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1. Introduction

The need of numerical methods to obtain the energy spectrum of a given Hamiltonian H is out of question since in most of
cases it cannot be obtained explicitly by pure analytical methods. Usually the evaluation of the eigenvalues of H can be done
through the numerical resolution of a problem of Sturm–Liouville type. In the present article, we use a version of the aver-
aging method [1] for non-periodic systems [2] in order to perform a numerical determination of the eigenvalues of a system
with discrete spectrum. We show evidence that this method is rather effective, at least for low energy levels.

In fact, we use this method for the numerical determination of the spectrum in a system which is not governed by the
Schrödinger equation by instead by a slightly different one, the Dirac–Weyl equation applied to the graphene, where as
in a typical Sturm–Liouville problem, boundary conditions will also be given [3].

The graphene is a two dimensional layer of graphite, which has received an enormous attention as is expected to be an
appropriate material to develop electronic devices [4–6]. From a physical point of view, the interest is focused in the study of
the behavior of electrons in graphene strips or ribbons. This study is performed by assuming that the behavior of each sin-
gular electron is governed by a massless Dirac equation.

Motivated by the analysis of physical properties of the electrons confined in graphene ribbons, a model of graphene elec-
trons on perpendicular magnetic field has been considered by several authors [7–9]. In these models for the graphene, an
electron confined in a graphene ribbon moves with an effective Fermi speed of vF ¼ c=300, where c is the speed of light
in the vacuum. Its effective Hamiltonian has the form [5]:
H ¼ vF r � pþ e
c

A
� �

; ð1Þ
where r ¼ ðrx;ryÞ; rx and ry being the Pauli matrices, e the electron charge, A ¼ ðAxðx; yÞ; Ayðx; yÞ;0Þ the potential vector due
to an external magnetic field and p ¼ �i�hð@x; @yÞ, the two dimensional momentum operator. Note that, since the magnetic
field is B ¼ r� A, then it has only a nonvanishing z-component, which we are assuming to be perpendicular to the ribbon.
Under the mentioned conditions, the behavior of one electron is governed by an equation of Dirac–Weyl type, which is:

http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2014.02.060&domain=pdf
http://dx.doi.org/10.1016/j.amc.2014.02.060
mailto:manuelgadella1@gmail.com
mailto:gadella@fta.uva.es
http://dx.doi.org/10.1016/j.amc.2014.02.060
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


A. Dobry et al. / Applied Mathematics and Computation 235 (2014) 8–16 9
vF r � pþ e
c

A
� �

Uðx; y; tÞ ¼ i�h
@Uðx; y; tÞ

@t
; ð2Þ
where t is time and ðx; yÞ coordinates on the ribbon. We are interested on the stationary states. Since Eq. (2) is linear, we can
use separation of variables so as to obtain solutions of the form Uðx; y; tÞ ¼ Wðx; yÞeiEt=�h, where Wðx; yÞ is solution of the fol-
lowing time independent Dirac–Weyl equation:
vF r � pþ e
c

A
� �h i

Wðx; yÞ ¼ EWðx; yÞ: ð3Þ
This is a two components equation, i.e., Wðx; yÞ is a vector whose components depend on the coordinates ðx; yÞ, i.e.,
Wðx; yÞ ¼ ð/1ðx; yÞ; /2ðx; yÞÞ. The configuration space is a stripe in our case so that 0 6 x 6 L and �1 < y <1. Then, Eq.
(3) splits into two coupled first order differential equations of the form:
� i @x þ i
eAx

c�h
� i@y þ

eAy

c�h

� �
/2ðx; yÞ ¼ E/1ðx; yÞ; ð4Þ

� i @x þ i
eAx

c�h
þ i@y �

eAy

c�h

� �
/1ðx; yÞ ¼ E/2ðx; yÞ; ð5Þ
with E ¼ E=ðvF�hÞ.
System (4, 5) is already rather complicated and, in order to obtain solutions, a simplification is in order. Following [10], we

shall henceforth assume that the components of the potential vector A depend only on the variable x and that the x compo-
nent of A vanishes, so that A ¼ ð0;AyðxÞ;0Þ and B ¼ ð0;0;BðxÞÞwith BðxÞ ¼ dAyðxÞ=dx. This is justified by choosing an magnetic
field with a translational symmetry along the y direction [10]. Then, due to the linearity of (3), Wðx; yÞ can be factorized in
functions on the variables x and y, so that its solution has the form Wðx; yÞ ¼ eiky ðw1ðxÞ; w2ðxÞÞ, where k is a constant. With
this choice, Eqs. (4) and (5) become, respectively:
d
dx
þ kþ e

c�h
AyðxÞ

� �
w2ðxÞ ¼ Ew1ðxÞ; ð6Þ

� d
dx
þ kþ e

c�h
AyðxÞ

� �
w1ðxÞ ¼ Ew2ðxÞ: ð7Þ
Now, the goal is to discuss a method to obtain numerically the values of E for given boundary conditions.
This paper is organized as follows: In Section 2, we pose the problem in precise terms with showing the differential equa-

tions object of our study. In Section 3, we introduce our method of calculation of the eigenvalues of the energy, in which the
characteristics of this model for the graphene has been taken into account. In Section 4, we apply it to particular boundary
conditions and analyze the results. Next, we make a comment on an alternative to Eqs. (10) and (11), showed in Section 2, so
as to obtain the energy levels.

2. Second order equations

Let us go back to Eqs. (6) and (7). First of all, let us note that these equations are invariant with respect to the following
scale changes (here # means ‘‘changes to’’): x # x=L, E # LE, Ay # LAy, k # Lk. With this scale changes, one has that
0 6 x 6 1 and boundary conditions to fix solutions of (6, 7) should be given by fixing values of solutions at either 0 or 1
or both. In addition, the equations are also invariant with respect to the following changes: Ay #� Ay, k#� k, E#� E,
w1;2 # w2;1.

Note that Eqs. (6,7) are also invariant under the transformation Ay#Ay þ a together with k#kþ c�h
e a, so that the spectrum

of values of E does not depend of the gauge used.
First of all, let us consider the trivial case in which E ¼ 0. Then, the respective solutions are given by
w2ðxÞ ¼ A2 exp �
Z

kþ e
c�h

AyðxÞ
h i

dx
� �

ð8Þ

w1ðxÞ ¼ A1 exp
Z

kþ e
c�h

AyðxÞ
h i

dx
� �

; ð9Þ
where Ai; i ¼ 1;2 are arbitrary constants that can be fixed by assigning boundary values to x ¼ 0 and x ¼ 1.
Needless to say that the interesting case is E – 0. Then, Eqs. (6) and (7) can be obviously transformed into the following

pair of second order differential equations:
� d2

dx2 þ kþ e
c�h

AyðxÞ
� �2

þ e
c�h

A0yðxÞ
 !

w1ðxÞ ¼ E2w1ðxÞ; ð10Þ

� d2

dx2 þ kþ e
c�h

AyðxÞ
� �2

� e
c�h

A0yðxÞ
 !

w2ðxÞ ¼ E2w2ðxÞ: ð11Þ
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Recall that 0 6 x 6 1. To determine solutions we need to impose some boundary conditions. They are obtained by taking into
account the following conditions:

(i) The flux current should vanish in the direction perpendicular to the edges.
(ii) The flux current in the direction of the edges should be continuous. Then, no current flow should exist over the edges.

First of all, let us assume that we can choose w1ðxÞ and w2ðxÞ real. This is possible if the chosen boundary conditions define
a self adjoint determination of the Hamiltonian, as given by the operator in front of w1;2ðxÞ in (10) and (11). Boundary con-
ditions chosen below determine this self adjointness (a discussion on the self adjoint extensions of the Hamiltonian is be-
yond the scope of the present paper, see [11,12]). This goes if we choose one of the following boundary conditions:
w1ð0Þ ¼ w1ð1Þ ¼ 0, w2ð0Þ ¼ w2ð1Þ ¼ 0, w1ð0Þ ¼ w2ð1Þ ¼ 0 or w2ð0Þ ¼ w1ð1Þ ¼ 0. Then, as jx / iðw�1w2 � w�2w1Þ, condition (i) is
automatically fulfilled for 0 < x < 1. Regarding condition (ii), we have jy / ðw�1w2 þ w�2w1Þ ¼ 2w1w2 for real w1 and w2.

In order to solve the eigenvalue problem we have posed, we can proceed into two alternative ways: Either: 1.- We use
some boundary conditions for w1ðxÞ, for instance w1ð0Þ ¼ w1ð1Þ ¼ 0 to solve (10) to obtain E and w1ðxÞ fulfilling these bound-
ary conditions. Then, (7) gives us w2ðxÞ. Or: 2.- We provide boundary conditions for w2ðxÞ at 0 and 1, determine E and w2ðxÞ
from (11) and, finally, we obtain w1ðxÞ from (6). Both procedures are equivalent as they give the same results.

Observe that, although Eqs. (10, 11) look like independent, they are not as one can conclude from our above comments on
the resolution procedures. Once we have solved the eigenvalue problem for either (10) or (11), the other function comes
from (7) or (6) respectively. A simple analysis shows that Eqs. (10) and (11) together give the same solutions as (6, 7).

If the vector potential is linear, the determination of the two components wave function ðw1ðxÞ;w2ðxÞÞ solutions is ana-
lytic, but this is not true for the case of the energy levels with the exception of the particular case of a constant potential.

Henceforth, we fix units so that e ¼ �hc.
Both Eqs. (10) and (11) can be written in the following compact form:
z00ðxÞ þ E2 � kþ AyðxÞ
� 	2 � A0yðxÞ

� �
zðxÞ ¼ 0; ð12Þ
where zðxÞ is either w1ðxÞ (with sign � before A0yðxÞ) or w2ðxÞ (with sign þ before A0yðxÞ). As stated before, the objective of the
present paper is to obtain numerical approximations of the spectrum of energies of the model described above under differ-
ent boundary conditions. We undergo this task in the next sections.

3. Solving the second order equations

Let us consider Eq. (10) in the form (12) with zðxÞ ¼ w1ðxÞ and use the boundary conditions zð0Þ ¼ zð1Þ ¼ 0. Our goal is to
obtain reasonable approximations for both the eigenvalue E and the eigenfunction zðxÞ.

In order to obtain approximate solutions, we use a modification of the well known averaging method [1], valid for non-
periodic solutions, that can be explained as follows: Let us consider the following differential equation:
y00ðxÞ þ ða� f ðxÞÞyðxÞ ¼ 0; ð13Þ
where a is a constant and f ðxÞ is a function differentiable up to some order, defined on a given compact interval a 6 x 6 b. On
this interval, let us approximate (13) by
z00ðxÞ þ ða� hf ðxÞiÞzðxÞ ¼ 0; ð14Þ
where
hf ðxÞi ¼ 1
b� a

Z b

a
f ðxÞdx ð15Þ
is the average of bðxÞ on the given interval. Let x� be a point in the interval such that f ðx�Þ ¼ hf ðxÞi and use the Taylor theorem
on the solutions of Eqs. (13) and (14) around x�. The results are, respectively
yðxÞ ¼ yðx�Þ þ y0ðx�Þ ðx� x�Þ � 1
2

a� f ðx�Þð Þyðx�Þ ðx� x�Þ2 � 1
6

a� f ðx�Þð Þyðx�Þ ðx� x�Þ3 � 1
6

f 0ðx�Þ ðx� x�Þ3 þ � � � ð16Þ
and
zðxÞ ¼ zðx�Þ þ z0ðx�Þ ðx� x�Þ � 1
2

a� f ðx�Þð Þzðx�Þ ðx� x�Þ2 � 1
6

a� f ðx�Þð Þzðx�Þ ðx� x�Þ3 þ � � � ð17Þ
We observe that the solutions of (13) and (14) are identical up to order two. Beyond this order, the smaller the derivatives
of f ðxÞ at x�, the better is the approximation resulting of the replacement of (13) by (14).

Let us use this idea to solve our problem. Now, Eq. (12), with �A0yðxÞ, will play the role of Eq. (13). Then, Eq. (14), with the
corresponding boundary conditions at the borders x ¼ 0 and x ¼ 1 is
z00ðxÞ þx2zðxÞ ¼ 0; zð0Þ ¼ zð1Þ ¼ 0; ð18Þ
with
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x2 :¼ E2 � kþ AyðxÞ
� 	2 � A0yðxÞ

D E
: ð19Þ
Here, f ðxÞ ¼ E2 � kþ AyðxÞ
� 	2 � A0yðxÞ and hf ðxÞi ¼

R 1
0 f ðxÞdx. The solutions of (18) with the given boundary conditions are

well known and gives x ¼ np, with n ¼ 0;1;2 . . .. This shows that
n2p2 ¼ E2 � kþ AyðxÞ
� 	2
D E

� A0yðxÞ
D E

; ð20Þ
which gives an approximation for the energy values, that henceforth will be labeled as En, of (12) (with sign minus):
En ’ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ AyðxÞ
� 	2
D E

þ A0y
D E

þ p2n2

r
: ð21Þ
Thus, we observe that the dynamics of a particle with zero mass and governed by the Dirac–Weyl equation possesses a
spectrum, whose set of squared eigenvalues resembles the spectrum of a particle with mass on a infinite square well gov-
erned by the Schrödinger equation.

3.1. Averaging

Eq. (21) already represents an interesting approximation to the energy levels. Now, we use an improvement of this result
based in the averaging method [1]. Consider the general solution of Eq. (18) and replace the arbitrary constants by unknown
functions on the variable x:
zðxÞ ¼ y1ðxÞ cos ðxxÞ þ y2ðxÞ sin ðxxÞ; ð22Þ
and write the derivative of zðxÞ as
z0ðxÞ ¼ �xy1ðxÞ sinðxxÞ þxy2ðxÞ cos ðxxÞ: ð23Þ
These functions yiðxÞ; i ¼ 1;2 have been introduced in order to modulate the harmonic response. Let us assume that the
new frequency has the form xn ¼ npþ an, where the constant an should depend on n. Then, the expression for the energy
levels become
E2 ¼ npþ anð Þ2 þ kþ AyðxÞ
� 	2 þ A0y
D E

: ð24Þ
The value of an will be determined by the condition zð1Þ ¼ 0. With this choice, Eq. (12), where we are always taken the
minus sign, takes the following form:
z00ðxÞ þ npþ anð Þ2 þ kþ Ay
� 	2 þ A0yðxÞ
D E

� kþ AyðxÞ
� 	2 � A0yðxÞ

n o
zðxÞ ¼ 0: ð25Þ
Now, take the formal derivative of (22) with respect to x and compare it with (23). This gives the following result:
y01ðxÞ cos ðxxÞ þ y02ðxÞ sin ðxxÞ ¼ 0: ð26Þ
Then, replace x by xn ¼ npþ an in (22), (23) and (26). Derive (23) with respect to x and replace the result in (25) so as to
obtain the following expression:
�xn y01ðxÞ sin ðxxÞ þxn y02ðxÞ cos ðxxÞ þ kþ Ay
� 	2 þ A0yðxÞ
D E

� kþ AyðxÞ
� 	2 � A0yðxÞ

n o
zðxÞ ¼ 0; ð27Þ
where zðxÞ is given by (22) with x replaced by xn ¼ npþ an. This equation along to (26) (with xn) provides us with a system
of linear equations with indeterminates y0iðxÞ; i ¼ 1;2. Its solution is given by
y01ðxÞ ¼ �
x2

n � E2 þ kþ AyðxÞ
� 	2 þ A0yðxÞ

xn
� cos ðxnxÞ sinðxnxÞy1ðxÞ þ sin2 ðxnxÞy2ðxÞ
� �

; ð28Þ

y02ðxÞ ¼ �
x2

n � E2 þ kþ AyðxÞ
� 	2 þ A0yðxÞ

xn
� cos2 ðxnxÞy1ðxÞ þ cos ðxnxÞ sin ðxnxÞy2ðxÞ
� 	

: ð29Þ
The next step is a simplification: we average the coefficients of yiðxÞ; i ¼ 1;2, in the right hand sides of (28) and (29) on
the interval ½0;1�. Note that the resulting coefficients do not vanish due to the presence of products of sines and cosines.
Then, if we denote the matrix vector YðxÞ as YTðxÞ ¼ ðy1ðxÞ; y2ðxÞÞ, where here YT means transpose of Y, we can write
Y 0ðxÞ ¼ MYðxÞ: ð30Þ
Our objective is to determine an approximate particular solution of (22) with boundary conditions zð0Þ ¼ zð1Þ ¼ 0. To
accomplish this, we need to find particular solutions of (28, 29) with suitable initial conditions and then use these solutions
in (22). Then, the condition zð1Þ ¼ 0 will give the values of an. The initial conditions for yiðxÞ; i ¼ 1;2 are y1ð0Þ ¼ zð0Þ ¼ 0 and
y2ð0Þ ¼ z0ð0Þ=xn. The value of z0ð0Þ is not known, but its value is not relevant for our discussion. In fact, the particular solution
of (30) with the given initial conditions has the following form:
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YðxÞ ¼ expfMxg
0

z0ð0Þ=xn

� �
; expfMxg ¼

y11ðxÞ y12ðxÞ
y21ðxÞ y22ðxÞ

� �
; ð31Þ
where the matrix elements yij depend on both x and x. This gives
y1ðxÞ ¼ y12ðxÞz0ð0Þ=xn; y2ðxÞ ¼ y22ðxÞz0ð0Þ=xn: ð32Þ
If we use this result in (22), we obtain
zðxÞ ¼ y12ðxÞ cosðxnxÞ þ y22ðxÞ sinðxnxÞ½ �z0ð0Þ=x: ð33Þ
Note that z0ð0Þ– 0, otherwise zðxÞ would be identically zero. Then, the condition zð1Þ ¼ 0 gives
y12ð1Þ cosðxnÞ þ y22ð1Þ sin ðxnÞ ¼ 0: ð34Þ
This is the equation we need to determine an, which does not depend of the value of z0ð0Þ.
As a minor remark, we note that if kþ Ay

� 	2 þ A0yðxÞ
D E

� kþ AyðxÞ
� 	2 � A0yðxÞ = 0, then y01;2ðxÞ 	 0 and therefore in (18) we

have xn ¼ np. This is one reason to conjecture that a good approximation would be achieved whenever

kþ AyðxÞ
� 	2 � A0yðxÞ 
 kþ Ay

� 	2 þ A0yðxÞ
D E

on the interval ½0;1�.

4. Some particular cases

Next, we analyze two particular cases: constant magnetic field and periodic potential.

4.1. Constant magnetic field

Now, let us assume that the magnetic field is constant. Then, the vector potential is AyðxÞ ¼ B0xþ b, where B0 and b are
constants. In this case, the equation given in (12), with sign minus, when one uses the boundary condition zð0Þ ¼ 0, it admits
an explicit solution in terms of Parabolic-Cylinder functions which is
zðxÞ ¼ D E2
2B0
�1

ffiffiffiffiffi
2
B0

s
ðk þ b þ B0xÞ

 !
� D E2

2B0
�1

ffiffiffiffiffiffiffiffiffiffi
� 2

B0

s
ðk þ b Þ

 !
� D E2

2B0
�1

ffiffiffiffiffi
2
B0

s
ðkþ bÞ

 !( )�1

þ D� E2
2B0

ffiffiffiffiffiffiffiffiffiffi
� 2

B0

s
ðkþ bþ B0xÞ

 !
ð35Þ
In order to obtain the eigenvalue, we solve numerically the equation zð1Þ ¼ 0. These numerical values are quite well
approximated by those obtained by using the method proposed in Section 3.1, as we determined by numerical tests. These
numerical experiments, shown that the lowest eigenvalues obtained by means of (21) are quite close to the exact ones. The
explicit expression of (21) in our case is
Ek;n 
 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ bÞ2 þ B0ð1þ kþ bþ B0=3Þ þ p2n2

q
: ð36Þ
In Fig. 1, the dots denote the energy levels. In the abscissa, we have the values of n and in the ordinate we have the cor-
responding values of the energy for the choices k ¼ 2; B0 ¼ 1 and b ¼ 5. The curve in red that joins the dots is given by (21)
with AyðxÞ ¼ B0xþ b. Note that for our level of precision, the curve crosses the points. Although we have not been able to give
a realistic bound of error, this gives an idea of the accuracy of our method.

Eq. (36) shows that the approximate expression for the energy levels depends on the gauge constant b. This is, in prin-
ciple, quite surprising. Experimentally, one measures the differences between levels. Now, this difference may depend on
the chosen value for b. Take two different values b1 and b2 and call E

ð1Þ
k;n and E

ð2Þ
k;n the values of (36) obtained with these

two values of b respectively.
Then, let us calculate the difference between the squares of the values of the energy, as determined by (36), in the tran-

sitions from ðk1;nÞ to ðk2;mÞ using first b1 and then b2. Since
E2
k2 ;n
� E2

k1 ;n
¼ 2Ayðk2 � k1Þ þ k2

1 þ k2
2; ð37Þ
one has
E
ð2Þ
k2 ;m

h i2
� E

ð2Þ
k1 ;n

h i2
� �

� E
ð1Þ
k2 ;m

h i2
� E

ð1Þ
k1 ;n

h i2
� �

¼ �2ðk1 � k2Þðb1 � b2Þ: ð38Þ
Note that this result does not depend on n, although it depends on the gauge constant b. This result emerges not only by
making use of (36) to obtain the energy values, but also from direct numerical integration from zð1Þ ¼ 0. This result is some-
how surprising as it may mean that the gauge and therefore the vector potential may have physical relevance.



2 4 6 8 10
n

200

400

600

800

1000

k = 2 B0 = 1 β= 5

Fig. 1. The dots are the energy levels for k ¼ 2, B0 ¼ 1 and b ¼ 5. The curve is the graphics for (21).
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4.2. Periodic potential

In this second example, the complete above procedure is not necessary and can be drastically simplified, as we shall see.
Assume that the magnetic field is periodic and has translational symmetry with respect to the direction of y. Then, it admits a
vector potential of the form AyðxÞ ¼ A0 sin ðxmxÞ, with xm ¼ mp; m ¼ 1;2; . . .. In this case, Eq. (21) gives
Ek;n ’ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

A0 þ k2 þ p2n2

r
; ð39Þ
for m even and
Ek;n ’ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

A2
0 þ k2 þ 4A0

k
mp
þ p2n2

r
ð40Þ
for m odd. Here, we impose a unique initial condition zð0Þ ¼ 0, which gives the following solution for the equation in (18):
zðxÞ ¼ C sin ðnpxÞ; ð41Þ
where C is an arbitrary constant.
In principle, this is an approximation for which we do not have an explicit expression for the error estimation. We recall

that a good result can be expected provided that kþ Ay
� 	2 þ A0yðxÞ
D E

� kþ AyðxÞ
� 	2 � A0yðxÞ, is small. Numerical experiments

permit us to compare the results obtained with this approximation with those which have been obtained in the method pro-
posed in [16]. We find that for A0 < 10 and 1 6 m 6 10, there is a very reasonable coincidence between both results with
values of n bigger than 2 (n > 2), with an error bound of the order of 5%. The corresponding eigenfunctions approximate
quite well to the zðxÞ.

Now and within the range of the parameters as in the previous paragraph, let us use the method as described previously
in the present section. The values obtained were similar to those obtained using the ideas just given above. Therefore, in this
case, the approximation given by Eq. (18) is clearly sufficient.

On Fig. 2, we represent the spectrum obtained with the use of the following parameters: A0 ¼ 5; k ¼ 2 and m ¼ 2. Red
spots are those given by (21) and blue spots are determined numerically using the Taylor method. The horizontal axis rep-
resents the variable n and the vertical axis E2, the square of the energy values.

In order to compare solutions given by Eqs. (41) and (22), we give here just an example. For the seventh energy label, with
energy given by E ¼ 500:518, we obtain using (24):
zðxÞ ¼ 0:0454728 sinð21:9911xÞ; ð42Þ
while the result obtained with (22) is
zðxÞ ¼ 0:0448296 sinhð0:00017877xÞ cosð22:0004xÞ þ ð0:0529599Þ coshð0:000178778xÞ
� 0:0075061 expð0:000178778Þ sinð22:0004xÞ: ð43Þ
Comparing (41) and (42), we conclude that numerical differences between these two expressions are very small. In order

to determine the error, we use the expression D ¼ znumerical � zað Þ2
D E

. We obtain for D, 0.0000162716 for (41) and

0.0000167253 for (42). As we can see the differences are of order 10�7.
A simple remark: let us consider either the boundary conditions (often called the zig-zag conditions) z1ð0Þ ¼ z2ð1Þ ¼ 0 or

z2ð0Þ ¼ z1ð1Þ ¼ 0 and obtain the spectrum numerically using the method in [16]. Then, for each pair of two consecutive
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Fig. 2. Spectrum obtained with A0 ¼ 5, k = 2 and m ¼ 2.
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Fig. 3. Probability density for Ay þ k ¼ 10.
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values of the energy with respect to the homogeneous conditions (zið0Þ ¼ zið1Þ ¼ 0; i ¼ 1;2), there is one value of the energy
with respect to these zig-zag conditions.

5. Concluding remarks

In this paper we have developed a numerical method to solve a Dirac–Weyl equation in the presence of a magnetic field in
a two dimensional band. We checked the method against exact solution or other numerical method when the exact solution
does not exist.

Our results should be taken as a starting points for the study of other realistic situation in graphene nanoribbons. Related
to this question, the boundary condition chosen in Section 4 belongs to the family proposed in [3]. As have previously dis-
cussed, they give vanishing flux of current perpendicular to the edges of the band. They also produce no current flow over the
edges.

Other boundary condition could be necessary in order to account different realizations of graphene nanoribbons. For
example the so called zig-zag edges correspond to w1ð0Þ ¼ w2ð1Þ ¼ 0 or w2ð0Þ ¼ w1ð1Þ ¼ 0 in our notation. This problem is
also solvable by the method proposed in the present paper.

Different spatial configuration for the magnetic field are also possible and worthy to be applied to the graphene. The most
promising possibility consists in simulating a magnetic field by applying strains to the sample [13]. In this way, a periodic
magnetic field as we studied in Section 4.2 could be in principle produced by supporting graphene on a corrugated substrate
[14,15].

Studying different boundary conditions and different spatial dependence of the magnetic field will be the subject of a fu-
ture work.
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Appendix A. A remark

Here, we propose another method to obtain the values E of the energy spectrum. Let us start with equations (6, 7) and use
the following change to define a new unknown function f ðxÞ:
f ðxÞ :¼ w1ðxÞ exp �
Z

kþ AyðxÞ
� 	

dx
� �

: ðA:1Þ
Then, take the resulting expression for w1ðxÞ into Eq. (7) in order to obtain a similar formula for w2ðxÞ:
w2ðxÞ ¼ �
1
e

f 0ðxÞ exp
Z

kþ AyðxÞ
� 	

dx
� �

: ðA:2Þ
Use (43) and (A.1) into (7). This gives:
f 00ðxÞ þ 2 kþ AyðxÞ
� 	

f 0ðxÞ þ E2f ðxÞ ¼ 0: ðA:3Þ
This equation is simpler than (10) and (12). In order to obtain the energy spectrum, we have to impose boundary conditions.
The simplest boundary conditions are w1ð0Þ ¼ w1ð1Þ ¼ 0, which gives f ð0Þ ¼ f ð1Þ ¼ 0. It is sufficient imposing boundary con-
ditions on w1ðxÞ in order to obtain w1ðxÞ as well as w2ðxÞ. Note that the zeroes of w1ðxÞ and w2ðxÞ are the zeroes of f ðxÞ and f 0ðxÞ
respectively. This shows that between two consecutive zeroes of w1ðxÞ there must be a zero of w2ðxÞ as f 0ðxÞ must be zero at
some point.

One comment is in order here: Let us go back to (A.3) in which we have dropped the middle term. Then, (A.3) takes the
form f 00ðxÞ þ E2f ðxÞ ¼ 0. This equation has the same spectrum (values of E) for the boundary conditions given either by
f ð0Þ ¼ f ð1Þ ¼ 0 or by f 0ð0Þ ¼ f 0ð1Þ ¼ 0. This approximately happens for high values of E. Therefore, the energy levels obtained
with the boundary conditions w1ð0Þ ¼ w1ð1Þ ¼ 0 and w2ð0Þ ¼ w2ð1Þ ¼ 0 respectively are quite similar in this case. Within the
same approximation, if we take as boundary conditions either f ð0Þ ¼ f 0ð1Þ ¼ 0 or f 0ð0Þ ¼ f ð1Þ ¼ 0, the new eigenvalues are
alternate with those obtained with the homogeneous conditions.

Boundary conditions of the form f ð0Þ ¼ f 0ð1Þ ¼ 0 and f ð1Þ ¼ f 0ð0Þ ¼ 0 give as spectrum Wn ¼ ð2n� 1Þp=2; n ¼ 1;2;3 . . ..
Note that two consecutive values of xn ¼ np contains one and only one value of Wn.

Appendix B. One comment concerning the behavior of the density

Since the current density in the direction y is given by jy ¼ 2w1w2, we can write an expression for it with the help of
A.1,A.2:
jy ¼ �
1
E

f ðxÞf 0ðxÞ exp 2
Z
ðAyðxÞ þ kÞdx

� �
: ðB:1Þ
Now, let us consider the probability density q ¼ w2
1 þ w2

2. Using again formulas A.1,A.2, we have:
d
dx

f 2ðxÞ þ 1
E

f 02ðxÞ
� �

¼ � 4
E2 ðAyðxÞ þ kÞf 02ðxÞ: ðB:2Þ
Note that whenever AyðxÞ þ k > 0, the expression between parenthesis in the left hand side of (B.2) decreases and there-
fore if it is not balanced by the exponential term in (B.1), the density average decreases. See Fig. 3.

The property that we want to show first uses (B.1) and (B.2) to obtain the following relation:
jy ¼ �
1
e

f xð Þf 0 xð Þ
f 2ðxÞ þ 1

e2 f 0 xð Þ2
q: ðB:3Þ
We recall that (B.3) is well defined as f ðxÞ and f 0ðxÞ cannot vanish simultaneously. Finally, using 6,7, we arrive to
d
dx

q ¼ 1
E

AyðxÞ þ k
� 	 d

dx
jy; ðB:4Þ
which is the desired equation. It relates the derivative of the density to the derivative of the current density.
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