.pdf). The threshold for computing 

the micro-structural and fractal parameters was group-wise adjusted to compensate systematic 235 

differences between the QCT, HRQCT and HRpQCT scans. A histogram-based correction from a 

Gaussian fit of the mean BMD and standard deviation of each setting was applied
(25,26)

. The 

threshold was selected in order to obtain           on HRpQCT
(27)

 and           on 

QCT and HRQCT. Calibration of the HRpQCT scans was performed with the scanner’s software 

(Scanco Medical AG, Brüttisellen, Switzerland) and registration, calibration, and computation of 240 

Figure 4: Transversal ray-tracing projection of the vertebral CT-scans. (a) Embedded vertebra 

subvolume from HRQCT scan and representative cylindrical VOI with one of four sub-VOIs, 

(b) corresponding HRpQCT scan, (c) HRQCT BioAsset scan with one Pacman-shaped VOI 

per vertebra. 
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the standard parameters were performed with Structural Insight (v3.1, Biomedical Imaging, 

University of Kiel, Germany). 

Statistical analysis 

Precision and accuracy were derived from the vertebra phantoms. The normalized short-term 

precision for repeated scans (STP) was used as a metric of precision and reproducibility: 245 

    √
∑ ∑       ̅  

  
   

 
   

           { ̃ }     { ̃ } 
 ,  (13) 

with      the number of VOIs,      the number of repeated scans per VOI,     the 

structural parameter at VOI   and scan  ,  ̅  its arithmetic mean and  ̃  the median at VOI  . The 

normalized long-term precision (LTP) was used as a metric of accuracy or trueness. It relates the 

median QCT structural parameter  ̃  at VOI   with the ground-truth HRpQCT parameter   : 250 

    √
∑      ̂  

  
   

          {  }     {  } 
 
, (14) 

with  ̂       ̃  the linear estimate of    from the QCT. The sample size and the number of 

repeated scans were sufficient to claim statistical significance at a level considered sufficient for 

characterizing STP and LTP
 (28)

. 

Average, standard deviation, quartiles, and Spearman's rank correlation coefficients (ρ  255 

were computed from the BioAsset data (76 vertebrae), p-values were Bonferroni-corrected for 

multiple comparisons. For 17 vertebrae, linear models for the prediction of FExp were derived 

from BMD in combination with up to three micro-structural parameters. R², RMSE, and adjusted 

R² (adjR²) were computed and a robust R² (robR²) and RMSE (robRMSE) were obtained from 

leave-one-out cross-validation of all combinations. The optimum regression models between Fexp 260 

and fractal or standard structural parameters were selected as those with the minimum corrected 

Akaike information criterion (AICc).The AICc is superior to the Bayes Information criterion
(29)

 



 
 

 15 

and more widely applied for those analyses
(30)

. The gain of information between two models can 

be assessed by the relative likelihood:                (
                 

 
) with    and    

the models. The analysis was performed with JMP (v11, SAS Institute Inc., Cary, NC, USA) and 265 

MATLAB.  

Results 

Precision and Accuracy 

Figure 5a shows the precision (STP) and accuracy (LTP) of all structural parameters on ten 

repeated scans. Highest precision and accuracy (STP, LTP) were obtained by BMD (6%, 13%) 270 

and BV/TV (11%, 11%). From the micro-structural parameters, FD (16-19%, 13%) was most 

robust, followed by fRV/BV (16-20%, 19%), SMI (14%, 20%), and TMD (20%, 20%). The 

parameter fTb.Th contained low precision but high accuracy (36%, 12%). However, its pendant 

Tb.Th (58%, 32%) still contained higher errors regarding both metrics.  If considering only three 

repeated scans with a minimum noise level (Fig. 5b), STP generally decreased while LTP 275 

remained unchanged. In particular, FD (5-6%, 12-13%), fRV/BV (5-6%, 19%) and fTb.Th 

Figure 5: Precision (STP) vs. accuracy (LTP) with confidence intervals. Lowest values 

represent highest trueness and reproducibility, isobars depict compound errors of both metrics, 

(a) ten scans (HRQCT and QCT with and without body ring, confidence intervals of p<0.025), 

(b) three scans (HRQCT without additional body ring, confidence intervals of p<0.1). 
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(8%,11%) obtained similar robustness as BMD (5%, 12%) and BV/TV (6%, 10%). Improved 

precision was also observed on FD2.SD, Tb.N, Tb.Th and Tb.Sp. 

Descriptive statistics and correlations between parameters 

The parameter FD1 showed higher values than FD2, while values of fRV1/BV and FD1.SD were 280 

similar to fRV2/BV and FD2.SD, respectively (Tab. 1). The parameter fTb.Th contained higher 

estimates than Tb.Th (and Tb.Sp) but reduced variation (SD/Avg). Spearman’s rank correlation 

coefficients (ρ  between all parameters are shown in Tab. 2 with the exception of BS/BV, since it 

contained the same values as MIL. In general, the standard parameters correlated with each other, 

as did the fractal parameters, while the correlation between parameters of both groups was rather 285 

low. An exceptions was fTb.Th which contained significant correlations to all parameters with 

exception of BMD and FD.SD. The correlation between fTb.Th and Tb.Th (ρ=0.75*) was not 

noticeably stronger than between fTb.Th and other structural parameters (Tb.N: ρ=-0.79*, SMI: 

ρ=0.84*). 

Parameter Avg SD Q1 Q3 

FD1 2.12 .04 2.08 2.15 

FD2 1.57 .05 1.54 1.60 

FD1.SD .32 .02 .30 .34 

FD2.SD .32 .03 .30 .34 

fRV1/BV[%] 29.3 6.6 24.0 35.0 

fRV2/BV[%] 28.6 6.1 23.7 32.7 

fTb.Th[mm] 1.10 .02 1.09 1.12 

fTb.Th.CV[%] 13.8 .5 12.3 13.3 

BMD[mg/cm3] 54.0 19.5 43.8 69.2 

TMD[mg/cm3] 206.1 7.8 201.7 211.8 

BV/TV[%] 25.0 1.5 24.0 26.1 

Tb.N[mm−1] .67 .07 .62 .72 

Tb.Th[mm] .39 .05 .35 .43 

Tb.Sp[mm] .95 .13 .85 1.04 

SMI .16 .10 .08 .22 

Fexp[kN ] 2.10 .50 1.75 2.47 

Age[y] 80.9 7.1 75.5 86.0 

BMI[kg/m2] 22.4 4.7 18.7 26.5 

Table 1: Fractal, densitometric and micro-structural parameters (N=76), Fexp (N=20) and 

donor's characteristics (N=33). 
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Multiple regression analysis with failure load as dependent variable 290 

Table 3 and Fig. 6 show multiple linear regression models to explain the variability of Fexp. The 

first set (S1 to S4) was based on BMD and (non-fractal) standard parameters, the second set (F1 to 

F4) was based on BMD and fractal parameters. The indices of the model names indicate the 

number of used predictors. Although the actual predictors were chosen independently as the 

combination that minimizes the AICc, the best models contained always all predictors of the best 295 

preceding models (for instance S4 = S3 + TMD).  
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FD1 .00 
               

FD1.SD .29 .28 
              

fRV1/BV .05 -.98* -.12 
             

FD2 .06 .96* .43* -.91* 
            

FD2.SD .21 .47* .94* -.32 .63* 
           

fRV2/BV .00 -.98* -.25 .97* -.98* -.46* 
          

fTb.Th -.11 -.79* -.27 .77* -.67* -.33 .68* 
         

fTb.Th.CV .13 .74* .55* -.67* .72* .60* -.66* -.87* 
        

BV/TV .38 .15 -.03 -.18 .03 -.11 -.06 -.59* .35 
       

TMD -.01 -.31 -.05 .30 -.16 -.01 .17 .65* -.40* -.61* 
      

Tb.N -.04 .37 -.12 -.40* .16 -.14 -.22 -.79* .50* .73* -.72* 
     

Tb.Th .15 -.36 .11 .39 -.15 .13 .20 .75* -.49* -.55* .73* -.96* 
    

Tb.Sp .05 -.34 .10 .37 -.13 .14 .19 .75* -.47* -.66* .66* -.98* .95* 
   

MIL .32 -.39 .16 .41* -.17 .14 .24 .66* -.43* -.27 .58* -.84* .93* .86* 
  

SMI -.05 -.48* .07 .51* -.29 .05 .35 .84* -.55* -.77* .75* -.94* .87* .87* .72* 
 

Fexp .84* -.14 .71 .30 .04 .45 .05 -.05 .32 .25 -.05 -.20 .24 .20 .47 .11 

Table 2: Spearman’s rank correlation coefficients (ρ  between density, fractal dimension, 

micro-architectural parameters (N=76) and vertebral failure load (N=17), *p<0.05, bold 

p<0.01 (two-tailed correlation is significant with Bonferroni correction). 

 S1 or F1 S2 S3 S4   F2 F3 F4 

BMD <.0001* .0002* .0002* .0007* BMD <.0001* <.0001* <.0001* 

MIL - .188 .043* .095 FD1.SD .015* .0008* .0005* 

BS/BV - - .053 .151 FD2 - .011* .018* 

TMD - - - .213 fRV2/BV - - .036* 

AICc 2.813 4.123 3.172 5.830 AICc -1.139 -5.900 -7.478 

Table 3: p-values of the predictors (*p<0.05) and total AICc obtained from optimal models for 

prediction of Fexp with and without incorporating fractal methods. 
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 The highest simple correlation with FExp was obtained by BMD (S1=F1: adjR²=0.684, 

robR²=0.634, robRMSE=0.231, AICc=2.81). The AICc's indicated a significant gain of 

information by F2-4 compared to S1-4. Model F2 with BMD and FD1.SD (adjR²=0.782, 

robR²=0.736, robRMSE=0.197, AICc=-1.14) obtained already higher correlations and lower 300 

errors than all S-models. Adding additionally FD2 as a predictor (model F3: adjR²=0.861, 

robR²=0.801, robRMSE=0.171, AICc=-5.90) significantly raised the gain of information towards 

standard models (p(F3 vs S1-4)=0.003* to 0.013*). The optimum model was obtained by adding 

fRV2/BV as a further predictor (model F4: adjR²=0.897, robR²=0.847, robRMSE=0.150, AICc=-

7.48), yielding a significant gain of information towards S1-4 (p(F4 vs S1-4)=0.001* to 0.006*) and 305 

F2 (p(F4 vs F2)=0.042*    P-values of the parameter estimates (Tab. 3) showed significant 

contributions of all fractal parameters to the F-models while standard parameters, with exception 

of MIL in model S3, did not contribute significantly to the S-models. When allowing only 

parameters obtained with the first fractal method, the predictors FD2 and fRV2/BV of model F3 

and F4 have been replaced by FD1 and fRV1/BV. These models with three (adjR
2
=0.844, 310 

robR
2
=0.771, robRMSE=0.186, AICc=-3.97) and four predictors (adjR

2
=0.891, robR

2
=0.833, 

 

Figure 6: R², adjR², robR², RMSE and robRMSE of linear models for prediction of Fexp. 
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robRMSE=0.157, AICc=-6.48) were not significant different to the models F3 and F4 based on 

both fractal methods. Models, based on the Bayes information criterion were identical to these 

selected with the AICc. 

Discussion 315 

Compared to standard micro-structural parameters, the fractal methodology improved the 

prediction of failure load and showed robustness against image noise. In particular FD.SD, FD 

and fRV/BV demonstrated to be well-adjusted for the analysis of HRQCT volumes. Prediction of 

failure load with standard micro-structure parameters can explain up to 86% of the variability in 

vertebral failure load, for instance by using a linear model of BMD, SMI and DA on HRpQCT 320 

(isotropic resolution 82µm)
(31)

. However, such predictive power has not been observed before on 

HRQCT due to the high sensitivity of noise of standard micro-structural parameters. 

 Regression models with standard structural parameters (S2-4) were not able to extract 

additional information of Fexp. Conversely, the fractal model F3, based on BMD, FD1.SD and 

FD2, explained 86% (adjR²) of vertebral failure load on in vivo-like image conditions, thus 325 

bridging the gap between ex vivo and in vivo. Model F4, based on BMD, FD1.SD, FD2 and 

fRV2/BV, explained up to 90% (adjR²) of the variability of Fexp. Models F3 and F4 significantly  

improved the extraction of information beyond BMD without over-fitting, as indicated by 

AICc’s, robR² and robRMSE. This highlights the different aspects of bone quality captured by 

the set of fractal parameters. Our results also showed that the same fractal parameters obtained 330 

with the either of the both fractal methods were nearly redundant as they did not add independent 

information in any linear regression model and also showed high Spearman's rank correlations 

(FD: ρ=0.96*, FD.SD: ρ=0.94*, fRV/BV: ρ=0.97*). Thus, for the prediction of failure load, one 
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could simply implement the first fractal method rather than both methods, explaining 84% 

(adjR
2
) with the model of three and 89% with the model of four predictors.  335 

 Robustness against image degradation is particularly important for in vivo micro-

structural parameters. Precision or reproducibility (STP) is important to derive longitudinal 

skeletal changes. Accuracy or trueness (LTP), on the other hand, reflects robustness against 

inhomogeneous settings (different protocols, scanners) and defines, in particular, the ability to 

translate results of phantom- to patient studies
(28)

. In this study, both the accuracy and precision 340 

of the structural information improved if computed with fractal methods. In particular, fTb.Th 

improved the accuracy of Tb.Th though still significantly correlated (ρ(fTb.Th,Tb.Th) =0.75*). 

 The parameters fRV/BV and FD improved the accuracy of SMI. However, in contrast to 

fRV/BV and FD, SMI generally measures the convexity of the trabecular bone rather than its 

structural model
(32)

. This might explain the weak correlations between SMI and the related fractal 345 

parameters (FD1: ρ=-0.48*, fRV1/BV: ρ=0.51*, FD2: ρ=-0.29, fRV2/BV ρ=0.35). Results of 

fRV/BV (mean: 29%, SD: 6.4%) showed agreement with an alternative parameter of RV/BV on 

HRpQCT resolution
(27)

 (mean: 17.5%, SD: 6.9%). This indicates the inadequacy of the strict 

parallel plate model in the vertebral domain.  

 High correlations with Fexp were only obtained with BMD (ρ=0.84*) and FD.SD 350 

(ρ=0.71). The BMD was not correlated with the fractal parameters FD (ρ=0.0 – 0.06), FD.SD 

(ρ=0.21 – 0.29) and fRV/BV (ρ=0.0 – 0.05), while BMD and all of these fractal parameters 

contributed significantly to the prediction of Fexp in model F2-4. Hence the fractal parameters are 

able to characterize failure load from the bone micro-structure rather than from the bone density, 

as obtained with BMD. 355 

 In general, unless one defines a mathematical mapping between hidden fine scale 

structural information and visible coarse scale information, high noise and low effective in vivo 



 
 

 21 

resolution (500×500×650µm³)
(5)

 impedes ability to obtain failure load from bone in in vivo 

HRQCT volumes. Self-similarity, the property to extrapolate structural information from coarse 

to fine scale, makes fractal methods robust against low resolution and image degradation due to 360 

noise. Scale invariance and thus, accuracy, applies almost completely to fractal methods, but not 

to standard micro-structural parameters.  

 Most algorithms of micro-structural parameters require a crisp threshold which discards a 

great portion of the contained information. In contrast, the fractal methods proposed here not only 

allow the application of a crisp threshold, but also application of a sigmoidal fuzzy threshold. 365 

Nevertheless, the conducted experiments required the choice of a crisp threshold for the purpose 

of a fair comparison between fractal and standard parameters. The threshold was individually 

adapted from the histogram to remove most correlations of the micro-structural parameters with 

BMD
(25)

. Alternative tests with global thresholds of 150, 200 and 250mg/cm³ showed less 

performance on the standard micro-structural parameters, which means higher correlation with 370 

BMD and lower ability to predict failure load. 

 Finally, some alternative uses can be drawn from the method proposed here. Local 

qualitative indicators of bone health      ⃗ ,      ⃗  and         ⃗  (Fig. 2) could be beneficial 

for the segmentation of multiple myeloma
(33)

, or to extend the local information of finite element 

models
(23,34)

. Furthermore, replacing the input volume with a skeletonized version of the bone
(5)

 375 

likely improves the estimation of      ⃗ and     ⃗  but however, impairs the estimation of 

        ⃗ . Conversely, since skeletonization is a complex task in 3D, as noise and uncertainties 

need to be carefully treated without removing the relevant plates and rods, this adjustment might 

be only reasonable on HRpQCT. 

  380 
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Conclusion 

The new fractal method proposed for the analysis of clinical 3D QCT and HRQCT volumes 

computes the RV/BV and Tb.Th. It does not require a well-defined skeleton, and is applicable 

with fuzzy threshold functions. Precision and accuracy tests demonstrated that the method can 

withstand image noise from in vivo conditions. The fractal measurements outperformed most of 385 

the micro-structural parameters in precision (STP) by as much as 20-45% (MIL, Tb.Sp, Tb.Th). 

The accuracy (LTP) of fractal parameters FD and fTb.Th was almost as high as that of BMD or 

BV/TV. On the ex vivo human vertebrae, HRQCT-based linear prediction models of failure load 

improved significantly by using fractal rather than standard predictors, and can exceed the quality 

of reported predictive models of ex vivo HRpQCT resolution
(31)

. Thus, application of fractal 390 

methods may grant further insight in the study of bone quality in vivo when image resolution and 

quality are less than optimal for current standard methods. 
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Appendix A: Implementation of the local fractal dimension 

To compute the fractal measures on digital volumes of spongy bone, the mass     ⃗  at voxel  ⃗ 

was derived with a convolution of a bone map       ⃗  and a structural element            : 405 

    ⃗                   ⃗   For every voxel, the masses of 25 different radii were computed 

        
   

   
         

 
   {      } thus generating a constant         ⁄       ⁄ , as used in 

equation (1) and (3). The generalized conversion from an calibrated CT volume    ⃗  to       ⃗  

uses the sigmoidal cumulative normal distribution:  

         ⃗      (   ⃗  )  ∫
 

√    
   (

( – )
 

    )  
   ⃗  

  
, (15) 410 

where   is the threshold and     a fuzziness parameter;          ⃗  is the binary non-fuzzy 

bone map. The continuous structural element     
(35)

, which allows to vary the radius   

independently of the voxel size  ⃗, reads: 

     ⃗  ∭
 (  ‖ ⃗  ⃗⃗⃗‖)

        
            

  ⃗⃗

  ⃗⃗
, (16) 

with   ⃗ the position inside the structural element, ‖ ‖ the Euclidean norm and      the Heaviside 415 

function. The ridge map        ⃗  was obtained from the bone map       ⃗ : 

       ⃗   
               ⃗ 

∑     ⃗⃗   ⃗ 
  (17) 

with   the a-priori approximation of the trabecular thickness and q≈3 (>1  a parameter to steer 

the sharpness of the thinning procedure. Accurate local estimates of      ⃗  and         ⃗   were 

obtained only on the central ridge of the structure. The correction for voxels, which did not 420 

belong to the bone ridge were computed with a voxel-wise smoothing operator: 

   ⃗ ̅̅ ̅̅ ̅̅   
                    ⃗ 

               ⃗ 
  (18) 

where    ⃗  is a placeholder of      ⃗  or         ⃗ , and   the 3D convolution operator. The 

fractal plate volume ratio is given by               . 
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The functions        and        ⁄   were derived from the evolution of the intersection 425 

of a sphere of radius   with a sphere, rod, plate of radius     , representing the integer fractal 

dimensions 0, 1 and 2. The fractal dimension 3 was directly obtained from the volume of a sphere 

with radius  . The masses of these structures are: 

  
   

{
 
 

 
          

                                                                               

      
  ̂         ̂        

     ̂                    

                  
                                                       

                                                                                            

, (19) 

with  ̂           
     . The logarithms of these volumes were then interpolated for non 430 

integer fractal dimensions and the slope α and the curvature  , expressed in radians, were 

computed for              . To obtain the map       , the known fractal dimension FD was 

fitted as a surface of α and  . Figure 7 shows the evolution of the volumes and the estimates of α 

and       , α requires much larger radii (          to obtain a close estimate to the true 

fractal dimension than        (           . In a similar way to the estimation of the fractal 435 

dimension, the map for the trabecular thickness        ⁄  was obtained from the known values 

of        as a surface interpolation of   and    ⁄ . 

  

Figure 7: (a) Evolution of the prototype masses with r for FD =0,0.5, 1, ... 3, (b) Hölder expo-

nents α and        of the prototype and interpolated volumes. 
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