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In the photosynthetic electron transfer (ET) chain, two electrons transfer from photosystem I to the flavin-
dependent ferredoxin-NADP+ reductase (FNR) via two sequential independent ferredoxin (Fd) electron carriers.
In some algae and cyanobacteria (as Anabaena), under low iron conditions, flavodoxin (Fld) replaces Fd as single
electron carrier. Extensive mutational studies have characterized the protein–protein interaction in FNR/Fd and
FNR/Fld complexes. Interestingly, even though Fd and Fld share the interaction site on FNR, individual residues on
FNR do not participate to the same extent in the interaction with each of the protein partners, pointing to differ-
ent electron transfer mechanisms. Despite of extensive mutational studies, only FNR/Fd X-ray structures from
Anabaena andmaize have been solved; structural data for FNR/Fld remains elusive. Here, we present amultiscale
modelling approach including coarse-grained and all-atom protein–protein docking, the QM/MM e-Pathway
analysis and electronic coupling calculations, allowing for a molecular and electronic comprehensive analysis
of the ET process in both complexes. Our results, consistent with experimental mutational data, reveal the ET
in FNR/Fd proceeding through a bridge-mediated mechanism in a dominant protein–protein complex, where
transfer of the electron is facilitated by Fd loop-residues 40–49. In FNR/Fld, however, we observe a direct transfer
between redox cofactors and less complex specificity than in Fd; more than one orientation in the encounter
complex can be efficient in ET.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Electron transfer (ET) reactions are key processes in all types of bio-
logical systems, being the mitochondrial and photosynthetic protein–
protein ET chains of particular relevance in the bioenergetics metabo-
lism of cells [1–3]; thus, understanding theirmechanisms and biological
function is crucial inmedical and bioengineering applications. In spite of
its key role in living organisms, ET between redox protein partners is
largely unknown at the molecular level [4–7]. Majority of ET mechanis-
tic studies rely on the availability of 3D-crystallographic structures,
most feasible for intra-protein process. However, modelling ET between
two (or more) proteins becomes more complex. Besides, from defining
the ET pathway and estimating the rate, the challenge arises from the
dynamic nature of the (typically) weak binding process, leading to
rch Program in Computational
9, E-08034 Barcelona, Spain.
formation of “optimal protein–protein complex” subsequently followed
by rapid transferring of the electron(s) [8].

We are particularly interested in the photosynthetic ET chain and,
more in detail, in the two electrons transfer from photosystem I (PSI)
to the flavin-dependent ferredoxin-NADP+ reductase (FNR, ~303 resi-
dues) via the action of two sequential independent ferredoxin (Fd) elec-
tron carriers [9,10]. In general, the catalytic process in FNR involves the
reduction of its flavin adenine dinucleotide (FAD quinone form), a pros-
thetic group non-covalently bound to FNR, to the one-electron reduced
radical (FADH• semiquinone form), followed by its further reduction to
fully reduced FAD hydroquinone (FADH− hydroquinone form) [9–11].
These reductions are performed sequentially by two Fd molecules, de-
livering each one electron to FNR at a single binding site. Fd is a small
electron carrier protein (~98 residues) that contains an iron–sulphur
cluster (FES) as redox center [12,13].

In some algae and cyanobacteria (as Anabaena), under low iron con-
ditions, flavodoxin (Fld) replaces Fd as single electron carrier [10,14].
Fld is a medium-small electron carrier protein with 169 residues con-
taining a flavin mononucleotide (FMN) as a redox cofactor. Although,
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Scheme 1. The ‘funnel filtering’ scheme to efficiently map the protein–protein ET
mechanism.
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Fd and Fld are different inmolecular size, sequence and redox cofactors,
FES in Fd and FMN in Fld, they are able to play similar roles in this ET
chain, interacting with FNR at the same binding site and with slightly
lower efficiency when using Fld (Kd

PPartner and kET values for the reduc-
tion of FNR are ~1.3 μM and ~6200 s−1, respectively, when using Fd
as electron donor and ~3 μM and N600 s−1, respectively, when using
Fld) [9,15–20].

Site-directed mutations in Anabaena FNR revealed that positively
charged residues at positions R16, K72 and, particularly, K75 as well as
hydrophobic residues at L76, L78 and V136, are critical for efficient in-
teraction, and therefore contribute to an efficient ET, with both Fd and
Fld (Fig. 1), while other residues also situated on the protein surface,
K138E, R264E, K290E, and K294E, contribute to the interaction in lesser
extent [9,15,16,21–24]. Similarly for Fd, a negatively charged side chain
at position E94, a hydrophobic side chain at position F65 and S47 are
crucial for the electron transfer process by controlling the specific orien-
tations of Fd and FNR within the transient electron-transfer complex
[25–29].

In contrast, mutagenesis studies on Fld have shown that even
though several residues modulate Fld interaction with FNR, none ap-
pears critical neither to produce the competent protein–protein com-
plex nor for ET process itself [15,19,24,30]. Despite of extensive
mutational studies to characterize FNR/Fd and FNR/Fld complexes [16,
21,22,31,32], only FNR/Fd X-ray structures from Anabaena and maize
have been solved [33,34]; structural data for FNR/Fld remains elusive.
An FNR/Fld bound model, however, has been proposed based on the
high homology between two different domains of cytochrome P450 re-
ductase (CPR) with FNR and Fld [35].

Computer simulations are entering nowadays in most biophysical
and biochemical studies. Our laboratory has recently shown how theo-
retical simulations are mature enough to provide quantitative descrip-
tions of complex ET processes. Using a multiscale approach combining
classical and quantum simulations, together with analytical electron
coupling calculations, we can provide accurate mechanism and rate in-
formation for protein–protein ET [7]. These techniques, however,
demanded the presence of an X-ray structure. In this paper we add an
additional layer, based on a coarse-grained potential Monte Carlo
docking, capable of describing the formation of protein complexes.
The overall approach uses a funnel filtering’ scheme (Scheme 1). Our
Fig. 1. The electrostatic potential surface of Anabaena FNR, Fd and Fld computed fromAPBS prog
for positively charged residues on FNR and negative ones on Fd are depicted. Fd and Fld are high
169 residues) aspartic and glutamic residues on the protein surface, respectively.
analysis reveals the underlying mechanism of ET in FNR/Fd proceeding
through a ‘protein mediated mechanism’ where tunneling of the elec-
tron from Fd to FNR is facilitated by loop-residues 40–49 of Fd. In FNR/
Fld, however, ET is a direct transfer between redox cofactors and less
complex specific than in Fd;more than one orientation in the encounter
complex can be efficient in ET.

2. Method

We have developed a protocol for effectively exploring the confor-
mational ensemble of protein–protein ET complex by applying a ‘funnel
filtering’ scheme composed of (i) coarse-grained (CG) protein–protein
docking, (ii) all-atom classical force field refinement, (iii) electron
ram. The cofactors; FAD, FES and FMN are drawn in stick representation. Critical positions
ly negatively charged proteins consisting of 22% (22 out of 98 residues) and 18% (31 out of



1532 S. Saen-oon et al. / Biochimica et Biophysica Acta 1847 (2015) 1530–1538
transfer pathways through the quantummechanic/molecularmechanic
(QM/MM) e-Pathway approach, and (iv) QM/MM electronic coupling
(Hda) calculations to determine the ET efficiency (Scheme 1). Initially,
the X-ray crystal structure of the FNR/Fd complex was used as a refer-
ence to validate and adjust the performance of our developed protein–
protein docking protocol, then the same protocol was applied to
model the FNR/Fld interaction.

2.1. Initial model

The reference structure for the FNR/Fd system was obtained from
the X-ray structure of the Anabaena FNR/Fd complex (PDB code
1EWY) [36]. The reference structure for the FNR/Fld system was built
by superimposition of Anabaena FNR (extracted FNR from 1EWY) and
Fld (1FLV) [37,38] on to the crystal structure of cytochrome P450 reduc-
tase (CPR) [39], a multi-domain protein with two domains highly ho-
mologous to FNR and Fld. Protein preparation was done using the
Protein Preparation Wizard [40] within the Schrödinger Suite to opti-
mize hydrogen bond networks and assign proper protonation states
for ionizable residues at pH 7.0.

2.2. Coarse-grained protein–protein docking

We have developed a protein–protein docking procedure consisting
of a rigid bodyMonte Carlo search samplingwith a CGmodel. Complete
details for the methodology are given in supporting Information. In
brief, our CG model is based on the parameterization introduced by
Basdevant et al. [41] where each amino acid is described using one to
three beads with an additive potential energy function including dis-
tinct van der Waals (vdW) and Coulombic terms. This procedure has
Fig. 2. FNR/Fd complex sampling. Plots of CG docking binding energy versus RMSD to the refer
The reference ismarkedwith big black dot at 0 Å RMSD. The top 1500 structures selected for the
all-atom binding energy versus the same RMSD. Theminimized reference (notice the slight disp
20 lowest energy structures representing each 1 Å RMSDwindow from the all-atom refinement
in cyan, FES of Fd is in orange, and the loop-residue 40–49 of Fd is in green. (For interpretation of
article.)
been successfully applied to model the tryptogalinin–trypsin complex
interactions [42]. In this paper, we enhance sampling by adding a re-
straint between the two redox centers, limiting in this way the maxi-
mum distance for ET. Such addition allowed a more effective sampling
of the complex space. In addition, a discrete protonation criterion was
also implemented in the CG sampling to take into account possible
pKa changes of surface negative residues upon complex formation. In
particular, for each conformation (and before scoring takes place), if
two negatively charged surface residues from protein A (FNR) and B
(Fd or Fld) are within 6 Å, measured as side chain bead distance, the li-
gand residue gets protonated to its neutral state (in a similar approach
to the oneused byPROPKA [43]. This procedure reduced repulsive inter-
actions between negatively charged beads along the protein–protein in-
terface eliminating false negatives.

2.3. All-atom MM refinement

Total of 1500 lowest energetic structures from the CG protein–pro-
tein sampling were filtered for further all-atom refinement to remove
possible atomic clashes and re-optimize the hydrogen bond networks.
This step was composed of performing: (i) protein preparation using
the Protein Preparation Wizard [40], and (ii) all-atom minimization
using PELE (Protein Energy Landscape Exploration) [44,45]. This proce-
dure has been used previously to improve scoring functions in protein–
protein docking [46]. In particular, and because of the highly negatively
charged surfaces in Fd and Fld (Fig. 1), the pKa of titratable residueswas
analyzed at an all-atom level using PROPKA and different protonation
states adapted accordingly. Minimization parameters included using
the 2005 OPLS-AA force field with the OBC implicit solvent [47],
0.15mol/L ionic strength andfixing all alpha carbons. The lowest energy
ence X-ray structure without (A) and with (B) re-protonation of surface charged residues.
following all-atom refinements are underlined darker. (C) The plot of the top 1500 refined
lacement from the 0 Å RMSD value) ismarkedwith black triangle. (D) Superimposition of
. The reference structure is shown in yellow color. FNR protein is in dark blue, Fd protein is
the references to color in thisfigure legend, the reader is referred to theweb version of this
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complex at each RMSD value (one unit binning) ranging from 1 to 20 Å
RMSD to the reference complexes were selected for the last step of the
QM/MM e-Pathway and electronic coupling calculations to elucidate
the reactive ET conformations. Detailed methodology is described in
Supporting information.

2.4. The ET mechanism: QM/MM e-Pathway and electronic coupling (Hda)
calculations

All QM/MM calculations were carried out using QSite from the
Schrödinger suite (QSite, version 5.7; Schrödinger, LLC: New York).
Structures selected after all-atom MM refinement including X-ray and
reference structures were studied. The geometries of FNR/Fd and FNR/
Fld systems were optimized using the spin unrestricted DFT method
with the M06 functional [48] and the lacvp(d,p) basis set. Atoms in
theMM region were treated with the OPLS (optimized potential for liq-
uid simulations) force field. The hydrogen link atom approachwas used
for the QM/MMboundary treatment. During the QM/MMgeometry op-
timization, the QM region and all-atoms within the distance of 10 Å
from any atom in redox cofactors (FAD, FES and FMN) were allowed
to relax.

2.4.1. The QM/MM e-Pathway
ET pathwayswere identified using theQM/MMe-Pathway approach

[7,49,50], where the ET region between the donor and acceptor is de-
scribed byQMwhile the rest is treated at theMM level of theory. Briefly,
the method strategy is based on iteratively modifying the QM region
(moving residues from the QM region to the MM one), and following
the evolution of the spin density of an unpaired electron. The method
assumes that this unpaired electron has left the donor site but has not
Fig. 3. FNR/Fld complex sampling. Plots of CG docking binding energy versus RMSD to the refer
idues. The reference is marked with big black dot at 0 Å RMSD. The top 1500 structures select
refinement binding energy versus RMSD. The minimized reference (notice the slight displacem
lowest energy structures representing each 1 Å RMSD window from the all-atom refinement
cyan, FMN of Fld is in orange. (For interpretation of the references to color in this figure legend
yet arrived to the acceptor site. Thus, the donor and acceptor sites, in-
cluded in theMM region, are defined in the oxidized form. The iterative
search stops once the donor and the acceptor can be connected through
a direct pathway built upon joining the identified molecular orbital.
These orbitals, identifying residues that may play a major role in the
ET process, form the main output of this technique.

2.4.2. The QM/MM electronic coupling (Hda) calculations
Electronic coupling (Hda) valueswere calculated using the fragment

charge difference (FCD) method [7,51] through the e-coupling server
(http://ecouplingserver.bsc.es). Larger values of Hda reflect stronger
coupling between donor and acceptor molecular orbitals, hence sug-
gesting higher ET efficiency. Here, all residues identified from the QM/
MM e-Pathway and the donor and acceptor sites were included into
the QM region, resulting in a total of 176 and 69 atoms for the FNR/Fd
and FR/Fld systems, respectively. To account for nearly-degenerated
states, we computed the root mean square coupling (rmsdHda) accord-
ing to Voityuk et al. [52].

2.4.3. Molecular dynamics simulations
MD simulations were performed with Desmond [53]. The structures

were solvated in an orthorhombic box, with a buffer solvent region of at
least 10 Å. The systemwas then neutralized, and an ionic force of 0.15M
was set by adding 65Na+ and 45 Cl− ions. The default relaxation proto-
col in Desmond was used followed by production runs using NPT en-
semble with a Martyna-Tobias-Klein barostat and a Nose-Hoover
thermostat. The temperature was set to 300 K with a 2 fs time-step,
SHAKE on hydrogen atoms and long-range Ewald summation. Atomic
charges for the cofactor molecules were obtained from the QM/MM
electrostatic potential fitting.
ence homology structure without (A) and with (B) re-protonation of surface charged res-
ed for the following all-atom refinements are underlined darker. (C) The plot of all-atom
ent from the 0 Å RMSD value) is marked with black triangle. (D) Superimposition of 20

. The reference structure is shown in yellow. FNR protein is in dark blue, Fld protein is in
, the reader is referred to the web version of this article.)

http://ecouplingserver.bsc.es


Table 1
Electronic coupling (Hda) calculated on the FNR/Fd X-ray complex based on the derived
QM/MM e-Pathway.

Model Residues included in QM Hda (eV)

M1a mFAD+ FES + C41 + C46 + C49 + C79 7.31 × 10−5

M2b M1 + C41 + C46 + C49 + C79 8.68 × 10−5

M3 M2 + loop-residue C40–C49 2.36 × 10−3

M4 M3 + F65 2.40 × 10−3

M5 M4 + L78 2.31 × 10−3

a Only the side chains of cysteine residues are included in QM part.
b Entire cysteine residues are included in QM part.

Fig. 4. Electron transfer pathway in FNR/Fd X-ray complex. One electron is transferred from the FES cluster (Fd) to the FAD flavin ring (FNR) through the loop involving residues 40–49 on
Fd based on the X-ray. Each different color corresponds to the spin density identified in a separate QM/MM e-Pathway iteration. Residues are identified in the following order: F65 of Fd
(orange), L78 of FNR (light blue), backbone atoms of C46 (green) and S47 of Fd (pink), backbone atoms of the loop-residue 41–45 of Fd (yellow). The residues of Fd are colored in red and
L78 of FNR in blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3. Results

3.1. Protein–protein docking

3.1.1. FNR/Fd complex
In our initial attempt to apply our CG sampling for the FNR/Fd com-

plex, where a reference crystal structure exists, we obtained good cofac-
tor distances, in the range of 9.5–12.4 Å. Moreover, the reference X-ray
structurewas always lower in energy,— i.e. no false positives were pro-
duced. However, the CG sampling was not able to positively score near
native structures with RMSD less than 4 Å (Fig. 2A). Structural analysis
of the low RMSD rejected structures showed negatively charged resi-
dues (GLU and ASP) at the binding interface in close proximity. These
introduced a large repulsive interaction since our CG initial model
kept them always deprotonated. PROPKA predictions, however clearly
determine one of them to be protonated, because of the electrostatic in-
teraction between pair-wise negatively charged residues. Modification
of our sampling algorithms to take such effect into account (see
Method section) resulted in a significant improvement of the CG sam-
pling with acceptance of low energetic conformations with RMSD less
than 4 Å (Fig. 2B). The near native conformation with a RMSD of 1.4 Å
from the X-ray reference is now ranked as the best solution. Moreover,
among the top 10-lowest energy solutions, we find four additional
structures resembling the X-ray complex (with RMSD b3 Å), together
with two other distinct minima at 13 and 19 Å RMSD. Importantly, in
the subsequent all-atom refinement, the funnel correlation between
the binding energy and the RMSD against the native X-ray structure is
better observed (Fig. 2C). Notice as well that the X-ray structure was
also minimized, with a consequent small RMSD displacement of 1.0 Å.
This result indicates good correlation between CG and all-atom energy
functions and validates the faster CG screening of the number of candi-
dates to be scored by all-atom techniques.

The lowest RMSD poses (b4 Å) share the same interaction site as the
X-ray one, forming strong hydrogen bonds between Fd:E94/E95 with
FNR:K72 or FNR:K75, and Fd:D67/D69 with FNR:R16, as well as hydro-
phobic interactions between F65 on Fd with L76, L78 and V136 on FNR
(Fig. S1 and Table S1). These residues on FNR and Fd have been identi-
fied to be critical for protein–protein interactions by mutational studies
[10,15,16]. Other conformational minima orient different negatively
charged residues on Fd surface to interact with K72, K75 and R16 on
FNR, such as Fd:D31/D36 or Fd:D62/D67/D69 (Table S1). Mutations at
these Fd residues also produce moderate effect on complex stability
and ET with the reductase [23]. To gain insight on the ET efficiency
across the whole range of RMSD structures, the lowest energy
conformation for each 1 Å RMSD-window (1–20 Å) were selected for
further QM/MM ET calculations (results shown below). Notice
that the 0–1 Å RMSD window structure corresponds to the minimized
X-ray one, not being a real prediction and only used for comparison.
These candidate structures show multiple orientations of Fd binding
on FNR, but all share Fd's loop residues 40–49 at the interface with
FNR and thus have the redox distance between FAD and FES around
7–10 Å (measured between FAD:C8M⋯FES:Fe1 atoms) (Fig. 2D and
Table S1).
3.1.2. FNR/Fld complex
The CG sampling protocol fitted with the FNR/Fd complex was ap-

plied to model the interactions of the FNR/Fld complex, for which crys-
tallographic structure is unknown. Contrary to the Fd complex, nowwe
do not obtain a funnel-shaped correlation between binding energy and
RMSD toward the reference homologymodel (Fig. 3A and B). For Fld,we
observe a weaker contribution from negatively charged residues, with
smaller effects on the FNR/Fld CG sampling. The complexes obtained
present conformations with FAD-FMN cofactor distances within a
range of 4–10 Å (measured between the geometrical centers of
FAD:C8M/C7M atoms and FMN:C8M/C7M atoms). The 10 lowest ener-
gy conformations are drastically different from the reference model,
with 18–20 Å RMSD values, and present cofactor distances in the 5.5–
8.5 Å range, not as short as in the reference model (4.3 Å). Upon all-
atom refinement, the overall picture of predicted complexes does not
change; the best pose is 19 Å RMSD from the homology reference struc-
ture (Fig. 3C). Interestingly, the best energy complexes show more in-
terface contacts involving experimentally identified critical charged
residues on FNR: K72, K75 and R16 as well as key hydrophobic residues
(L76, L78 and V136), see Table S2. Superposition of the lowest energy
conformation at each 1 Å RMSD intervals in the all-atom refinement is



Fig. 5. Logarithmplot of theHdaobtained from the 20 FNR/Fd structures selected in the all-atom refinement versus theRMSD to the reference crystal (A) and the redox distance (B). Redox
distance is measured between FAD:C8M⋯FES:Fe1. Relatively high Hda values are colored in red.
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shown in Fig. 3D. They presentmultiple binding orientations of Fld, hav-
ing the FMN cofactor in a direct contact with FNR protein.

While the reference model has the shortest distance (by 1.5 Å) be-
tween FAD and FMN, it represents a significant higher energy pose. In-
terestingly, there are several alternative orientations, for instance
structures at RMSD of 9, 12, and 19 Å, which bring the FAD and FMN
rings into close distances and are associated to lower complex energies
(Table S2), whichmay dominate ET. As in Fd, we selected the 20 lowest
energy conformations for each 1 Å RMSD-window (1–20 Å, with the 0–
1 structure corresponding to the minimized CPR-homology reference)
for further QM/MM e-Pathway and electronic coupling calculations.

3.2. ET mechanism

3.2.1. ET pathway in FNR/Fd complex
Fig. 4 shows the electron transfer pathway obtained by the QM/MM

e-Pathway method in the FNR/Fd X-ray complex. Our results indicate a
pathway involving L78 on FNR, F65 and the loop-residues 40–49 on Fd,
located at the interface between the two proteins. In order to quantify
the impact of single residues on the ET pathway, we calculated the elec-
tronic coupling (Hda) values by including/excluding those residues
from the quantum region in bridge-mediated electronic coupling QM/
MM calculations. The results of Hda on different QM models, varying
from a smallest model by including only the donor and acceptor sites
to larger expanded models including more specified bridging residues,
are shown in Table 1. They clearly reveal that when adding loop-
residues 40–49 of Fd into the quantum region, M3 to M5 rows in
Table 1, the electronic coupling is significantly increased ~30 fold, com-
pared to the direct donor–acceptor coupling (M1 and M2 rows). Such
Hda rise translates to a ~ 3-order of magnitude increase in the rate con-
stant for ET (kET), estimated via the Marcus theory assuming same
values for reaction free energy and reorganization energy. Thus, our re-
sult suggests that the ET mechanism in FNR/Fd is based on a “bridge-
mediated ET” including loop 40–49 of Fd. We note that, adding F65 of
Fd, L78 of FNR and more adjacent residues does not significantly im-
prove Hda values.

We further examine the ET pathway and efficiency (Hda calcula-
tions) on the different conformations selected after the all-atom refine-
ment. These structures have Fd bound to FNR in diverse orientations,
but they share a common feature where the loop-residues 40–49 on
Fd lies between the FAD and the FES redox centers, with distances
Table 2
Hda from a 1-ns MD for the Fd WT and F65A, F65Y, S47A and S47T mutants.

Hda (eV) WT (F65) F65A

averaged MD 1.269 × 10−3 5.314 × 10−4

Std. 0.213 × 10−3 0.252 × 10−4
between them around 7–10 Å (details given in Table S1). For all struc-
tures, the QM/MM e-Pathway method allocates spin density on several
residues of the Fd loop, suggesting their role in the ET pathway.

By defining the same QM region (M4) as in the X-ray structure, Hda
values calculated over 20 structures are ranged from 10−5 to 10−3 eV.
Overall, Hda values correlate well with the conformational RMSD
(Fig. 5A) and even better with the distance between redox centers
(Fig. 5B). The X-ray configuration (R00 structure, window 0–1 Å) pro-
vides the highest Hda value with 2.97 × 10−3 eV. Nevertheless 4 pre-
dicted structures, with mid-low RMSD and redox distance values
provide similar electronic coupling to the reference structure. Among
the similar structures to the X-ray (1–4 Å RMSD), for example, the
R03 structure, with 3.2 Å RMSD and 8.9 Å distance, produces the highest
fully predicted Hda value: 2.22 × 10−3 eV (Fig. 5A). Although R01 and
R02 closely resemble the X-ray orientation, RMSD b2 Å, their redox dis-
tances are further away, 8.0 Å in theX-ray and 9.5 Å in both R02 and R03
structures, resulting in low Hda values: 4.17 × 10−4 eV and
6.73 × 10−5 eV, respectively. This result suggests that even within sim-
ilar conformations, ET efficiency is very sensitive to the distance param-
eter between redox centers. Besides the X-ray and R03 structures,
conformations with RMSD of 7, 8 and 10 Å (R07, R08 and R10, respec-
tively) have similar values to the reference one (~10−3 eV). Although
such structures present Fd bound to FNR in different orientations, they
all bring FAD and FES redox centers into close distance, 7.0–7.7 Å. Anal-
ysis of the interface region for all high Hda structures (R00, R03, R07,
R08 and R10) indicates a major role of experimentally determined crit-
ical residues [10,15,16]. For instance, the X-ray, R03 and R07 have
FNR:K75 interacting with Fd:E94, FNR:R16 interacting with Fd:D67/
D69, and hydrophobic contact between FNR:L76/L78/V136 with
Fd:F65 are conserved (Table S1 and Fig. S1). Although R08 and R10
have Fd binding with different orientation, almost a 180° turn, critical
residues contacts still remains: FNR:R16 interacts with Fd:E94/E95
and FNR:K72/K75 interacts with Fd:D36. The hydrophobic region on
FNR interacts with backbone of the loop-residue 40–45.

3.2.1.1. Themutational effect at F65 and S47 of Fd. Experimental data indi-
cate that replacement of F65 by A or I completely prevents ET, while F or
Y mutants remain active as the WT. Similarly, replacement of S47 by A
or T produces inactive proteins for ET [23].Wemodeled thesemutation-
al effects by performing 1-ns MD simulations on the R00 (X-ray config-
uration of FNR/Fd complex) for the Fd WT, F65A, F65Y, S47A and S47T
F65Y S47A S47T

1.475 × 10−3 2.721 × 10−4 2.033 × 10−4

0.081 × 10−3 2.123 × 10−4 2.438 × 10−4



Fig. 6. Initial (yellow) andfinal (red, afterMD) Fd structures for the F65Amutant. Entrance
of three water molecules into the protein–protein interface is also shown. Fd:A65 and
FNR:L78 are shown in sticks. (For interpretation of the references to color in thisfigure leg-
end, the reader is referred to the web version of this article.)
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complexes. Table 2 shows the average Hda values along theMD simula-
tions using the M5 model (~200 atoms in the QM region). Consistent
with experimental results, an aromatic amino acid at position 65 does
not affect Hda. On the other site, the F65A mutant reduces Hda by
50%, translating into a reduction of kET by ~1-order of magnitude. In
S47A and S47Tmutants, the average Hda values are 4.7 and 6.2-fold re-
duced compared to the WT, which approximately implied to reduced
kET by 2-order of magnitude. In the WT, the hydroxyl side chain of S47
is hydrogen-bonded to E94 and Y98 in Fd anchoring the FES binding
loop to the protein. The two mutations at position S47 disturb this
hydrogen-bonded network and the conformation of loop-residues 40–
49 on Fd.

Structural analysis of theMD trajectories reveals a significant distor-
tion of the protein–protein binding interface for the F65A, S47A and
S47T Fd mutants. We should keep in mind that we only performed
1 ns simulation, andwe can only analyze tendencies; longer simulations
might introduce a larger disruption on the protein–protein interface
which, as shown above, leads to big effects on the electronic coupling
and on the ET rate. Nevertheless, as seen in Fig. 6 for the F65A mutant,
the short simulation clearly affects the binding interface, with a signifi-
cant entrance of water molecules. Such weakening of the protein–pro-
tein complex formation correlates well with the 10-fold larger
dissociation constant (120 vs. 9.4 μM) seen for the F65A mutant [28].

3.2.2. ET pathway in FNR/Fld complex
In FNR and Fld (contrary to Fd), we find FAD and FMN cofactors with

partial solvent exposure, in particular at the two methyl groups of the
Fig. 7. Visualization of HOMO molecular orbital overlap between the FAD and FMN cofacto
isoalloxazine ring (C7M and C8M), as shown in Fig. 1. In several docking
conformations, including the reference CPR-based homologymodel, we
find that the methyl groups of FMN and FAD are within direct van der
Waals contact (atomic distances are given in Table S2). In Fig. 7, the
QM/MM optimization of the reference structure clearly illustrates the
overlapping of the HOMO molecular orbital in FAD and FMN cofactors
suggesting that ET in the FNR/Fld complex can easily proceed through
a ‘direct ET’ mechanism where electron directly jumps from FMN to
FAD without involving any protein molecular orbital acting in a
bridge-mediated ET mechanism.

Due to the previous analysis, Hda calculations initially included only
the flavin rings of FAD and FMN to the QM region. Electron coupling
values show strong correlation with the redox cofactors distance,
while we see nonewith Fld orientation (RMSD) with respect to the ref-
erence CPR-based homology model (Fig. 8). While structures close to
the reference model (RMSD b4 Å), provide large electronic coupling,
structures R09, R12 and R19, with RMSD of 9, 12 and 19 Å, respectively,
also produce large Hda values (N10−3 eV). Although, these structures
reveal distinct Fld orientations, they all share a close contact between
FAD and FMN b 7 Å (Fig. 8B).

Some docking poses with larger cofactor distances (N9 Å) have a
protein side chain mediating contact between them (i.e. Y94 or W57
on Fld). Those structures resulted in small Hda (b10−5 eV) when con-
sidering a direct ET process between FMN and FAD. Including these
bridge residues in the QM calculation improves Hda by 1-order of mag-
nitude (opened-circles on Fig. 8), but does not introduce new high
values. This is in agreement with mutational studies indicating that
Y94 and W57 do not play a role in the protein–protein ET process
even if they affect the Fld redox potential [15].

4. Discussion

Extensive mutational studies have characterized the protein–pro-
tein interaction and ET mechanism in FNR/Fd and FNR/Fld complexes.
Interestingly, even though Fd and Fld share the interaction site on
FNR, individual residues on FNR do not participate to the same extent
in the interactionwith each of the protein partners, pointing to different
electron transfer mechanisms [10,15,16,23,24]. The lack of critical
residues (for both complex formation and ET) on Fld has suggested a
less specific interaction than that of Fd. Since we only have an X-ray
crystal structure for FNR/Fd complex [33,34], it is difficult to establish
a molecular basis leading to the possible different ET mechanism. Such
comprehensive analysis, however, can be provided by recent develop-
ments in multiscale computational modeling [7,41,51].

Comparing protein–protein interaction energies, both at the CG
(Figs. 2B–3B) and all-atom level (Figs. 2C–3C), we see how the interac-
tion in Fld is less specific than that in Fd. Fd presents a deeperminimum
that should dominate the protein–protein interaction. In addition, best
interaction energies are predicted in the vicinity of the reference crystal;
rs, (A) reference CPR-based homology FNR/Fld model and (B) zoom-in cofactors site.



Fig. 8. Logarithmplot of Hda obtained from the 20 FNR/Fld structures selected in the all-atom refinement versus the alpha carbon RMSD to the reference crystal (A) and the redox distance
(B). Redox distance is measured between the geometrical centers of FAD:C8M/C7M atoms and FMN:C8M/C7M atoms. Relatively high Hda values are colored in red and opened-circles
indicate Hda when including Y94 or W57 in the QM region (see main text). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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we remind here that no information on the crystal FNR/Fd structure
(other than for comparison purpose) is used along the protein–protein
sampling. Fld, on the contrary, has a larger range of orientations show-
ing similar interaction energies. Such initial biophysical analysis seems
to agree with the less specific FNR/Fld interaction scenario proposed
from mutational analyses. For it to work, it will require large electronic
coupling values for the FNR/Fd X-ray complex and for several of the less
specific FNR/Fld complexes. To address this issue, we turn into mixed
QM/MM simulations.

In FNR/Fd, the QM/MM e-Pathway results indicate a bridge-
mediated ET mechanism through the Fd loop involving residues 40–
49. Moreover, electronic coupling calculations confirm the active role
of this loop in assisting the ET process. Importantly, Hda values are cor-
related with the RMSD to the X-ray complex (as well as to the redox
centers distance, an expected result in ET). In addition, structures with
high Hda values show interaction between residues experimentally de-
tected as critical. In this sense, conformations with distinct Fd orienta-
tions but short redox distances, for instance R05, R16 and R17, do not
preserve these interactions and produce low Hda values. Thus, from
an electronic coupling point of view, FNR/Fd efficient ET configurations
are limited to a small fraction placing the Fd loop at the interface and
short donor acceptor distances. Among themwefind various structures:
R00, R03, R07, R08 and R10 (~10−3 eV), but the near-native conforma-
tions (R00 and R03) present significant lower protein–protein binding
energies. Thus, when adding the protein–protein interaction biophysi-
cal analysis, it clearly discriminates an ensemble of structures similar
to the X-ray one.

In the FNR/Fld complex we have a rather different scenario. The
strong correlation between Hda values and the cofactor distance, to-
gether with the HOMOmolecular orbital overlap seen in Fig. 7, strongly
suggest a direct ET mechanism between FAD and FMN. Only conforma-
tions having significantly short distance (within a van der Waals con-
tact between cofactors) result in large Hda values. Amongst these
large electronic coupling complexes, however, we find structures
with different Fld orientations. In addition, we see slightly larger Hda
values in FNR/Fld than in FNR/Fd, in agreement with the less pro-
nounced minima observed in the protein–protein interaction analysis
(requiring a faster ET process), and with the (also slightly) weaker ex-
perimental binding energies (KA of 7.6 × 105 and 3.5 × 105 M−1 for
FNR/Fd and FNR/Fld, respectively [54]). In these regard, while the
CPR-homology reference has weaker protein–protein interaction ener-
gies, it presents high Hda values. Thus, our simulations support the
transient bound conformation mechanism proposed previously for the
FNR/Fld ET process [8,15,19,24,30,55,56]. In this model, Fld binds on
FNR in a variety of docked conformations, with ET involving a subset
of (diverse) highly reactive conformations where the redox cofactors
are in direct contact.

In conclusion, our results obtained from multiscale modelling in-
cluding coarse-grained and all-atom protein–protein docking, QM/MM
e-Pathway and electronic coupling calculations, allow for a molecular
and electronic comprehensive analysis of the ET process in FNR/Fd
and FNR/Fld complexes. Our results, consistent with experimental mu-
tational data, assign a bridge-mediated ET mechanism with a more sta-
ble and dominant complex for FNR/Fd, and a direct ET mechanismwith
transient and less-specific complexes in FNR/Fld.
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