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a b s t r a c t

Wildfires cause great losses and harms every year, some of which are often irreparable. Among the
different strategies and technologies available to mitigate the effects of fire, wildfire behavior prediction
may be a promising strategy. This approach allows for the identification of areas at greatest risk of being
burned, thereby permitting to make decisions which in turn will help to reduce losses and damages. In
this work we present an Evolutionary-Statistical System with Island Model, a new approach of the un-
certainty reduction method Evolutionary-Statistical System. The operation of ESS is based on statistical
analysis, parallel computing and Parallel Evolutionary Algorithms (PEA). ESS-IM empowers and broadens
the search process and space by incorporating the Island Model in the metaheuristic stage (PEA), which
increases the level of parallelism and, in fact, it permits to improve the quality of predictions.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Fire has been a fundamental element in the development of
civilizations. Nevertheless, it represents a threat when it spreads
without control causing wildfires. Wildfires may be generated by
meteorological or human factors, although independently of the
cause, it always generates a great impact on biodiversity, land-
scape, water resources and health (i.e., they generate great losses
and are harmful to the environment) [1]. For example, in 2010, the
extremely high temperatures that reached a record (in the Russian
summer) and the drought in the region caused a large fire that
burned one million hectares of forests, killing approximately 53
people [2,3] (in addition, 806 people required medical attention).
In January 2014, in General Alvear (Mendoza, Argentina),
ación en Cómputo Paralelo/
n Sistemas de Información,
a Nacional, M5502AJE Men-

éndez-Garabetti),
200,000 hectares of natural forests were burned due to high
temperatures, low humidity and high amount of fuel accumulated
in the area [4]. Finally, during February 2015 in Cholila (Chubut,
Argentina) 45,000 hectares of native forests were burned, being
the worst wildfire in Argentina [5,6].

Currently, there exists a great scientific effort to develop tech-
nologies and strategies to reduce the effects caused by wildfires.
However, due to the complexity of the phenomenon and its
characteristics, there is still a long way to go in order to achieve
such a goal. Certainly, one of the most promising tools consists in
the development and improvement of the ability to predict the
phenomenon behavior. More specifically, this is to determine the
future behavior of a wildfire once it has started, permitting to
reduce damage and losses in the environment and the population
by making decisions based on the areas that are most likely to be
reached by the fire. Based on this, we can say that the ability to
predict wildfire behavior represents a capacity that will allow us to
implement useful tools in the process of firefighting.

However, it must be remembered that the prediction of any
natural phenomenon is not an easy task and it takes time, espe-
cially, if high quality prediction is desired.

Predicting wildfire spreading consists in determining which
will be the direction and speed of fire propagation, the shape of
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Fig. 1. Classical Prediction: diagram of wildfire propagation (FS: Fire Simulator;
PFL: Predicted Fire Line; IP: Input Parameters; RFLn: Real Fire Line on time n).
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the fire front, flame intensity, etc. Once the fire has started, it is
necessary to predict its progress for the near future using as much
information as possible about the fire front and the environment
in which this occurs (i.e., climatic conditions, terrain conditions,
vegetation conditions, fuels, etc.).

It is important to emphasize that wildfire prediction, as any
other natural phenomenon, is not an easy task due to the com-
plexity of the models used, the amount of variables involved and
the uncertainty that they often exhibit.

In this paper, in Section 2 the issue of uncertainty in prediction
systems is described. Next, a brief explanation of the concepts and
tools that are used in the development of the methods is analyzed
in Section 3. The approach, implementation and methodology of
Evolutionary-Statistical System with Island Model (ESS-IM) are
explained in Section 4. Finally, the experimental results and
comparison are shown in Section 5, and conclusions are provided
in Section 6.
2. Uncertainty in wildfire prediction

In wildfire behavior prediction there are different sources of
uncertainty that affect the precision of the method. These sources
are related to the limitations of the model used, parameters with
unknown values, dynamic changes produced by the model, dis-
cretization of values, the difficulty to quantify the parameter va-
lues in real time, etc. In this section the sources of uncertainty and
the existence of uncertainty in classical prediction are briefly
discussed.

2.1. Uncertainty sources

The uncertainty concept itself has different meanings and le-
vels that can refer to the lack of knowledge, the lack of certainty,
among others. In this context, we refer to the lack of knowledge of
the parameters that determine the behavior of the model. Mainly,
this kind of uncertainty is usually observed in those variables that
present a dynamic behavior. Some examples of this kind of vari-
ables are wind speed, wind direction, humidity content in vege-
tation, etc. These variables strongly affect wildfire behavior and
should be measured in real time. To do this, devices such as
wireless sensor networks (WSNs) could be of great help [7]. By
using this type of sensors in areas affected by fires, we can obtain
temperature measurements, wind speed and direction, etc. An
example of this is [8] where WSNs are used as a tool for early
detection and wildfire monitoring.

While the use of WSN can be a promising tool to reduce un-
certainty in the input parameters, this technology can only be used
in protected areas where the installation of a sensor network is
possible. However, it is not feasible to install an extensive network
of WSN in forests worldwide. Therefore, it is necessary to develop
and improve methods and tools to address the problem of un-
certainty into input parameters.

In our work, we consider that there is no exact set of input
parameters to feed the propagation model because it is not pos-
sible to know the exact value of each parameter at the beginning
of the fire and through the time. Furthermore, in most cases these
models cannot be analytically solved and must be solved by ap-
plying numerical methods that are only an approximation to
reality. Therefore, to make a wildfire behavior prediction with
estimated values cannot be considered as reliable.

2.2. Classical prediction

In general terms, the Classical Prediction method consists in
evaluating the position of the fire after a certain initial period of
time, using any existing fire simulator behavior. A general scheme
of this kind of methodology can be observed in Fig. 1. As can be
seen, the simulator (FS) is fed by two sets of data: the real fire line
of the wildfire at time tn (RFLn), generally represented by a map
that shows the burned area where the fire started, and the in-
formation that describes the environment on which the fire
spreads, such as weather data, vegetation, and terrain description
(all these data are called input parameters). Each input parameter
has a value assigned, and this set of values, along with RFLn, is used
by FS to make the prediction of the fire line (PFL) for the next time
instant ( )+tn 1 through a single simulation. Furthermore, it is ne-
cessary to say that in any prediction method it is expected the
estimated prediction carried out by the simulator to match reality
in the best possible way. However, due to the model complexity,
the uncertainty in the input parameters, and since the prediction
is based on a single simulation, this prediction methodology pro-
vides generally predictions that are far from reality. Examples of
classical prediction in wildfires are [9–15]. Due to the limitations of
Classical Prediction, the development of methods that allow for
reducing the uncertainty in order to improve the prediction
quality has been necessary.

2.3. Uncertainty reduction

As we mentioned before, one of the factors that obstruct the
classical prediction methods to obtain similar predictions to reality
is lack of precision, i.e., the uncertainty in the parameters that feed
the model. When this imprecision is present, the prediction ca-
pacity of the method is considerably affected, since this is
equivalent to feeding the simulator with incorrect values, which
usually will produce wrong predictions.

Due to the imprecision of the input parameters and the diffi-
culty to measure them in real time, it is necessary to turn to some
technique which will be able to reduce uncertainty, such as the
Data Driven Methods (DDM). The DDM consider a large number of
values for each parameter, instead of a single value for each
parameter. Subsequently, these methods perform a search (i.e., by
means of Genetic Algorithm, Taboo Search, Simulated Annealing)
to find a set of parameters which describes, in the best possible
way, the previous fire behavior that will be used to predict the
near future behavior, based on some kind of time and space
locality.

In other words, the DDM perform a calibration to obtain these
“optimal” values of input parameters. Nevertheless, these methods
obtain a single set of values, and for those dynamic parameters,
the value found is not generally useful to correctly describe the
model behavior. This category of methods is called Data Driven
Methods of Unique Solution [16–18].

There is another classification of DDM that works with over-
lapping cases and combinations of parameters to make
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predictions. This category is called Data Driven Methods with
Multiple Overlapping Solutions (DDM-MOS). Statistical System for
Forest Fire Management (S2F2M) [19], ESS [20,21] and ESS-IM
[22,23] are included in this category. In addition, DDM are strongly
related to Data Assimilation Methods (DAM), which are char-
acterized by incorporating data into a working model [24]. From
this point of view, we can say that ESS-IM is a hybrid version
between DDM-MOS and DAM, this is because ESS-IM is not aimed
at finding a single dataset with specific values. However, the
method aims to find a set of values that will improve the final
outcome process and also include the incorporation of data at
execution time.

To understand the internal working process of these methods,
it is necessary to briefly explain the elements on which these
methods base their operation, which will be dealt with in the
following section.

The aim of this work is to enhance the capabilities of the ESS.
ESS is an uncertainty reduction method that has been applied to
wildfire spread prediction. Operation of the method is based on
statistical analysis [25], parallel computing [26] and Parallel Evo-
lutionary Algorithms [27]. The interaction of these three compo-
nents has allowed ESS to improve the prediction quality made by
his predecessor (S2F2M), for more information see [19]. In this
paper, following the same idea, we have increased the level of
parallelism and modified the internal architecture, with the goal of
improving the quality of prediction by incorporating the Island
Model [28] to ESS. Fig. 2 shows the evolution of each method and
their respective components.
3. Components involved in the DDM-MOS

Each method is constituted by different elements and tech-
nologies in order to try to achieve the proposed objectives. This
section briefly discusses each of the pillars on which S2F2M, ESS
and ESS-IM base their operation. These are statistical analysis,
parallel computing and Parallel Evolutionary Algorithms.
Fig. 2. S2F2M, ESS and ESS-IM: components an
3.1. Statistical analysis

As we mentioned in the previous section, the methodology
presented in this paper bases its operation on certain components,
one of which is the statistical analysis. Statistics is a formal science
that deals with the collection, presentation, analysis and use of
data to take decisions, solve problems, and design products and
processes [25]. Thus, statistics permits to look for correlations and
dependencies among variables that affect a physical or natural
particular phenomenon and the phenomenon itself.

In the challenge dealt with in our work, wildfire behavior
prediction involves a set of parameters (also considered as factors
or variables) that determine and affect the phenomenon behavior,
for example wind speed and direction, moisture in vegetation,
slope, among others. These factors feed the prediction model,
which aims to determine the fire behavior according to the input
values of each variable. Because each parameter can have different
values (independently of the other ones), it is necessary to eval-
uate the effects of each parameter along with the values of the
other ones. Therefore, one efficient way to solve this problem,
from the statistical point of view, is the factorial experiment de-
sign. According to [25] a factorial experiment is one in which the
factors are varying together, such as occurs in wildfires with wind
speed and direction, and vegetation moisture. In other words, it is
a type of experimental design in which every value of one factor is
tested in combination with every value of another factors. In
general, in a factorial experiment, all possible combinations of
values are tested [25].

In our context, each possible combination of parameters values
is called a scenario (this concept will be will be dealt with in depth
in the next sections). Therefore, if we want to determine which
portion of a surface of terrain (divided into m cells) will be reached
or not by fire, we can define n different scenarios and calculate the
Ignition Probability (Pign), for each cell as follows:

( ) = ( )P C
n
n 1ign

C

where Pign(C) is the ignition probability for cell C and nC is the
number of scenarios where cell C was burned. To better under-
stand its concept, let us consider the example of Fig. 3a. In such
example the number of scenarios is n¼4, therefore, 4 intermediate
d evolution from the Classical Prediction.
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Fig. 3. (a) Example of calculation to build the probability map, and (b) probability map.
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Fig. 4. Four examples of probability map with probabilities: (a) PK¼1, (b) PK¼3/4, (c) PK¼2/4 and (d) PK¼1/4.
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outputs are obtained (outputs 1, 2, 3 and 4) and considering Eq. (1),
we can calculate the ignition probability that takes into account
these four scenarios. In this way it is possible to generate the
probability map of Fig. 3b. This map, as can be seen, is a matrix
with a value associated to each cell that represents the ignition
probability of each cell. The set of cells, whose Pign value is higher
than or equal to a certain particular value PK, where ≤ ≤P0 1K ,
constitutes what we call the probability map with probability PK.
Fig. 4 shows the graphical representation of this concept.

It is important to emphasize that the probability map includes
all the possible combinations of the resulting values of the para-
meters that exhibit uncertainty. In consequence, for each para-
meter there is a certain range of values that the parameter can
take, as well as an increment value to move within such range. It is
also important to remark that a certain number of cases do not
constitute significant values to the global result, either they are
now redundant, or because they are too far from reality.

3.2. Parallel computing

According to [29] parallel computing, there is more than a
strategy to achieve high computational performance: it is a vision
of how computation can seamlessly be a scale from a single
processor to virtually limitless computing power. Several scientific
activities require significant computing power (e.g., Medical Ima-
ging, Oil and Gas, Bioscience, Chemical Engineering, Economics
and Financial, Electronic Design, Geosciences, Mechanical Design,
Defense and Energy, Weather Forecasting, etc.) in the wake of the
large amount of calculations that must be performed to solve
problems. Systems of high performance computing (HPC) provide
greater computational capacity than a sequential computer as they
allow us to share tasks among different processors in order to gain
time and cost by performing them [26]. Among the parallel pro-
gramming paradigms available, we have chosen the Master–
Worker paradigm [30,31] for this work. In this paradigm, a process
(master) generates many sub-problems, which are sent to be
solved by someone else (workers), i.e., the master process sends
the tasks to be simultaneously performed by each worker and then
it return the result to the master. Usually there are no significant
dependencies between calculations of worker processes. In this
way, by means of cooperation and coordination, it is possible to
reduce the execution time of extensive computations, or complex
task can be addressed while maintaining a reasonable execution
time.



Fig. 5. A schematic diagram of an evolutionary algorithm.

Population Individual

Fig. 6. Master–Worker PEA, the master process applies the genetics operators, and
distributes individuals to the workers. The workers only evaluate the fitness of the
individuals.
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3.3. Parallel Evolutionary Algorithms (PEAs)

Evolutionary Algorithms (EAs) are considered an efficient
search method inspired in natural selection and genetics to solve
optimization problems [32]. In general terms, the process consists
of a series of iterations, each of them called generation, where a
sample of the searching space (in our case this would be re-
presented by a sample of possible scenarios or parameters values
combinations) is organized as a particular set of possible solutions
(called individuals), which constitutes a population. The general EA
framework is shown in Fig. 5. The population iteratively evolves
mimicking the principles of natural biological evolution and sur-
vival of the fittest so that with the aim of the population that
converges into a good solution [33]. Basically, the process consists
in selecting a sample of parents of the population, which are
subjected to different operators to generate the set of offspring.
Later, they are introduced to the population replacing individuals
with the worst features. In the best of cases, this will be the op-
timum solution, but in general a value that represents a threshold
of what would be an acceptable solution is defined.

EAs may represent solutions in different ways: permutations,
binary strings, integers, real numbers, arrays of floating point
numbers, etc. [34,35] . Each EA must have a fitness function that
computes a value for each individual to determine how accurate
the solution that the individual represents to the problem is. The
EAs must allow that good solutions are more likely to reproduce in
order to generate new solutions, which is achieved through ge-
netic operators. The tree classes are crossover, mutation and re-
placement. When EAs are used in complex problems, these are
often implemented in parallel, allowing the reduction of proces-
sing times and the increase of the search capability of the
algorithm.

Therefore, if the search is performed in parallel, the EAs could
provide many possible solutions instead of only one. PEAs are
classified into three main groups based on the number of popu-
lations involved in the algorithm, the treatment of each population
and the genetic operators involved in the intra- or inter-evolution:
Unique Population and Parallel Evaluation (UP&PE), Unique Po-
pulation and Overlapped Neighborhoods (UP&ON), and Multiple
Populations and Migration (MP&M) [36]. In this paper, for ESS-IM
we have worked with the first scheme, while the predecessor ESS
involves the last schemes, which are briefly discussed below.

3.3.1. Unique population and parallel evaluation – UP&PE
In this scheme, the algorithm operates in a single population of

individuals where the fitness value of each individual is evaluated
in parallel by the workers. Subsequently, the results are sent to the
central or master process. In each generation a certain number of
individuals, according to their fitness value, are stochastically se-
lected. Next, these selected individuals are modified, by the re-
combination or mutation, to form a new population. It is im-
portant to note that the selection operator is applied considering
the entire population. This scheme is also known as master-slave
according to [36], which nowadays is considered as Master–
Worker paradigm [30,31] (see Fig. 6).

3.3.2. Multiple populations and migration – MP&M
The scheme of multiple populations is also known as “dis-

tributed EA” or EA with “island model”, where each island re-
presents a different population of individuals. Unlike the single
population scheme, it operates with multiple populations or is-
lands, and genetic operators (mutation and crossover) are applied
among individuals of the same population. Furthermore, there
appears a new operator named “migration”, which performs the
movement of individuals among islands, in order to add diversity
and prevent premature convergence or stagnation in local values.
In Fig. 7 we can see the characterization of such implementation.

Each of these schemes allows different kinds of parallelism and
can have different advantages and disadvantages based on the
type of problem. The PEA of ESS corresponds to the UP&PE
scheme. And in our latest development, we have implemented ESS
with the MP&M scheme, whose results we are called ESS with
Island Model (ESS-IM) [22,23].
4. Evolutionary-statistical system with island model – ESS-IM

ESS-IM is a general-purpose parallel uncertainty reduction
method that can be applied to different propagation models such
as avalanches, landslides, wildfires, among others. In this work, it
has been used as a parallel uncertainty reduction method for
wildfires spread prediction. ESS-IM uses PEAs to optimize the
parameters search that feed the model. In ESS-IM, the input
parameters set (or scenarios) are represented by individuals in
different populations of a given size, where each individual con-
tains a value for each input parameters. These parameters re-
present the input variables (e.g., vegetation type, moisture con-
tent, speed and wind direction, slope, etc.), which determine the
behavior of a wildfire. Besides, the use of PEA to guide the search,
ESS-IM uses statistical analysis to calibrate the results.

The PEA in ESS-IM corresponds to a MP&M scheme. The PEA
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Fig. 7. A schematic diagram of a multiple-population parallel EA.

Fig. 8. ESS-IM communication model and population treatment representation. CS-Master: Master Calibration Stage, OS-Master: Master Optimization Stage.
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with MP&M scheme has been implemented in ESS-IM using two
parallel levels as can be seen in Fig. 8, each of them called as
follow: Level 1 (Master/WorkerL1 (Master–Worker model [30,31])
or L1) and Level 2 (Master/WorkerL2 or simply L2). L1 consists of
a monitor process that is responsible for controlling the entire
prediction process through communication with each of the is-
lands. The monitor process carries out the initialization of the is-
lands by sending the necessary information so that each island
executes its EA. For his part, L2 is formed by a master process
(responsible for controlling the operation of the island) and n
workers (who carry out the simulation and the fitness evaluation
of the population and the sending of the results to the master). It is
important to emphasize that in each execution of ESS-IM there
exist j concurrent instances of L2 running in parallel (based on the
initialization parameters and the number of processes used). In
addition to sending the individuals to the workers (in order to be
evaluated in parallel) the master process carries out the evolution
of the population. Also, it is responsible for the migration of in-
dividuals based on a certain communication topology and the
migration parameters configured. Finally, for each simulation step,
once all the master processes of each island have sent their results
to the monitor process, this one is responsible for carrying out the
fire line prediction. Each prediction represents the state of the fire
line of the wildfire at that given instant of time.



Real Fire Line on time i Real Fire Line on time i-1 Migration K
ign

 i-1 K
ign

 i

Fig. 10. Evolutionary-Statistical System with Island Model: FS: Fire Simulator; PEA: Parallel Evolutionary Algorithm; PEAF : Parallel Evolutionary Algorithm (fitness eva-
luation); OS: Optimization Stage; SS: Statistical Stage; SK: Search Kign; Kign: key value used to make the prediction model; FF: Fitness Function; CS: Calibration Stage; SSM:
monitor Statistical Stage; MKign: monitor K valueign ; FP: Fire Prediction; PFL: Predicted Fire Line; RFLx: Real Fire Line on time x; PV: Parameters Vectors.
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Fig. 9. Graphical representation of fitness function calculation.
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4.1. Methodology of the ESS-IM

As we mentioned above, ESS-IM performs the wildfire behavior
prediction using two levels of parallelism. On the one hand, a
global level called L1, where each island evolves in parallel and a
Monitor supervises all the prediction process. On the other hand, j
inner levels L2, where the evaluation of the fitness of each in-
dividual is performed in parallel.

To better understand the operation of ESS-IM, see Fig. 10. As we
can see, the system has two Optimization Stages (OS-Worker and
OS-Master), two Calibration Stages (CS-Master and CS-Monitor)
and a Fire Prediction stage (FP). The OS-Worker stage performs
the evaluation of the population through two internal stages called
Fire Simulation (FS) and PEA Fitness Evaluation ( PEAF). The FS
stage must be fed with real fire line of wildfire at time −ti 1 ( −RFLi 1)
and the input parameters contained in an individual. The simu-
lation performed in FS is carried out by the simulator fireSim
(which will be seen as a black box). FireSim is based on the
Rothermel model [37,38] and it is implemented with the fireLib
library [39]. FireLib encapsulates the Behave fire behavior algo-
rithm [40], which uses an automata cell approach to evaluate
wildfire behavior. The terrain is divided into cells and a neigh-
borhood relationship enables to evaluate whether a cell will be
burned and what time the fire will reach those cells. The simulator
input is an initial ignition map and the output consists in a map of
the terrain in which each cell is labeled with its ignition time.

When the FS ends the simulation, the resulting maps are in-
serted into the PEAF stage. PEAF compares the simulated map with
the real map in the time instant ti (RFLi) and, depending on the
difference between both maps, it determines the fitness value for
each individual (i.e., the value will be between 0 and 1, in which a
value equal to 1 represents a perfect prediction, and a fitness value
equal to 0 would indicate the maximum error). The fitness func-
tion is based on the Jaccard-Index [41] and it is described in the
following equation:



Unburned  cells Real burned cellsFinal simulated cell Incorrect cellsCells labeled with K
ign

=X 

Fig. 11. (a) Burned real map representation and (b)–(f) example of a search of the Key Ignition Value Kign.

Table 1
Description of the experiments: dimensions, slope, and time step for each
experiment.

Experiment Width (m) Length (m) Slope
(deg)

Initial
time
(min)

Increment
(min)

End
time
(min)

A 89 91 21 2.5 2.5 12.5
B 20 30 6 2.0 2.0 10.0
C 89 109 21 2.0 2.0 14
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= | ∩ |
| ∪ | ( )Fitness
A B
A B 2

In which A represents the set of cells in the real map without
the subset of burned cells before starting the simulations, and B
represents the set of cells in the simulation map without the
subset of burned cells before starting the simulation. Fig. 9 shows
an example of how to calculate this function for a terrain made up
of 4�4 cells. In this case, the fitness function value is 4/7¼0.5717 .

All the process of OS-Workern stage is performed in parallel,
having as many instances as number of processes involved in the
resolution of the problem. All individuals evaluated by OS-Worker
n have previously been sent to each worker from the master.

It is important to note that the functions of PEAF stage re-
present a portion of the complete PEA. The rest of the PEA pro-
cessing is performed in the master process, more precisely in the
OS-Master stage. OS-Master stage operates on each of the islands
and is responsible for carrying out the genetic evolution (operation
performed by iterating until the population reaches a certain level
of quality). This stage is also responsible for carrying out the se-
lection of individuals to migrate, send, receive, and also is in
charge of replacing the migrated individuals in the current po-
pulation. That is, the creation of the population, individuals' se-
lection, crossover, mutation and communication functions with
every worker. Once the population reaches a certain level of fit-
ness, it is introduced into the calibration stage (CS-Master), which
is also carried out in the master process. Within this stage, the
evolved population feeds a sub stage called Statistics System (SS).
SS implements the concept of “Ignition Probability” as seen in
Section 3.1, i.e., the output of SS (a probability map) is used for
dual purpose. On the one hand, the probability maps are used as
input to the sub stage SK (Search Kign) to search the key ignition
value. During this stage, the Fitness Function (FF, see Eq. (2)) is
used to evaluate the probability map. The Kign value represents the
wildfire behavior pattern in a specified time interval, and it is used
to make the prediction in the next instant of time ( +ti 1). In other
words, Kign value consists in a particular value of Pign, whose as-
sociated probability map provides the best matching with the real
fire propagation. The concept of Kign is represented graphically in
Fig. 11. On the other hand, the output of SS is introduced to CS-
Monitor in the sub-stage SSM (monitor Statistical Stage) along
with the j Kign values calculated by the j islands. SSM stage has
three modes of operation: (a) Best Kign, (b) Global Kign and (c) First
Kign. Best consists in choosing the better Kign of all the islands, task
that demands that all the islands operate synchronously. This
means that an island will not be able to advance to the next si-
mulation step unless all the islands have finished the current step.
Global consists in calculating a Kign value based on a statistical
map that considers the aggregation of every statistical map gen-
erated by each island (Pmap). Finally, First uses the first Kign value
found (i.e., uses the Kign values of the island that converges faster).
Once the SSM stage calculates or selects which Kign used, this
(MKign) is sent to the fire prediction stage (FP). Finally, the FP stage
performs the fire line prediction (PFL) for each simulation step
based on the probability map Pmap and the MKign value calculated
by SSM stage.
5. Experimental results

In this section, we present the results obtained after applying
ESS-IM to three instances of controlled burns carried out in the
field, particularly in Serra de Lousã (Gestosa, Portugal), where the
fires were part of the SPREAD project (Gestosa field experiments
2002 and 2004) [42].

In order to verify whether the increased parallelism in the PEA
offers improvements in the prediction quality, the results of the
ESS-IM were compared with those produced by ESS and Classical
Prediction.



Fig. 12. Graphical representation of an individual and a population.

Table 3
Configuration parameters in the experiments.

Parameter Value

Number of islands 2–6
Size of populations 25–200
Individuals to migrate 16%
Migration criteria The best individuals
Migration rate Each 2 generations
Direction of migration Clockwise
Number of nodes per island 2–6
Communication topology Ring
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For each of the experiments we have defined discrete time
steps representing the advance of the fire front. The number of
time steps is not the same in each experiment since all plots
correspond to different dimensions. Table 1 shows the details of
each experiment (i.e., dimensions, slope, initial time, final time
and the final value used to discretize comparisons over the time).
As we have seen, all cases have got different sizes and the ex-
periment C has different slopes from the other two cases. Another
important value to consider is the initial time, because ESS and
ESS-IM use a calibration step that cannot make predictions in the
first instant of time.

It is important to note that ESS and ESS-IM have a non-de-
terministic behavior, since individuals from each population are
generated using stochastically generated seeds. Due to this, we
used a set of 30 different seeds, i.e., each experiment was executed
30 times for each method. Therefore, the values obtained are the
average of the results for each experiment.

5.1. Parameters configuration

It is important to note that ESS-IM operates with two sets of
input parameters: (a) those that feed the wildfires prediction
model and (b) the parameters that determine the runtime en-
vironment of the PEA and the assigned resources to each island.

5.1.1. Model parameters
The first group of parameters directly affects wildfire behavior

simulated by the model. It is important to remember that one
possible configuration of these input parameters determines a
particular individual in the population of an island. For some of
these parameters, certain ranges have been specified, in particular
those parameters that present uncertainty (taking into account the
knowledge of the experiments in the field and the models of Ro-
thermel [37,38]). Table 2 shows the set of parameters that define
an individual and the uncertainty associated ranges, based on
Behave Plus 5.0 [43]. Furthermore, in Fig. 12 we can see how a
population is composed by different individuals.

5.1.2. Initial configuration parameters
As we mentioned earlier, there are different initial
Table 2
Parameters that compose an individual and uncertainty associated ranges.

Parameter Description Range Description/unit

Model Rothermel fuel model 1–13 Fuel models
WindSpd Wind speed 0–80 min/h
WindDir Wind direction 0–360 Degrees clockwise from

north
Slope Surface slope 0–81 Degrees
Aspect Direction a slope faces 0–360 Degrees clockwise from

north
M1 Dead fuel moisture in 1 h 1–60 Percent
M10 Dead fuel moisture in 10 h 1–60 Percent
M100 Dead fuel moisture in 100 h 1–60 Percent
Mherb Live herbaceous fuel

moisture
30–300 Percent
configuration parameters that condition the system prediction
operation, and they are mainly related to the performance of the
PEA (in addition to the parameters of the serial EA). Each of these
parameters (see Table 3) impact in different ways on the results
generated by the method, as well as on its performance. This paper
does not include any analysis of the impact of these parameters on
the prediction quality or on the method's performance. The con-
figuration parameters that have been used for this work are listed
in Table 3.

5.2. Experiments

The data used in this section belongs to the prescribed fires
which were started in different points on the ground surface. In all
of them, the fire was started linearly ( Figs. 13a, 14a and 15a). In
Figs. 16a, 17a and 18a, we represent time (x-axis) and quality of
prediction (y-axis) achieved by each method. It is important to
recall that a fitness value equal to 1 indicates a perfect prediction
and a value close to 0 indicates a very poor prediction. Similarly, in
Figs. 16a 17b and 18b we represent time in the x-axis and in the y-
axis the improvement (in percentage) that each method performs
in each prediction step is shown, and it is calculated as follows:

( ) =
( ( ) − ( ) )

( ) ( )
im

F method F cp x
E cp

%
100

3
step

step step

step

where imstep represents the improvement of each prediction step,
and ( )F method step corresponds to the prediction quality value ob-
tained by each method in each step, ( )F cp step corresponds to the
fitness value obtained by classical prediction (i.e., without using
any uncertainty reduction method), and ( )E cp step represents the
classical prediction error in each prediction step (i.e., − ( )F cp1 step).
Thus, the imstep indicates how much the negative impact of the
lack of precision in the input parameters is reducing.

Although the comparison includes ESS, ESS-IM and Classical
Prediction, the graphs contain five lines or four boxes because ESS-
IM has three modes of operation: Best, Global and First. It is
important to remember that the methods compared here (ESS and
ESS-IM) use a Calibration Stage (CS), therefore, in the first simu-
lation step these methods cannot make any predictions because in
such step the first Kign is calculated. To better understand this
concept see Fig. 10. As already shown, the prediction is performed
by the FP stage, which, to make the prediction in time instant iþ1
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Fig. 13. Experiment A: (a) real fire during the burns in the Gestosa area and (b) real spread representation.
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(at time i), needs to have the Kign of instant i�1. Since the be-
ginning of the prediction chain, there is no calculated Kign;
therefore, it is not possible to make a prediction in the first time
instant. As from the second simulation step, the calibration pro-
cedure is overlapped with the prediction phase, without inter-
rupting the subsequent steps. Finally, it has to be observed that, at
the time instant i, the K iign is calculated and it will be used to
predict iþ2 at the time instant iþ1. The results of each of the
experiments are discussed below.

5.2.1. Experiment A
In this experiment each cell was 3.28083�3.28083 ft, the rest

of parameters, such as wind conditions and moisture content,
were variable (except the slope that is 21°). Of the total duration of
the wildfire, the initial value was taken at 2.5 min with increments
of 2.5 min. In Fig. 13b we can observe the real fire spread for each
prediction step, where the black color (i.e., unb.) represents the
cells that have not been reached by fire (i.e., unburned cells).

This experiment is divided into a 4 simulation step (step 1:
from 2.5 to 5 min, step 2: from 5 to 7.5 min, step 3: from 7.5 to
10 min and step 4: from 10 to 12.5 min) and 3 prediction steps
(step 1: from 5 to 7.5 min, step 2: from 7.5 to 10 min and step 3:
from 10 to 12.5 min), this is due to the calibration process at the
beginning of the prediction chain. It is important to note that in
Fig. 16a x-axis values correspond to the prediction steps in min-
utes (moments in which the prediction quality of each method is
evaluated), for that reason ESS and ESS-IM do not have values in
(a) Real fire.

Fig. 14. Experiment B: (a) real fire during the burns in t
the prediction step corresponding to 5 min instead of the classic
method used, because this does not perform calibration of para-
meters. We can see that in the first two prediction steps (minute
7.5 and minute 10), ESS-IM (Best and Global) have obtained better
results than ESS. However, these values decrease in the last step
(12.5 min) and they are reached by the result obtained by ESS. In
turn, ESS-IM First obtained a very good result in the first step. In
the second step, its prediction quality decreases, taking a value
close to the one in ESS, and in the last step it reaches the worst
performance of the experiment. The highest fitness value
(0.845428) is reached by ESS-IM Best at time 7.5 (first prediction
step). In addition, both ESS-IM and ESS exceed the classical
method at all-time points. Meanwhile, the worst performance of
ESS-IM is given by ESS-IM First, which, although in the first pre-
diction step, the method gets a good quality value, this is lower
than ESS-IM Best and even ESS-IM Global.

Fig. 16b shows the improvement achieved by each method at
each predicting step with respect to the classical prediction; note
that the highest improvement value (82.80%) is obtained by ESS-
IM Best in minute 10, however, the best prediction quality value is
7.5 min, this is because the classic method gets its worst perfor-
mance in terms of prediction quality in minute 10 (0.0908463). It
is important to note that prediction quality increases in ESS-IM
over ESS are related to the diversity increased in the populations
that constitute the PEA in the optimization stage. Fig. 19 presents
the standard deviation of each method for each experiment. As
can be seen, ESS-IM Global is the method that presents the most
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Fig. 15. Experiment C: (a) real fire during the burns in the Gestosa area and (b) real spread representation.
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continuous behavior (in Experiment A) followed by ESS-IM Best.
This is a very important advantage of ESS-IM Best, as in addition to
generating the best prediction values, which is the main objective
sought, this methodology provides a certain level of reliability as
the predictions from one step to another do not vary significantly.

5.2.2. Experiment B
Unlike the previous experiment, it has smaller cell and slope

values; the cell size is 1.09361�1.09361 ft and the slope 6°. The
total duration of the fire is less than 2 min (8 min) than experi-
ment A and, because it has the same number of simulation steps (4
steps) and prediction steps (3 steps), the time between each step is
also lower (2 min). In Fig. 14b we can observe the real fire spread
for each prediction step; it is important to note that the fire has a
reduced duration and it does not cover 50% of the land. The pre-
diction quality values are plotted in Fig. 17a and the associated
improvement values appear in Fig. 17b. First, it is important to note
that all methods have a very similar behavior, which may be due to
the short duration of the fire, as well as due to the small number of
cells involved in every step of prediction. Although we can see that
ESS-IM offers the best quality in all prediction steps, it can also be
observed that all methods provide very similar values, with some
minor differences. This can also be seen in Fig. 19. The best pre-
diction value is reached in the first prediction step (6 min) by ESS-
IM Best with a fitness value equal to 0.899909 followed by ESS
with a value of 0.8962068. Here it is evident that the diversity
increased in the PEA of ESS-IM is not reflected in a significant
increase in prediction quality, while in the remainder steps a little
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Fig. 16. Experiment A: comparison between the fitness (
more significant difference is observed. In terms of method im-
provement (Fig. 17b), we can see that in the first prediction step,
all methods get values greater than 80%. In the case of ESS-IM and
ESS, over 85% of improvement is obtained. In the second step the
improvement values are high (75.81%, best value obtained by ESS-
IM). And as the last prediction step, although the improvement
decreases (64.89%, best value obtained by ESS-IM), fitness values
are of good quality: 0.788061 for ESS-IM Best and 0.768779 for
ESS. It is important to note that although ESS-IM Best exceeds very
little difference from ESS, the margin of improvement available is
very small, therefore, a small increase in quality prediction must
be very well accepted.

5.2.3. Experiment C
This experiment was set up with a cell size of

3.28083�3.28083 ft, with a slope equal to experiment A (21°). It
has a total duration of 12 min, being this one of longer duration.
The sampling interval was set at 2 min between each step by a
total amount of 6 simulation steps and 5 prediction steps from
4 min. In Fig. 15b we can observe the real fire spread for each
prediction step. In Fig. 18a we can see the fitness function values
generated by each method. In contrast to the previous experiment,
here we can see that in the presence of a longer duration fire, ESS-
IM Best, differentiates even more from the other methodologies
obtaining the highest quality levels in all prediction steps. The best
prediction value is reached by ESS-IM Best in minute 10 with a
fitness value equal to 0.785167 followed by ESS-IM Global with a
value of 0.7585468. An important thing to consider is that,
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Fig. 17. Experiment B: comparison between the fitness (a) and improvement (b) obtained for each method.
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although this experiment shows more steps than previous ex-
periments, the prediction quality of ESS-IM Best remains constant
between 0.73424225 and 0.785167. This is demonstrated in Fig. 19,
where we can see that ESS-IM Best is the method that has the
most continuous behavior. In terms of method improvement (see
Fig. 18b), it shows that the best performance is obtained at minute
12 with a value of 73.88%.

5.2.4. Additional considerations
Beyond the previously presented analysis, it is important to

stress some details that may be considered in the development or
improvement of future methodologies. Although the best predic-
tion quality and uncertainty reduction values have been achieved
mostly by ESS-IM Best, there exist isolated cases where less
computational cost methodologies generate acceptable results. For
example, in experiment A (Fig. 16a) in the last prediction step the
results obtained by ESS-IM First are acceptable compared with
those obtained by ESS-IM Best or Global. Experiment B (Fig. 17a) is
a very interesting case for our analysis, as it can be seen at every
prediction step with less expensive methods, from a computa-
tional point of view, very similar results were obtained with ESS-
IM Best. Experiment C (Fig. 18a) is no exception to this analysis
since the same thing occurs in the experiments A and B. The
specific case corresponds to the small difference in prediction
quality obtained at minute 8 among all methods, although the
ESS-IM Best gets the best results, the other methodologies have
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very close values. Based on this, a version of ESS-IM that operates
with the three modes in parallel could be considered in the future:
Best, Global and First, and by a certain degree of intelligence
determine when a solution of lower computational cost can be
considered acceptable and advance to the next prediction step
reducing the processing time.
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5.3. Performance analysis

To assess the performance in terms of computational cost we
used the measure known as Speed-Up [44]. This measure is very
much used in the parallel computing area and it is defined as the
ratio between the time required to solve a problem using a single
processing unit and the time required to solve the same problem
with x identical processing elements. The calculation is performed
as follows:

=
( )

S
T
T 4P

P

1

where T1 represents the serial execution time and TN the parallel
execution time with P being processing units.

The experiments were carried out on a cluster Linux with 32
processing units (Intel-Q9550 processors), 4 GB of RAM, Gigabit
Ethernet network and under a message passing environment MPI
[45]. In Fig. 20 we can observe the results of speed-up analysis of
ESS and ESS-IM. The graph corresponds to the use of 1, 2, 4, 8, 16
and 32 processing units. To draw up each curves of speed-up, the
executions were carried out on the three experiments and the
average value for each configuration of processing units was
recorded.

As we can see, the best performance in terms of computing
efficiency is obtained by ESS-IM First, this is because this method
makes prediction with the results of the first island that has ended
(i.e., prioritizes finalize in the shortest time possible). Second, it is
ESS-IM Global, from which a similar performance to ESS-IM Best
can be expected since both perform almost the same amount of
processing. But it is important to note that ESS-IM Best has more
communications between islands which impacts negatively on
performance. Beyond this, it is important to note that, using 16
processing units ESS-IM performance is very similar to other
methodologies. Therefore, an effort should be made to improve
resource optimization so that the method can offer higher pre-
diction quality and so be the method with the best performance.

It is also important to note that although ESS-IM has only been
evaluated with the Rothermel model, the same can be used with
other fire behavior models and even with other models with
propagation features. This is because ESS-IM is designed in a
modular way allowing the change of the core simulation, even
maintaining independence of computational cost since ESS-IM can
be configured – based on the model requirements and the sce-
narios size to be simulated – with the amount of required com-
putational resources (when available).
6. Conclusions

This work has focused on a very important problem that re-
quires a quality prediction to minimize the negative effects on the
ecosystem and the environment: wildfires. The main objective in
the field of forest fire simulation is to create tools to assist in
firefighting, whether by fire prevention, fire management, fore-
casting or firefighting. Based on this, it is vital to develop appro-
priate forecasting tools to take the right decisions. For this reason,
we have developed a method that increases the parallelism level
of the Parallel Evolutionary Algorithm (PEA) included in a previous
methodology ESS. This method is called Evolutionary-Statistical
System with Island Model (ESS-IM), because it incorporates the
concept of multiple populations or islands, increasing the diversity
and contributing to generating more accurate solutions (i.e., pre-
dictions that are closer to reality). ESS-IM is a method to reduce
uncertainty in the input parameters of the prediction model, in
this case it is applied to predict wildfires spreading. However, due
to its modular features, this method could be applied to other
propagation models such as floods and avalanches.

In the present work we have taken another step forward in the
area of fire safety, specifically in the field of wildfire behavior
prediction, through the ESS-IM uncertainty reduction method.
This kind of tools provides significant contribution to the fire safety
field, since predicting fire behavior may provide wide range of
benefits such as: optimization of resources for firefighting, for
evacuation measures, for risk analysis of lands depending on the
type of vegetation and topography, among others. Since the pre-
diction results should be obtained in the shortest time possible,
the method has been developed in a parallel environment. The
performance of the method has been compared with a previous
methodology and evaluated according to three parameters:
(a) prediction quality, (b) improvement of each method, and
(c) computational cost. The results, in terms of prediction quality
and improvement, are encouraging, as ESS-IM exceeds its pre-
decessor in more than 90% of evaluations conducted, and al-
though, in terms of computational performance, the results ob-
served are slightly lower, they are overlapped by the gain in pre-
diction quality. Because of the favorable results obtained with ESS-
IM, it is necessary to continue working with the aim of optimizing
the use of computing resources, for example: analyzing the effect
of different communication topologies, evaluating those migration
strategies that offer better results, analyzing evolutionary para-
meters tuning, incorporating graphics processing units (GPUs),
among others.
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