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Electronic concept maps, interlinked with other concept maps and multimedia resources, can provide rich
knowledge models to capture and share human knowledge. This article presents and evaluates methods to
support experts as they extend existing knowledge models, by suggesting new context-relevant topics mined
from Web search engines. The task of generating topics to support knowledge model extension raises two
research questions: first, how to extract topic descriptors and discriminators from concept maps; and second,
how to use these topic descriptors and discriminators to identify candidate topics on the Web with the right
balance of novelty and relevance. To address these questions, this article first develops the theoretical frame-
work required for a “topic suggester” to aid information search in the context of a knowledge model under
construction. It then presents and evaluates algorithms based on this framework and applied in EXTENDER,
an implemented tool for topic suggestion. EXTENDER has been developed and tested within CmapTools, a
widely used system for supporting knowledge modeling using concept maps. However, the generality of the
algorithms makes them applicable to a broad class of knowledge modeling systems, and to Web search in
general.
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1. INTRODUCTION

Knowledge modeling is the process of representing a body of knowledge so that this
knowledge can then be used and shared. Knowledge acquisition has long been consid-
ered to be a bottleneck in the development of knowledge-based systems [Hayes-Roth
et al. 1983], and knowledge modeling remains a difficult task [Cairó and Guardati
2012; Shadbolt and Smart 2015]. One impediment is selecting the right knowledge
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to encode; another is representing the selected knowledge. Typically, domain experts
are unfamiliar with the formalisms used to encode knowledge, requiring the interven-
tion of knowledge engineers. This process may cause communication problems, and the
requisite knowledge engineering is expensive. To address such problems, several initia-
tives have attempted to alleviate the knowledge acquisition bottleneck by developing
knowledge modeling tools that allow experts to enter descriptions of their expertise
without the intervention of knowledge engineers (e.g., Gil [1994], Blythe et al. [2001],
Aiken and Sleeman [2003], and Gunning et al. [2010]).

In a recent article [Leake et al. 2014], we have described methods and tools for
supporting an approach in which experts themselves build and extend knowledge
models using concept maps [Novak and Gowin 1984; Hoffman et al. 2001; Basque
et al. 2004; Briggs et al. 2004]. The present article provides a deeper description of one
of the developed tools, EXTENDER, an implemented system that mines search engines to
generate topic suggestions for extending concept-map-based knowledge models.

The proposed approach to supporting knowledge modeling is in the spirit of human-
centered computing, in that it is aimed at supporting human knowledge sharing and
examination, rather than supporting autonomous machine reasoning. Easy-to-use com-
puter tools exist for supporting the construction, examination, and sharing of concept-
map-based knowledge models. Although such tools alleviate representational burdens,
the content selection burden remains. This motivates the effort to include mechanisms
for information access and delivery within the knowledge modeling tools.

To support knowledge extension, we have developed methods that extract informa-
tion from the current knowledge model and mine a Web search engine to identify novel
but relevant topics, to suggest those topics for possible inclusion in the knowledge
model. Topics are commonly defined as pieces of information that have been grouped
together as a result of having a common theme [Mohr and Bogdanov 2013; Wang et al.
2013; Caballero Barajas and Akella 2013]. To enable topics to be generated flexibly,
according to possibly specialized user interests, our techniques dynamically generate
topics taking concept maps as the initial search context. Each generated topic is pre-
sented to the user as a small collection of terms, intended to evoke a particular theme.
The set of terms for each topic is supplemented with a ranked list of topic-relevant
Web pages together with their descriptions and URLs, to help the user extend the
knowledge model beyond information that has already been captured. The methods
developed to accomplish the topic suggestion task automatically generate queries by
using the concept map labels and by incorporating novel terms identified through an
incremental search process. The excerpts of the top-retrieved search results are fil-
tered based on their similarity to the concept map. These excerpts are analyzed to find
a set of topics, which are represented by patterns of tightly co-occurring terms. These
topics are presented as suggestions to the user. The developed interface enables users
to easily start the construction of a concept map from the terms that constitute the
suggested topic.

This application of Web mining is in the spirit of numerous intelligent support tools
that examine the user’s task context or information access behavior, to suggest re-
lated resources (e.g., Rhodes and Starner [1996], Budzik et al. [2001], Palmisano et al.
[2008], Kraft [2011], Fuxman et al. [2014], and Livne et al. [2014]). However, our topic-
suggestion task contrasts with this task in at least two ways. First, our goal is not
to suggest individual resources, but rather, to make suggestions at the higher level of
topics. A single topic may be partially reflected by a number of different Web pages,
with none focusing solely on the topic or summarizing the topic in its entirety. Second,
our goal is not to suggest the topics most similar to the current knowledge model, but
rather to suggest new topics that are related but novel.
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To the best of the authors’ knowledge, the work presented in this article is the first
to develop methods for supporting human-centered knowledge extension by generat-
ing topic suggestions. Developing topic suggestion tools depends on addressing three
central questions:

(1) How to characterize topics?
(2) Given an initial search context defined by a concept map, how to generate new

topics to suggest? and
(3) How to evaluate the appropriateness of candidate topics?

The following sections address those questions, focusing especially on how they apply
to suggestions for knowledge modeling via concept mapping. Sections 2 and 3 provide
an overview of concept mapping and the topic suggestion task. Section 4 proposes a
theoretical framework for topic generation. Section 5 shows how the proposed frame-
work is applied in the EXTENDER system, providing new methods and algorithms for
topic extension. Section 6 evaluates the proposed methods and the system’s ability to
generate novel, related, and cohesive topic suggestions. The evaluations focus on ex-
amining which terms from a concept map should be used to form initial queries and on
assessing the overall quality of EXTENDER’s automatically-generated topics. The article
closes with a review of related work and a discussion.

2. SUPPORTING CONCEPT MAPPING

Concept maps were developed by Joseph D. Novak in the 1970s for use in educa-
tion [Novak 1977]. Concept maps are collections of simplified natural language sen-
tences displayed as a two-dimensional, visually-based representation of concepts and
their relations. In concept maps, concepts are depicted as labeled nodes, and relations
between concepts as labeled links. Figure 1 shows a concept map on the topic of space
missions to Mars. This concept map is part of CMEX Mars, a joint effort by a group of
researchers from the Center for Mars Exploration at NASA Ames Research Center and
the Institute for Human & Machine Cognition (IHMC) [Briggs et al. 2004], available
at http://cmex.ihmc.us/CMEX/.

Concept mapping techniques have been applied by a diverse population ranging from
elementary school students to adult experts, to model knowledge in many different do-
mains (for a recent sample of uses, see Cañas et al. [2012] and Correia et al. [2014]).
For knowledge capture, concept mapping offers map creators the ease and flexibility
of natural language, but also induces them to organize captured knowledge in a struc-
tured fashion, in which concepts and their connections are made explicit. The rich
structure of concept maps facilitates their understanding by other humans, and helps
to make them more tractable than plain text for automated systems. Thus, concept
maps provide an intermediate representation between natural language text and tra-
ditional AI representations [Leake and Wilson 2001]. In addition, electronic concept
maps are browsable and sharable, making them an effective vehicle for aiding human
understanding [Freeman and Jessup 2004; Garcia Castro et al. 2006].

The Institute for Human and Machine Cognition (IHMC) has conducted a multi-year
initiative to support knowledge modeling by means of concept maps. The CmapTools
system [Cañas et al. 2004; Cañas and Novak 2014], developed by the IHMC, is a
suite of publicly available software tools for knowledge acquisition, construction, and
sharing based on concept maps. The CmapTools system has been downloaded hundreds
of thousands of times worldwide. It has been used in educational settings, by both
students and teachers, as well as by experts to construct knowledge models of their
domains without needing a knowledge engineer’s intervention or to actively participate
in the knowledge elicitation if a knowledge engineer leads the process. Examples of
successful applications of electronic concept mapping for knowledge capture include
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Fig. 1. A concept map created by a NASA expert.

tasks such as maintaining Navy equipment [Cañas et al. 1998], local weather prediction
[Hoffman et al. 2001], explaining the design of rocket engines [Coffey 1999], recording
knowledge about the planet Mars [Briggs et al. 2004], describing Web services in
Service-Oriented Architectures (SOA) composite applications [Coffey et al. 2012], and
conveying information about software security assurance cases to novices [Snider et al.
2014]. An overview of a number of applications of concept mapping tools is presented
in Moon et al. [2011].

To support knowledge modeling in CmapTools, in collaboration with Alberto Cañas
and the IHMC CmapTools research team, we have developed a number of intelligent
aides [Leake et al. 2003, 2014]. These systems take as their starting point a concept
map under construction, and propose information to aid the user’s knowledge capture
and construction efforts by proactively suggesting relevant concept maps, propositions,
resources, concepts, and topics. The focus of this article, the EXTENDER system, uses
information automatically extracted from the current knowledge model to guide mining
a Web search engine to identify and suggest novel but relevant topics.

3. THE TOPIC SUGGESTION TASK

The specific goal of the EXTENDER project is to aid experts building knowledge mod-
els by “jogging the user’s memory,” providing suggestions for new topics to include in
a knowledge model. EXTENDER provides its topic suggestions as small sets of terms,
meant to convey the sense of a topic. This task is an instance of a more general
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one: suggesting novel topics related to a user’s focus. For example, topic suggestions
could also be useful to a researcher, to provide related but distinct areas to con-
sider for connections and synergies or to help assure that relevant areas have been
considered.

The effectiveness of a specific topic-generation strategy may be hard to assess, be-
cause the usefulness of suggested topics is highly subjective. However, the performance
of a topic suggester depends on the following general criteria:

—Global coherence: The generated topics must be relevant to the initial knowledge
model.

—Local coherence: Each generated topic must be of high quality according to a gen-
eral set of domain-independent criteria. Such criteria might include measures for
conciseness (the topic is summarized in a few terms, for easy comprehension) and
term coherence (each topic description is locally coherent and is constituted of tightly
related terms and documents).

—Coverage: A good topic-generation strategy should be able to generate a sufficient
subset of the topics considered to be relevant.

—Novelty: Some generated topics must go beyond previously captured information.
—Diversity: Topics must be sufficiently diverse from each other for each topic in the

suggested set to be useful.

In the following section, we discuss the theoretical framework we have developed for
topic generation.

4. A FRAMEWORK FOR TOPIC GENERATION

Our approach to generating novel but related topics is iterative. The first step identifies
topic terms to serve as a starting point to generate queries and retrieve additional
material. The results of those retrievals are used to identify new terms to produce
subsequent queries.

The first set of terms is generated by analyzing an initial concept map chosen by
the user; the aim is to identify novel topics related to those in the concept map. A key
question is how to select the terms to use. We hypothesize (and confirm through the
evaluation presented in Section 6) that using concept labels as the initial terms, rather
than linking phrases or a combination, results in better precision and recall.

The selection of terms from the retrieved material to generate subsequent queries
requires some additional analysis of the usefulness of these terms to represent the topic
at hand. Some terms may have strong descriptive power, enabling a small set to convey
the topic to a human. Other terms may be effective cues for retrieving topic-relevant
documents, but may not be good descriptors. Consider for example a topic involving
exploration of Mars, described by the following set of terms occurring in documents
related to Mars exploration:

Mars Exploration Rover Landing Site
Planet Curiosity Nasa Images Global
Surveyor Orbiter Camera MAHLI MAVEN

The terms Mars and Exploration are good descriptors of the topic for a general audience,
whereas the term MAHLI—which stands for “Mars Hand Lens Imager”—may not be
a good descriptor of the topic for that audience, because it is used by specialists, but
it is effective for retrieving information similar to the topic because it is a good topic
discriminator.
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Intuitively, we can characterize topic descriptors and discriminators as follows:

—Terms are good topic descriptors if they answer the question “What is this topic
about?”

—Terms are good topic discriminators if they answer the question “What are good
query terms to access similar information?”

As experimentally shown in previous work [Maguitman et al. 2004; Lorenzetti and
Maguitman 2009], a good strategy for finding good topic descriptors is to (1) find
documents that are similar to other documents already known to have that topic, and
(2) select non-stopword terms that occur frequently in those documents. On the other
hand, a term is a good discriminator for a topic if most documents that contain that
term are topically related. Thus, finding good topic discriminators requires finding
terms that tend to occur only in the context of the given topic.

Both topic descriptors and discriminators are important as query terms. Because
topic descriptors occur often in relevant pages, using them as query terms may improve
recall. Because good topic discriminators occur primarily in relevant pages, using dis-
criminators as query terms may improve precision. The following sections develop the
above informal characterizations of topic descriptors and discriminators into precise
definitions and describe their application to the task of searching the Web for topics
related to a concept map.

4.1. Document Descriptors and Discriminators

Let H be a document–term matrix such that H[i, j] stands for number of occurrences of
term tj in document di. We model term descriptive power in a document with a function
λ : {d0, . . . , dm−1} × {t0, . . . , tn−1} → [0, 1] that maps a document–term pair into a value
in the unit interval. It is defined as follows:

λ(di, tj) = H[i, j]√∑n−1
k=0(H[i, k])2

.

The structure [λ(di, t1), . . . , λ(di, tn−1)] is the normalized term-frequency vector for docu-
ment di. The H[i, j] values are squared to penalize small values relatively more severely
than larger values.

To model the discriminative power of a term in a document, we define a function
δ : {d0, . . . , dm−1} × {t0, . . . , tn−1} → [0, 1] as follows:

δ(di, tj) = s(H[i, j])√∑m−1
k=0 s(H[k, j])

,

where s(·) is the step function, returning 1 if its argument is greater than zero and 0
otherwise. The function δ maps a document–term pair into a value in the unit interval.
If term tj does not occur in document di, then δ(di, tj) = 0. On the other extreme, if
term tj occurs in no document other than di, then δ(di, tj) = 1, and we say that tj fully
discriminates di. The discriminating power of a term in a document is independent
of the number of occurrences of the term in the document. Hence, δ considers only
whether or not a term occurs in a document. The step function is used for that purpose,
disregarding the collection frequency of a term and focusing on the document frequency,
defined to be the number of documents in the collection that contain the term.

As is the case with other Information Retrieval (IR) characterizations of descriptors
and discriminators [Salton 1979; Yu et al. 1982], the notions discussed above only allow
discovering terms that are good descriptors or discriminators of a document, as opposed
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to good descriptors or discriminators of the topic of a document. Traditionally, a non-
stopword term that occurs often in a document is a good descriptor of that document.
In this case, the term’s descriptive value is commonly reflected by the term-frequency
score [Salton 1971]. On the other hand, a term that occurs in a document without being
common in the whole corpus is a good document discriminator and is traditionally
captured by the inverse-document-frequency score [Jones 1972]. The combination of
descriptive and discriminative scores gives rise to well-known term weighting schemes,
such as TF–IDF (term frequency–inverse document frequency) [Salton and Yang 1973].

In the next sections, we build on the notions of document descriptors and discrimina-
tors to identify higher-order relations between documents and terms and to provide new
definitions of descriptors and discriminators. These new definitions make the notions
of descriptors and discriminators topic-dependent rather document-dependent.

4.2. Similarity and Co-occurrence

We treat topics as defined by either a collection of similar documents or a collection
of terms that tend to co-occur. Thus, the notions of document similarity and term
co-occurrence play important roles in identifying topics. The similarity between docu-
ments di and dj can be computed using the well-known cosine measure as follows:

σ (di, dj) =
∑n−1

k=0[λ(di, tk) · λ(dj, tk)]√∑n−1
k=0[λ(di, tk)]2 · ∑n−1

k=0[λ(dj, tk)]2

=
n−1∑
k=0

[λ(di, tk) · λ(dj, tk)].

The idea of term co-occurrence captures a relation between terms that is dual to the
notion of document similarity. If two terms tend to occur in the same documents, we
expect that their meanings are related. An expression for the co-occurrence of terms ti
and tj can be written as

κ(ti, tj) =
∑m−1

k=0 [δ(dk, ti) · δ(dk, tj)]√∑m−1
k=0 [δ(dk, ti)]2 · ∑m−1

k=0 [δ(dk, tj)]2

=
m−1∑
k=0

[δ(dk, ti) · δ(dk, tj)],

which is similar to the cosine correlation formulas proposed in Salton and Lesk [1968]
and Wong et al. [1987]. The fact that the λ and δ values are normalized allows omitting
the denominator for both the similarity and co-occurrence formulas.

4.3. Topic Discriminators and Topic Focus

By examining the document–term duality, we can develop higher-order notions useful
for identifying good topic descriptors and discriminators. A term is a good discrim-
inator of a document’s topic if those documents discriminated by the term are simi-
lar to the given document. This intuition can be formally expressed by the function
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� : {d0, . . . , dm−1} × {t0, . . . , tn−1} → [0, 1] defined as follows:

�(di, tj) =
∑m−1

k=0
k�=i

[δ(dk, tj)]2 · σ (di, dk)
∑m−1

k=0
k�= j

[δ(dk, tj)]2

=
m−1∑

k=0
k�=i

[δ(dk, tj)]2 · σ (di, dk).

We can think of the discriminating power of term tj for the topic of document di as
the average of the similarity of di to other documents discriminated by tj . Note that
even in the case when di does not contain tj , the value of the function �(di, tj) will
not necessarily be 0. On the other hand, if no document similar to di contains tj , i.e.,
σ (di, dk) = 0 or δ(dk, tj) = 0 for all documents dk with k �= i, then tj has no discriminating
power over the topic of di and as a consequence �(di, tj) = 0. The use of δ values in
this formula allows giving higher weight to those documents for which the term has
good discriminative power, whereas the use of σ values strengthens the impact of
those documents that are similar to the document under analysis. The δ terms in the
definition of � are squared to penalize small values relatively more severely than larger
values.

We have previously discussed the dual notions of document similarity and term
co-occurrence. At this stage, we might ask what would be the dual notion to “term dis-
criminating power in a topic.” This would be a function comparable to � but applicable
to documents rather than terms. We can think of document focus as a property of docu-
ments that plays a role dual to that of term discriminating power. A document is focused
on the topic associated with a term if the terms describing the document tend to co-
occur with the given term. Formally, we can compute the degree of focus of a document
on the topic identified by a term as a function � : {d0, . . . , dm−1} × {t0, . . . , tn−1} → [0, 1]
defined as follows:

�(di, tj) =
∑n−1

k=0
k�= j

[λ(di, tk)]2 · κ(tk, tj)
∑n−1

k=0
k�= j

[λ(di, tk)]2

=
n−1∑
k=0
k�= j

[λ(di, tk)]2 · κ(tk, tj).

The λ terms are also squared in this case to more strongly penalize small values.
Note that we have defined the higher-order dual notions of topic discriminators and

topic focus by means of more basic dual notions. Term discriminating power in a topic
has been defined using the notions of term discriminating power in a document and
document similarity. Analogously, the measure of document focus on a topic has been
defined via term descriptive power in a document and term co-occurrence.

4.4. Topic Descriptors and Topic Exhaustivity

The notion of topic descriptors was informally described earlier as terms that occur
often in the context of a topic. More precisely, the descriptive power of a term in a topic
is a measure that can be computed using the previously defined measures of document
similarity and term descriptive power in documents. We define the term descriptive
power in the topic of a document as a function � : {d0, . . . , dm−1} × {t0, . . . , tn−1} → [0, 1].
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If
∑m−1

k=0
k�=i

σ (di, dk) = 0, then we set �(di, tj) = 0. Otherwise we define �(di, tj) as follows:

�(di, tj) =
∑m−1

k=0
k�=i

σ (di, dk) · [λ(dk, tj)]2

∑m−1
k=0
k�=i

σ (di, dk)
.

Descriptive power of a term tj in the topic of a document di is a measure of the quality
of tj as a descriptor of documents similar to di. If no document is similar to di or tj does
not occur in any document similar to di, then the descriptive power of tj in the topic of
di is equal to 0. We can think of the descriptive power of term tj in the topic of document
di as the average document descriptive power of tj in documents similar to di. The λ
values in this formula increase the impact of those documents for which the term has
good descriptive power, whereas the σ values reinforce the effect of those documents
that are similar to the document under analysis.

The last property we define is document exhaustivity with respect to a topic. A
document is exhaustive with regard to a topic if most terms that co-occur with a term
identifying that topic are good discriminators of that document. We propose a measure
of document exhaustivity as a function 	 : {d0, . . . , dm−1} × {t0, . . . , tn−1} → [0, 1]. If∑n−1

k=0
k�= j

κ(tk, tj) = 0, we set 	(di, tj) = 0. Otherwise we define 	(di, tj) as follows:

	(di, tj) =
∑n−1

k=0
k�= j

κ(tk, tj) · [δ(di, tk)]2

∑n−1
k=0
k�= j

κ(tk, tj)
.

By this definition, if term tj does not co-occur with any other term or di does not contain
any term that co-occurs with tj , then the exhaustivity of di with respect to the topic
associated with tj is 0. We can think of 	(di, tj) as the average discriminating power for
document di of terms that co-occur with tj .

In this case, we have defined the higher-order dual notions of topic descriptors and
topic exhaustivity by means of more basic dual notions. On the one hand, term descrip-
tive power in a document and document similarity were used to define term descriptive
power in a topic. On the other hand, term discriminating power in a document and term
co-occurrence were used to define document exhaustivity with respect to a topic.

4.5. An Illustrative Example

Consider the following example (adapted from Lorenzetti and Maguitman [2009]) to
illustrate the introduced notions, in which scientific and science fiction documents
about Mars were analyzed. We show the transpose of matrix H to facilitate readability:

mars
science

jpl
planet
nasa
book

fiction
fantasy
maven
mahli

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d0 d1 d2 d3 d4

4 2 5 5 2
2 6 3 2 0
1 0 1 1 0
1 0 2 1 1
3 0 2 2 0
0 3 0 0 3
0 4 0 0 2
0 4 0 0 1
0 0 2 1 0
0 0 3 3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Documents:
d0: mars.nasa.gov
d1: scifan.com
d2: space-fact.com
d3: jpl.nasa.gov
d4: sf-encyclopedia.com
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In our example, terms mars, science, jpl, planet, and nasa are all good descriptors
in the topic of documents d0, d2, and d3. However, although terms jpl and nasa are
good discriminators in that topic, the term mars is not—mars occurs often in that
topic but not only in that topic. On the other hand, note that a term may have a high
discriminative power in the topic of a document even if the term is not in the document
itself—it is sufficient for the term to occur only in documents on that topic to have a high
discriminative value. For instance, terms maven and mahli have high discriminative
values in the topic of d0 despite not occurring in that document:

mars
science

jpl
planet
nasa
book

fiction
fantasy

maven
mahli

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ(d0, tj)
0.718
0.359
0.180
0.180
0.539
0.000
0.000
0.000
0.000
0.000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ(d0, tj)
0.447
0.500
0.577
0.500
0.577
0.000
0.000
0.000
0.000
0.000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�(d0, tj)
0.385
0.158
0.014
0.040
0.055
0.089
0.064
0.040
0.032
0.124

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�(d0, tj)
0.493
0.524
0.566
0.517
0.566
0.385
0.385
0.385
0.848
0.848

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

4.6. Comparing Topic Descriptors and Discriminators to Other Weighting Schemes

Like the well-known TF and IDF measures, the � and � functions allow discovering
terms that are good descriptors and good discriminators. However, there are important
differences between these definitions. Terms rarely occur more than once in a concept
map and as a consequence TF is not useful as a term weighting scheme to determine
term importance in concept maps. It is necessary to highlight that the notion of topic
descriptor attempts to determine term importance at the higher level of topic. For a
term to be a good topic descriptor, it is not sufficient that it occurs often in a concept
map or in a document: it must occur often in other documents that are similar to the
target concept map.

The notion of topic discriminator is substantially different from the notion of IDF in
several senses. The weighting scheme based on the notion of topic discriminator takes
a small set of dynamically retrieved documents and computes the topic discriminating
power as a function of how similar to the target concept map are the documents that
contain that term. A good topic discriminator is a term that tends to occur exclusively in
similar documents. In other words, a good topic discriminator occurs in some documents
that are related to the target concept map but hardly occurs in unrelated documents.
On the other hand, a term with high IDF is a term that rarely occurs in an entire
corpus. The IDF weighting scheme does not distinguish between related and unrelated
documents to penalize common terms, whereas this distinction is crucial for the topic
discriminator weighting scheme. We regard this as a key conceptual advantage of our
weighting scheme over IDF.

Extensive experimental evidence published as part of our previous work [Lorenzetti
and Maguitman 2009] shows that the performance of different term-weighting schemes
that account for the notions of topic discriminators and topic descriptors is superior
to other term weighting schemes including a baseline method and the Bose–Einstein
statistics model (Bo1-DFR) [Amati 2003], which is known to be superior to TF–IDF.

5. APPLYING THE FRAMEWORK

We have applied the theoretical framework in the EXTENDER system, a program that
iteratively searches the Web to generate term-based topic descriptions, which are
presented to the user as small sets of keywords. This section introduces EXTENDER’s
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Fig. 2. EXTENDER’s Cycle.

processing cycle, then discusses how the system’s design addresses the desiderata for
topic generation presented in Section 3, and finally describes the full algorithm used
by the system.

5.1. EXTENDER’s Processing Cycle

Figure 2 outlines EXTENDER’s processing cycle. The system starts from a concept map
and iteratively searches the Web for novel information. EXTENDER’s interface allows
the user to highlight a concept or set of concepts from the starting concept map in
order to bias the system’s search toward topics related to the highlighted concepts.
Alternatively, the search can be initiated from the full map, without introducing any
additional bias.

At each iteration, the collected material is represented internally by document–term
matrices; clustering is applied to identify topics in the collection; and unimportant
material, such as terms with low descriptive and discriminating power, is discarded.
This process is repeated until topics converge or a user-selected limit on iterations is
reached. In our tests, three iterations are usually sufficient to generate a rich variety
of topics. Details on clustering and topic convergence are given in Section 5.3.

Once EXTENDER completes its iterations, it presents the generated topics as sugges-
tions to the user. Figure 3 shows the CmapTools interface. EXTENDER’s suggestions are
presented in a suggestions panel that is attached to a concept map window from which
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Fig. 3. Portion of a knowledge model with EXTENDER suggesting new topics.

the topic search started. The panel is visible at the upper right in the figure. To avoid
distracting the user, the suggestions panel is only visible when the user chooses to
open it. When the panel is closed, an unobtrusive icon shows that new suggestions
are available. In addition, the interface presents the Web pages that gave rise to those
topics, grouped by topic, to facilitate access to topic-relevant information. EXTENDER’s
preferences panel, shown at the bottom of the suggestion window in Figure 3, allows
the user to adjust the tool’s level of focus on the chosen concepts and the range of topics
generated. The interface enables users to easily import a generated topic into an in-
progress concept map as a set of concepts named by the terms in the topic, from which
the user can start the mapping process. The lower central window of the figure shows
a concept map being started from some concepts that the user selected from a set of
topic terms suggested by EXTENDER, as well as additional concepts not yet included in
the map.

5.2. Preserving Global Coherence

For EXTENDER’s task, topics are considered globally coherent to the extent they relate
to the user’s initial concept map, which may provide rich information to exploit as
search context. Because search engines restrict queries to a small number of terms
(e.g., the 32-term limit for Google), a single query can only reflect limited information.
Consequently, EXTENDER uses a multi-step approach to focus its topics by collecting
and filtering descriptors and discriminators over multiple retrievals. Although the
concept map offers a good initial search context, the vocabulary characterizing this
search context can be incrementally refined by identifying new terms that are good
descriptors or good discriminators of the topic of the concept map. During its cycle,

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 23, Publication date: December 2016.



Mining for Topics to Suggest Knowledge Model Extensions 23:13

EXTENDER maintains the relations between candidate topic terms and the initial concept
map in three ways:

—Term-weight reinforcement. Terms collected during EXTENDER’s retrievals are asso-
ciated with weights summarizing the terms’ goodness as topic descriptors or topic
discriminators. Two lists of terms and their corresponding descriptive and discrimi-
nating values are maintained and updated throughout the iterations to keep track of
good topic descriptors and good tropic discriminators. At the start of its cycle, EXTEN-
DER calculates the descriptive power of terms directly from the topology of the user’s
concept map. The motivations for using the map’s topology can be summarized by
the following hypotheses: (1) concepts that are closer to the root of a concept map are
considered better descriptors of the topic of the map, and (2) concepts with higher
connectivity are considered better descriptors of the topic of the map (see Cañas
et al. [2001], Leake et al. [2004], and Reichherzer and Leake [2006b] for a detailed
description and an evaluation of three different topological analysis methods). If the
user has selected focus concepts to bias the topic search, the weights of the terms
in the labels of the selected concepts are adjusted by a constant weighting factor
greater than one. For subsequent iterations, weights are adjusted according to the
quantities defined in Section 4, to reinforce the weights of terms that have proven to
be good descriptors or discriminators for the topic represented by the search context.

—Context-based filtering. For a document’s terms to be considered candidates for in-
clusion as part of a new topic, the document has to survive a selection process that
requires a minimum similarity between the document and the search context. Novel
terms that are not good descriptors or discriminators of the topic reflected by the
search context are also discarded.

—Query refinement. The first query terms generated for a Web search may not provide
the definitive results. However, initial search results can help to automatically refine
subsequent queries. To incrementally refine search queries, EXTENDER prioritizes the
use of those query terms that are good topic descriptors and good topic discriminators.

EXTENDER’s search context is initially defined using the knowledge model under con-
struction, and it is then progressively updated as the focus shifts through a connected
series of topics. Figures 4 and 5 illustrate the importance of exploiting the search con-
text to keep global coherence. The first figure presents a concept map from a knowledge
model on Mars, describing the topic Ancient Surface Water Environments. The second
figure presents a concept map on the topic of Rivers. In both examples, the user high-
lighted the concept Water to initiate the search. However, the topics produced in the
two maps are different, reflecting the corresponding contexts. The two sliders at the
bottom right of EXTENDER’s suggestion window allow the users to control the extent
of focus on the selected concept and the maximum number of topics the system will
return. The first slider adjusts the system’s weightings of the highlighted concepts. The
second slider determines the number of system iterations before returning the final set
of topics and the number of topics produced after each iteration.

In EXTENDER’s final stage, when the system presents the final set of topics to the user,
the terms with highest descriptive value are used to produce labels for the suggested
topics. A small set of terms with high descriptive or discriminated value provides a
concise but informative representation of the topic. A combination of focus and exhaus-
tivity is used to rank documents in a topic.

5.3. Generating Cohesive Topics

Local coherence reflects the degree to which each generated topic is composed of tightly
related terms. Our approach measures cohesiveness by the ability of the topic to prompt
retrieval of documents that are similar to each other. EXTENDER uses only short text
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Fig. 4. EXTENDER suggesting topics for the concept Water in the context of Mars’ Ancient Surface Water
Environments.

excerpts (the text “snippets” provided by search engines, which are readily available
from the search results) to represent documents. The need to group a collection of
short text excerpts from highly related documents contrasts with common clustering
scenarios. When full access to document text is available, document clustering appears
preferable over term clustering, to give the clustering algorithm greater discerning
power to identify topics. However, we have observed that when documents are repre-
sented by a small number of terms (as is the case for the text excerpts collected by
EXTENDER), and the collection under analysis consists of material that shares a com-
mon general theme (which is a consequence of EXTENDER’s attempt to preserve global
coherence), terms may be as informative as documents for identifying topics within the
collection.

With a few exceptions (e.g., Dhillon [2001]), most existing clustering algorithms ap-
ply single-purpose clustering—they cluster documents and terms separately. EXTENDER

applies a medoid-based co-clustering algorithm to cluster documents and terms simul-
taneously. A medoid is the most appropriate point within a cluster that represents
it [Kaufman and Rousseeuw 1989]. Assuming the set of medoids is given, then the
clustering problem reduces to selecting the subsets of items “close” to the respective
medoids. For each document, EXTENDER finds the terms that best characterize the docu-
ment’s topic. In a subsequent step, it uses the selected terms to identify the documents
that best specify the topic of those terms, based on the notions of topic focus and topic
exhaustivity discussed in Section 4. This process is repeated until either (1) two consec-
utive iterations produce the same set of terms and documents (a fixed point has been
reached), or (2) the same result is detected for two non-consecutive iterations (a cycle
has been detected). Because after each iteration the sizes of the sets containing selected
terms and documents decrease or remain the same (as explained in Section 5.4), the
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Fig. 5. EXTENDER suggesting topics for the concept Water in the context of Rivers.

selection process is guaranteed to converge in a finite number of iterations. The sets
of selected terms and documents are used as term medoids and document medoids to
define a set of cohesive topics. This clustering algorithm addresses the goal of achieving
local coherence for EXTENDER’s generated topics.

5.4. Coverage, Novelty, and Diversity

A reasonable topic-generation strategy should be able to produce topics with a suit-
able balance of coverage, novelty, and diversity. EXTENDER uses a “curiosity mechanism”
to diversify during initial processing stages and to focus towards the end. The appli-
cation of EXTENDER’s curiosity mechanism is in the spirit of searching and learning
techniques in which a temperature factor is used to favor exploration at the beginning
and exploitation during the final stages (e.g., simulated annealing and reinforcement
learning).

Throughout the system’s iterations, while attempting to extend a given topic, new-
found terms are collected. Because the number of collected terms grows rapidly, novel
terms to retain are selected. For each term, the system tracks the goodness of the
term in describing and discriminating the current topic. It retains those that surpass
a threshold for the survival of descriptors/discriminators, where the threshold is a
function of the number of iterations. For iteration I, the threshold for the survival of
descriptors is computed by means of a function τ� : {0, . . . , s − 1} → [a, b]:

τ�(I) = (b − a) ·
(

I

s − 1

)c

+ a,

where a stands for the “starting threshold” parameter, b for the “stopping threshold”
parameter, c is a curiosity decay parameter, and s is the total number of iterations.
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The parameter a (resp. b) reflects the initial (final) stage of exploration (exploitation),
when many (few) new terms are collected. Default values for these parameters were
set based on empirical observations carried out on test instances. The threshold for
discriminators, τ�, is defined similarly.

Another curiosity threshold is used by EXTENDER to filter irrelevant documents ac-
cording to the search context. This is implemented by a similarity threshold function
τσ defined analogously to the other curiosity mechanism functions. During the initial
steps EXTENDER collects documents on diverse topics, which must preserve the global
theme of the originating concept map. After each iteration is completed, the current
topic gives rise to a new set of descendant topics. As the system moves its focus through
the new set of topics, the search context is updated and the curiosity threshold required
for term retention is increased. Because the threshold increases with the number of
iterations, novel terms and documents are seldom collected during the final stages.
Consequently, the final stages are an exploitation phase that primarily reinforces the
weights associated with a particular material that has already been added to the
collection.

5.5. The EXTENDER Algorithm

The previous techniques form the core of EXTENDER’s topic extension algorithm. How-
ever, because retrieving and processing large numbers of Web pages is costly, EXTENDER’s
process begins with a less expensive distillation phase, in which a series of queries is
submitted to a search engine and only the information that is readily available from
the search results (e.g., title, “snippet” of text) is used to identify promising topic de-
scriptors and discriminators. The initial queries are formed using the concept labels
of the given concept map. (Section 6 will provide experimental evidence showing that
using concept labels results in better performance than using linking phrases to form
queries.) After this preliminary step, the best topic descriptors and discriminators are
used as query terms in a search phase to search for additional material on the Web. The
new set of search results is filtered according to the search context and then clustered
to produce the next generation of topics. Finally, each of the topics is refined, keeping
only those documents and terms that are good topic representatives. The topics re-
sulting from different branches usually have significant overlap of coverage. To ensure
diversity, after an iteration is completed, EXTENDER merges similar topics. This is done
by applying a simple single-linkage clustering procedure [Sibson 1973]. A parameter
r defines the similarity threshold between two topics. If the similarity between two
topics is at least r, then the two topics are merged. The system avoids submitting the
same query more than once; therefore, the system may stop after no more novel queries
can be produced. Otherwise, EXTENDER’s cycle will be repeated at most s times, where
s is a parameter supplied by the user through a slider in the topic suggestion panel.
Algorithms 1 and 2 provide a high-level description of this procedure.

6. EVALUATION

Our evaluation examines two questions. The first is which terms from a concept map
should be used as query terms input to the process for extracting topic descriptors and
discriminators. We hypothesized that using concept labels only, disregarding linking
phrases, would provide the best results. Our evaluation compared the effectiveness
of using concept labels only versus using linking phrases to generate the initial set of
queries, using both traditional IR metrics and ad hoc metrics formulated for EXTENDER’s
specific task. The second question concerns the overall quality of EXTENDER’s automati-
cally generated topics. We assessed this by comparing the set of suggested topics with
expert-generated concept maps.
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ALGORITHM 1: Extend-Topic
Input: M: source concept map, s: total number of iterations, qd: number of queries submitted

for distillation, qs: number of queries submitted for search.
Output: Topics: A set of topics related to M.
Topics[0] = { M };
for (i = 0; i < s; i + +) do

Topics[i + 1] = ∅;
for each Topic T ∈ Topics[i] do

N = NEXT-GENERATION-OF-TOPICS(T , i);
Topics[i + 1] = Topics[i + 1] ∪ N;

end
end
Merge similar topics in Topics;
return Topics;

ALGORITHM 2: Next-Generation-Of-Topics
Input: T : topic to extend, i: iteration.
Output: N: A new set of topics.
/* distillation */
if (i = 0) then

Use concept labels to form queries;
else

Use those terms with highest descriptive value to form qd queries;
end
Submit the queries to a search engine;
Use search result’s “readily available information” to compute descriptive and discriminating

power for each term;
/* search */
Combine best descriptors and discriminators to form qs queries;
Submit the queries to a search engine and collect the returned document excerpts;
/* filtering */
Use the curiosity mechanism to filter the returned documents according to the map;
Use the curiosity mechanism to filter the terms according to their descriptive and

discriminating value;
/* clustering */
Cluster remaining data to generate cohesive topics;
/* clean-up */
For each topic only keep terms that are good descriptors or discriminators;
The terms with highest descriptive power are used to produce the main labels for the suggested

topics, while the best descriptors and discriminators are used to populate the topics;
For each topic only keep documents that are similar to the medoid of the topic. Rank these

documents using a combination of the exhausitvity and focus values;
Collect resulting topics into set N;
return N;

6.1. Evaluating Query Terms Extracted from Concept Maps

We expected that concept labels are more effective than linking phrases to form queries.
We tested this hypothesis using an especially built test platform. To build our test
platform we used 448 topics from the Open Directory Project (ODP).1 The topics were
selected from the third level of the ODP hierarchy. A number of constraints were

1http://dmoz.org.
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Table I. Concept Maps, Abbreviated Reference Names, and Associated Relevant Topics from ODP

Concept map (abbreviation) Topic
AeroCapture (Aer) SCIENCE/TECHNOLOGY/SPACE

BacterialCharacteristics (BCh) HEALTH/CONDITIONS AND DISEASES/INFECTIOUS DISEASES

BacterialClassification (BCl) HEALTH/CONDITIONS AND DISEASES/INFECTIOUS DISEASES

Bioinformaticbynati (Bio) SCIENCE/BIOLOGY/BIOINFORMATICS

Comparative Planetology (CoP) SCIENCE/ASTRONOMY/SOLAR SYSTEM

FungiCharacteristics (FCh) SCIENCE/BIOLOGY/FLORA AND FAUNA

Moon (Moo) SCIENCE/ASTRONOMY/SOLAR SYSTEM

PlanetMars (PMa) SCIENCE/ASTRONOMY/SOLAR SYSTEM

Rabbits (Rab) RECREATION/PETS/RABBITS

Sleep (Sle) HEALTH/CONDITIONS AND DISEASES/SLEEP DISORDERS

VirusCharacteristics (VCh) HEALTH/CONDITIONS AND DISEASES/INFECTIOUS DISEASES

Volcanism (Vol) SCIENCE/EARTH SCIENCES/GEOPHYSICS

imposed on this selection with the purpose of ensuring the quality of our test set. The
minimum size for each selected topic was 100 URLs, and the language was restricted
to English. For each topic, we collected all of its URLs as well as those in its subtopics,
resulting in more than 350,000 collected pages. The Terrier framework [Ounis et al.
2007] was used to index these pages and to run our experiments.

To run our tests, it was necessary to find concept maps about some of these topics.
The search for test concept maps was done by using the names of the indexed ODP
topics to query the Public CmapServers accessible through CmapTools. This procedure
identified 12 concept maps, each matching one of the ODP topics. The names of these
concept maps and their associated ODP topics are presented in Table I.2

In our tests, each of these concept maps was used to form queries based on four
strategies similar to those described in Reichherzer and Leake [2006a]:

—CCC (concept–concept–concept): These queries were formed by considering all the
possible combinations of three different concepts in a concept map, where each of
these three concepts is a neighbor of at least one of the other two. Two concepts are
neighbors if there exists a linking phrase connecting both. The queries were built
using the keywords extracted from these three concepts.

—CLC (concept–link–concept): These queries were formed by combining a concept
label, a linking phrase and another concept label. To build the CLC-type queries, we
considered all the triplets concept–link–concept with the two concepts connected to
the link. The keywords from the two concept labels and the linking phrase were then
used to form a query.

—LCL (link–concept–link): These queries were formed by combining a linking phrase,
a concept label, and another linking phrase. To build the LCL-type queries, we con-
sidered each concept with at least two linking phrases connected to it. The keywords
from the concept and the two linking phrases were then used to form a query. If
there were more than two linking phrases connected to a concept, all the possible
combinations of linking phrases pairs were considered to form different queries.

—LLL (link–link–link): In a form dual to CCC-type queries, the LLL-type queries
were constructed by selecting all the possible combinations of three different linking
phrases in a concept map, where each of these three linking phrases is a neighbor of
least one of the other two. Two linking phrases are neighbors if there is a common
concept to which both are connected.

2To see the concept maps and the generated queries used in this experiment visit http://ir.cs.uns.
edu.ar/datasets.
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Fig. 6. Means and their 95% confidence intervals for precision at rank 10 (left), semantic precision at rank
10 (middle), and recall (right) of the query formation strategies.

Stopwords were removed from the concept map before the queries were created. As
has been discussed in the concept mapping literature (e.g., Shams and Elsayed [2008]
and Schwendimann [2014]), in most cases, the concepts are nouns or noun phrases,
whereas the relations are verbs or prepositions. Therefore, it is natural to anticipate
that concepts will have a superior performance to linking phrases. In spite of that, it is
worth inquiring into the possible benefits of incorporating linking phrases in the con-
structed queries. Linking phrases act as “predicates,” providing rich information about
the relation that holds between concepts. Therefore, it is worth evaluating whether
the strategies that involve the use of these predicates offer any advantages over those
strategies that disregard them.

To evaluate the different query construction strategies, we used three measures of
query performance: precision at rank 10, semantic precision at rank 10, and recall.
These metrics are described below.

—Precision at rank 10 (P@10). This metric is computed as the fraction of the top 10
retrieved documents which are known to be relevant, i.e., P@10= |A10 ∩ R|/|A10|,
where R and A10 are the relevant and answer sets (restricted to the top 10 retrieved
documents), respectively. The relevant set for each analyzed topic was set as the
collection of its URLs as well as those in its subtopics.

—Semantic Precision at rank 10 (SP@10). Other topics in the ontology could be
semantically similar (and therefore partially relevant) to the topic of the given
context. Therefore, we use semantic precision at rank 10 defined as SP@10=∑

p∈A10
σ S(t(C), t(p))/|A10|, where t(C) is the ODP topic associated with the description

used as the initial context, t(p) is the topic of page p, and σ S(t(C), t(p)) is the semantic
similarity between these two topics. To compute σ S, we used a semantic similarity
measure for generalized ontologies proposed in Maguitman et al. [2005]. For a de-
tailed analysis of the advantages and implications of using semantic precision as an
alternative to the traditional precision metric, see Cecchini et al. [2011].

—Recall. This metric is computed as the fraction of relevant documents that are effec-
tively retrieved, i.e., Recall= |A∩ R|/|R|, where R and Aare the relevant and answer
sets, respectively.

Figure 6 presents the means and their 95% confidence intervals for precision at
rank 10, semantic precision at rank 10, and recall. According to this analysis, for most
of the analyzed concept maps, the CCC-type query formation strategy is statistically
significantly superior to the other three strategies. This is not surprising, considering
that the guidelines for building “good concept maps” suggest that the use of links should
be restricted to identifying relations between concepts rather than conveying other
information about the domain [Novak and Cañas 2008]. Indeed, inspection reveals
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Table II. Initial Query Formation Strategies: Mean and Confidence Intervals for the Global Performance Metrics

CCC CLC LCL LLL
(1,736 queries) (887 queries) (568 queries) (296 queries)

Mean 95% C.I. Mean 95% C.I. Mean 95% C.I. Mean 95% C.I.
P@10 at level 1 0.579 (0.563, 0.594) 0.530 (0.508, 0.552) 0.434 (0.407, 0.461) 0.294 (0.257, 0.331)
P@10 at level 2 0.353 (0.337, 0.370) 0.293 (0.271, 0.314) 0.233 (0.208, 0.258) 0.236 (0.199, 0.273)
P@10 at level 3 0.311 (0.295, 0.327) 0.253 (0.232, 0.274) 0.192 (0.168, 0.216) 0.191 (0.156, 0.226)
SP@10 0.632 (0.622, 0.643) 0.581 (0.566, 0.595) 0.517 (0.498, 0.535) 0.445 (0.418, 0.472)
Recall 0.268 (0.256, 0.281) 0.209 (0.194, 0.224) 0.194 (0.174, 0.214) 0.240 (0.205, 0.275)

that the few concept maps where linking phrases yield better performance do not meet
the guidelines.

A more general overview of the performance of each query formation strategy can be
provided by averaging the performance metrics across all the queries from all the con-
cept maps. Because the analyzed ODP topics are organized in a hierarchical structure,
we decided to consider three different levels of specificity to compute precision at three
different levels, as described next.

—Level 1: The first approach takes the first level of the ODP hierarchy to differentiate
between topics with the purpose of defining the set of relevant documents for a
given concept map. As a result, subtopics such as Science/Technology/Space and
Science/Astronomy/Solar_System will be considered part of the same topic, namely
Science. Based on this approach, any document associated with the general topic
Science is considered relevant for any concept map on a Science subtopic.

—Level 2: The second approach considers the second level of the ODP hierarchy to
distinguish a topic from another. According to this approach, subtopics such as
Science/Technology/Space and Science/Astronomy/Solar_System will be consid-
ered different topics, whereas subtopics Health/Conditions_and_Diseases/Sleep_
Disorders and Health/Conditions_and_Diseases/Infectious_Diseases will be consid-
ered the same.

—Level 3: The third approach is the most specific one. This is the approach that has
been adopted to compute the results reported in Figure 6. In this case, two subtopics
need to agree at the third level of the ODP hierarchy to be considered equivalent.

Table II summarizes these global results. Semantic precision at rank 10 and recall are
reported as well. For all the evaluated metrics, except for recall, we can conclude that
using only concept labels to form queries results in significantly superior performance.
The CCC-type strategy also yields better recall, but the difference with LLL is not
statistically significant.

6.2. Evaluating Topic Generation

To perform an objective test of the topic generation process, we used the Mars 2001
knowledge model [Briggs et al. 2004], an expert-generated set of concept maps, as
our “gold standard” for an automatic evaluation of EXTENDER’s topics. This knowledge
model on Mars exploration was created by NASA experts and contains 118 concept
maps, presenting an extensive coverage of topics in the field.

The top-level concept map that introduces the topics covered by the knowledge model,
and serves as a starting point to navigate to the different maps in the model, was used
as the starting point in our tests—corresponding to the user’s map under construction
when EXTENDER is invoked. EXTENDER’s topic extension algorithm was used to produce
a collection of topics, without access to any of the other maps in the knowledge model.
We used the Google Web API with special permission from Google to carry out our
evaluations; non-commercial search engines, such as Faroo (http://www.faroo.com) or
Yacy (http://yacy.net), could serve as effective alternatives. As a baseline method for

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 23, Publication date: December 2016.

http://www.faroo.com
http://yacy.net


Mining for Topics to Suggest Knowledge Model Extensions 23:21

comparison, we implemented a simple algorithm that constructs queries using all the
concepts from the given concept map as a starting point, submits them as queries to
the Google Web API, and clusters the results to generate topics.

We expected EXTENDER’s mechanism to provide results with superior global coherence
and coverage for equal numbers of Web queries. An evaluation based on coherence and
coverage requires an operational definition of topic relevance. Here, we consider the
expert-generated Mars 2001 topics as target topics, with the relevance of a system-
generated topic measured by the accuracy with which it replicates an expert-generated
topic. Such an accuracy measure also provides an indication of topic quality, because its
results depend on the similarity between EXTENDER’s topics and the expert-generated
set, which we expect to be of good quality for the domain.

Expert-generated topics are concept maps and therefore they have a rich structure.
However, for evaluation purposes, each of these concept maps is characterized as a
set of terms representing a relevant topic. This makes it possible to compare expert-
generated topics with those topics generated by the evaluated methods. To measure the
quality of the generated topics assume that R = {r1, . . . , rm} is a target set of relevant
topics and A = {a1, . . . , an} is a set of topics generated by the topic-generation strategy
under evaluation. We can measure the overlap between EXTENDER’s topics and those
that an expert chose to include in the knowledge model by a rate function, which
measures the proportion of terms in a generated topic that are actually part of a target
concept map:

Rate(ai, rj) = |ai ∩ rj |
|ai| .

Similarity between topics ai and rj can be measured using, for example, the Jaccard
coefficient:

Similarity(ai, rj) = |ai ∩ rj |
|ai ∪ rj | .

Then, we can define the accuracy of topic ai with respect to topics in R as follows:

Accuracy(ai, R) = max
rj∈R

Similarity(ai, rj).

The Accuracy function measures the precision with which a given topic ai replicates
some topic in a given set of topics R.

We use the Accuracy function to define Global_Coherence as follows:

Global Coherence(A, R) =
∑

ai∈A Accuracy(ai, R)
|A| .

The Global_Coherence function measures the fraction of relevant topics generated by
the algorithm being evaluated, weighted by the algorithm’s level of accuracy replicating
the relevant topics.

Global coherence is a generalization of the IR notion of precision, and as such, it has
its limitations. This criterion function can be maximized if the system generates a single
topic identical to some relevant topic, which clearly does not guarantee acceptable topic
generation performance. Hence, a coverage factor must be introduced to favor topic-
generation strategies that cover many topics of a target set of relevant topics. To address
this issue, we define a coverage function as a generalization of the standard IR notion
of recall:

Coverage(A, R) =
∑

ri∈R Accuracy(ri, A)
|R| .
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Table III. How EXTENDER’s Topics Approximate Expert Concept Maps

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
technology air entry landing mars fluvial
penetration dry atmospheric sites lowell history

revolutionary composition system specific history erosion
systems nitrogen esa nasa percival activity

protection oxygen level mars planet glaciers
Originating concept map 0.10 0.00 0.25 0.40 0.15 0.30
Climate history 0.00 0.15 0.15 0.05 0.10 0.70
Deep access 0.75 0.05 0.20 0.15 0.10 0.10
Earth’s atmosphere 0.00 0.50 0.00 0.00 0.00 0.10
Geologic history 0.00 0.00 0.00 0.05 0.10 0.30
History of water 0.00 0.00 0.10 0.00 0.05 0.50
Landers 0.20 0.10 0.70 0.55 0.05 0.15
Myth and science fiction 0.05 0.00 0.05 0.10 0.70 0.05
Pathfinder 0.05 0.05 0.25 0.15 0.10 0.05
Rovers 0.35 0.00 0.55 0.50 0.10 0.20

Rate values greater or equal to 0.5 are in boldface.

EXTENDER’s methods depend on parameters such as the number of iterations, the
number of queries submitted from the source concept map and from each generated
topic, and the maximum number of topic descendants for each topic. This results in a
large parameter space. In practice, however, pragmatic constraints, such as the desire
for rapid response and low memory use, suggest restricting some parameters. Our
evaluation involved 48 trials, with different settings for EXTENDER’s parameters. These
tests limited the number of iterations to 3, the number of queries from each new topic
to 20, and the number of topic descendants at each stage to 8.

An initial analysis of EXTENDER’s performance for a specific trial is depicted in
Table III. With three iterations, EXTENDER produced 19 artificial topics, each containing
20 terms. In the table, we only present 10 target concept maps (including the origi-
nating concept maps) from the Mars 2001 knowledge model and 6 of the generated
topics, each characterized by its 5 terms ranked by the system as most relevant. We
also report the values of the Rate performance measure for the given concept maps
with respect to each of the presented topics.

The observation that different topics are similar to different maps in the Mars 2001
knowledge model is encouraging. It suggests that although EXTENDER preserved the
general theme of the originating concept map, it truly created diverse topics. If a topic
and some expert map (other than the originating map) are highly similar, then we have
a good reason to believe that the topic is a valuable suggestion, because the information
that is provided by the topic is new but highly relevant to a topic the expert chose to
include.

When comparing the performance of EXTENDER against the baseline, we set the num-
ber of queries for the baseline to the total number of queries submitted by EXTENDER.
For each trial, EXTENDER and the baseline method used the same similarity threshold
and method for merging topics.

Figures 7(a) and (b) compare the performance of EXTENDER’s topic generation algo-
rithm to the baseline method in terms of global coherence and coverage. A particular
parameter setting corresponds to a trial and is represented by a point. The point’s hor-
izontal coordinate corresponds to the performance of EXTENDER for that case, whereas
the vertical coordinate corresponds to the performance of the baseline method. We
see that for the majority of trials, EXTENDER outperforms the baseline with respect to
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Fig. 7. EXTENDER vs. baseline: (a) global coherence; (b) coverage.

Table IV. Means and Confidence Intervals for Global Coherence and Coverage
of EXTENDER and the Baseline Method

Global coherence Coverage
Mean 95% C.I. Mean 95% C.I.

EXTENDER 0.252 (0.238, 0.266) 0.120 (0.103, 0.136)
Baseline 0.098 (0.074, 0.122) 0.015 (0.013, 0.018)

both global coherence and coverage. Table IV shows that EXTENDER yields statistically
significant improvements over the baseline method across trials.

When we analyzed the relations between parameter settings and EXTENDER’s results,
we noticed that different parameter settings favor different aspects of EXTENDER’s
performance. For example, higher thresholds for the curiosity mechanism favor global
coherence, whereas lower thresholds favor coverage. Therefore, the interface enables
the user to adjust these parameters, focusing on topics more or less similar to the
initial map.

7. RELATED WORK

Knowledge capture frameworks have focused largely on the construction of standard-
ized representations. The knowledge modeling community has long been concerned
with devising ontologies as formal specifications that machines can read and pro-
cess [Gruber 1993]. More recently, Semantic Web research has prompted much in-
terest on developing ontologies. Ontology construction is a tedious process; therefore,
systems have been built to expedite the design of ontologies and to facilitate sharing
and integration of different frameworks. Examples of traditional systems that facilitate
collaborative development of ontologies include the Ontolingua server [Farquhar et al.
1997], RiboWeb [Altman et al. 1999], Community Web Portals [Staaba et al. 2000], On-
toShare [Davies et al. 2003], and the Protégé family [Noy et al. 2000]. A review of more
recently developed ontology tools can be found in Simperl and Luczak-Rösch [2014].
These tools provide a graphical environment for collaborative ontology development
and knowledge acquisition. However, the goal of these tools is to facilitate the con-
struction of standardized representations, whereas the goal of EXTENDER is to provide
human-centered support for knowledge extension.

Other tools apply machine learning or text mining techniques in support of knowl-
edge acquisition. For example, in Hsieh et al. [2011], text mining techniques are applied
to support the extraction of concepts, instances, and relations from a handbook of a
specific domain to quickly construct a basic domain ontology. There are other examples
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of semi-automatic construction of knowledge representation in the form of ontologies
from existing data [Santoso et al. 2011; Gil and Martin-Bautista 2012]. However, these
systems aim to aid the construction of formal representations rather than to capture
knowledge in a human-friendly form. The CmapTools system can be applied to support
ontology generation and extension, as discussed in Eskridge and Hoffman [2012]; thus,
EXTENDER could serve that task as well.

Our work relates to methods that exploit context to improve search. Contextual terms
can be used for query disambiguation, as discussed in Gao et al. [2010]. Other methods
support the query expansion and refinement process through a query or browsing
interface requiring explicit user intervention [Carpineto and Romano 2012]. Context-
based search systems exploit user interaction with computer applications to determine
the user’s current task and contextualize information needs. A seminal context-based
system is the Remembrance Agent [Rhodes and Starner 1996], which operates inside
the Emacs text editor and continuously monitors the user’s work to find relevant text
documents, notes, and emails previously indexed. Another influential context-based
assistant is the Watson system [Budzik et al. 2001]. Watson uses contextual information
from documents that users are manipulating to automatically generate Web queries
from the documents, using a variety of term-extraction and weighting techniques to
select suitable query terms. Watson then filters the matching results, clusters similar
HTML pages, and presents the pages to the user as suggestions.

Kraft et al. [2006] discuss three commonly adopted approaches for searching in
context. The first is a simple query rewriting technique to automatically augment
the user query with terms extracted from the search context. The second is a rank-
biasing technique that relies on the use of modified search engines to handle more
complex query syntaxes. These queries are made up of two parts, the selection part
effecting recall, and optional ranking terms only impacting the score of the selected
documents. The third is a method referred to as Iterative Filtering Meta-Search, in
which multiple simple queries are sent to a standard search engine. This method
involves two main steps, to generate subqueries reflecting the context at hand and to
aggregate the returned results by filtering and re-ranking them.

A recently developed system called Leibiniz [Fuxman et al. 2014] introduces the
notion of “contextual insights” to provide users with information that is contextually
relevant to the content that they are consuming or authoring. Some key aspects of the
Leibiniz system include the prediction of the user’s focus of attention, the addition of
context terms to the query, and the adaptation of the results via post-processing. As
opposed to these systems, EXTENDER’s goal is not to suggest the most similar material,
but rather to suggest topics that go beyond previously captured information.

Our research on topic extraction also shares insights and motivations with proposals
aimed at clustering search results [Zamir and Etzioni 1999; Ferragina and Gulli 2008;
Carpineto et al. 2009; Song et al. 2014]. However, in contrast to our approach, these
systems provide browsing interfaces requiring explicit user intervention. In addition,
their goal is to help users focus on specific information and to remove alternatives,
rather than to discover novel but related material.

8. DISCUSSION

The goal of topic suggestion is to aid users in pursuing useful new directions relevant to
their work. The World Wide Web provides a rich source of information on potential new
topics to include in a knowledge model. Searching the Web to support this knowledge
extension process presents new challenges, unaddressed by traditional IR systems.
Specifically, making full use of the information available in these knowledge models
requires:
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—Search methods that can reflect extensive contextual information (instead of attempt-
ing to summarize context in a small number of terms). For knowledge model exten-
sion, the knowledge model under construction provides a rich context that can be
exploited for information filtering, term-weight reinforcement, and query refinement.

—Methods for topic search (instead of document search). Users selecting topics to
include in a knowledge model will be aided by search methods that directly generate
characterizations of possible topics—which may span individual documents—rather
than simply presenting sets of documents.

—Methods for searching open collections of documents (instead of a pre-defined and
pre-analyzed collection). In Web-based knowledge extension tasks, the search space
is the full Web, and analysis must be limited to a small collection of documents—
incremental retrievals—that is built up over time and changes dynamically. Unlike
traditional IR schemes, which analyze a predefined collection of documents and
search that collection, Web-based knowledge extension must rely on methods that use
limited information to assess the importance of documents and to manage decisions
about which documents to retain for further analysis, which ones to discard, and
which additional queries to generate.

This article addresses these issues, identifies general desiderata for topic generation,
and presents a domain-independent topic-generation algorithm developed for sup-
porting concept-map-based knowledge modeling. The process reflects the knowledge
modeling context through an iterative process of topic generation, Web search, and
context-based filtering. An experimental study shows that this approach significantly
outperforms a baseline at recovering topics close to those of an expert’s hand-coded
knowledge model.

The evaluations reported in this article show, in an objective way, that EXTENDER

is able to suggest topics similar to expert-generated concept maps. These evaluations
have been designed specifically to avoid relying on a human subject confirming whether
or not the generated topics are good. As part of our future work we plan to collabo-
rate with specialists in user experience design with the purpose of carrying out an
incremental human-in-the-loop experiment to evaluate the usefulness of EXTENDER’s
suggestions. It has been long recognized in the research literature that any evaluation
that requires explicit or implicit feedback from human subjects on the usefulness of a
list of suggestions may suffer from several response biases that can damage the validity
of the study [Cannell et al. 1981; Hufnagel and Conca 1994]. The response-bias prob-
lem has been more recently investigated in different recommendation scenarios [Park
et al. 2014; Hofmann et al. 2014], which are closely related to EXTENDER’s task of recom-
mending topics to users. As a consequence, our evaluations will give special attention
to reducing different types of user biases. We foresee that these evaluations will be
highly challenging. On the one hand, in an evaluation based on explicit feedback we
expect a large impact resulting from the acquiescence bias, in which some human sub-
jects have a tendency to accept most suggestions. On the other hand, we anticipate
that in an evaluation based on implicit feedback the expert may not click on a specific
topic because the expert wants to work on something else. However, the expert may
decide later to create a concept map on the topic EXTENDER originally suggested. In
other words, it is likely that some experts dismiss suggested topics but later adopt
them. In that case it will be necessary to reevaluate the rating the expert has given to
the suggested topics.

A limitation of the proposed approach is that the topics generated by the EXTENDER

system lack the structure of human-generated concept maps. In particular, they do
not provide the relations existing among concepts, which are naturally represented by
linking phrases in concept maps. Discovering potentially useful links between concepts
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is a highly challenging task. We plan to address this problem as part of our future
work, by using other information sources such as Wikipedia, WordNet, and domain
specific ontologies to discover semantic relations among the suggested terms. Some
approaches that address highly related problems are presented in Ruiz-Casado et al.
[2005], Suchanek et al. [2008], Weikum and Theobald [2010], Panchenko et al. [2012],
and Arnold and Rahm [2015], and will be used as a basis for our methods.

ACKNOWLEDGMENTS

We gratefully acknowledge the contributions of our collaborators Alberto Cañas and the IHMC CmapTools
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Theory, Methodology, Technology. Proceedings of the 6th International Conference on Concept Mapping.
Universidade de Sao Pãulo.
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