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Abstract

In this work we explore the three-node multi-terminal lossy source coding problem which seems to
offer a formidable mathematical complexity. We derive an inner bound to the general rate-distortion region
of this problem which is a natural extension of the seminal work by Kaspi [1] on the interactive two-
terminal source coding problem. It is shown that this (rather involved) inner bound contains several rate-
distortion regions of some relevant source coding settings. In this way, besides the non-trivial extension
of the interactive two terminal problem, our results can be seen as a generalization and hence unification
of several previous works in the field. By specializing the inner bound to particular cases we obtain some

novel rate-distortion regions for several lossy source coding problems.
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I. INTRODUCTION
A. Motivation and related works

Distributed source coding is an important branch of study in information theory with enormous
relevance for the present and future technology. Efficient distributed data compression may be the only
way to guarantee acceptable levels of performance when energy and link bandwidth are severely limited
as in many real world sensor networks. The distributed data collected by different nodes in a network
can be highly correlated and this correlation can be exploited at the application layer, e.g., for target
localization and tracking or anomaly detection. In such cases cooperative joint data-compression can
achieve a better overall rate-distortion trade-off than independent compression at each node.

Complete answers to the optimal trade-offs between rate and distortion for distributed source coding
are scarce and the solution to many problems remains elusive. Two of the most important results in
information theory, Slepian-Wolf solution to the distributed lossless source coding problem [2] and Wyner-
Ziv [3] single letter solution for the rate-distortion region when side information is available at the decoder
provided the kick-off for the study of these important problems. Berger and Tung [4], [S] generalized
the Slepian-Wolf problem when lossy reconstructions are required at the decoder. It was shown that the
region obtained, although not tight in general, is the optimal one in several special cases [6]-[9] and
strictly suboptimal in others [10]. Heegard and Berger [11] considered the Wyner-Ziv problem when
the side information at the decoder may be absent or when there are two decoders with degraded side
information. Timo et al [12] correctly extended the achievable region for many (> 2) decoders. In [13]
and the references therein, the complementary delivery problem (closely related to the Heegard-Berger
problem) is also studied. The use of interaction in a multi-terminal source coding setting has not been so
extensively studied as the problems mentioned above. Through the use of multiple rounds of interactive
exchanges of information explicit cooperation can take place using distributed/successive refinement
source coding. Transmitting “reduced pieces” of information, and constructing an explicit sequential
cooperative exchange of information can be more efficient that transmitting the “total information” in
one-shot.

The value of interaction for source coding problems was first recognized by Kaspi in his seminal
work [1], where the interactive two-terminal lossy source coding problem was introduced and solved
under the assumption of a finite number of communication rounds. In [14] it is shown that interaction
strictly outperforms (in term of sum rate) the Wyner-Ziv rate function. There are also several extensions
to the original Kaspi problem. In [15] the interactive source coding problem with a helper is solved when

the sources satisfy a certain Markov chain property. In [16]—[18] other interesting cases where interactive
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cooperation can be beneficial are studied. To the best of our knowledge, a proper generalization of this

setting to interactive multi-terminal (> 2) lossy source coding has not yet been reported.

B. Main contributions

In this paper, we consider the three-terminal interactive lossy source coding problem presented in
Fig. 1. We have a network composed of 3 nodes which can interact through a broadcast rate-limited
—error free— channel. Each node measures the realization of a discrete memoryless source (DMS) and is
required to reconstruct the sources from the other terminals with a fidelity criterion. Nodes are allowed
to interact by interchanging descriptions of their observed sources realizations over a finite number of
communication rounds. After the information exchange phase is over, the nodes try to reconstruct the
realization of the sources at the other nodes using the recovered descriptions.

The general rate-distortion region seems to pose a formidable mathematical problem which encompass

several known open problems. However, several properties of this problem are established in this paper.

General achievable region

We derive a general achievable region by assuming a finite number of rounds. This region is not a trivial
extension of Kaspi’s region [1] and the main ideas behind its derivation are the exchange of common
and private descriptions between the nodes in the network in order to exploit the side informations at
the different nodes. As in the original Kaspi’s formulation, the key to obtaining the achievable region is
the natural cooperation between the nodes induced by the generation of new descriptions based on the
past exchanged descriptions. However, in comparison to Kaspi’s 2 node case, the 3 nodes interactions
make significant differences in the optimal action of each node at the encoding and decoding procedure
in a given round. At each encoding stage, each node need to communicate to two nodes with different
side information. This is reminiscent of the Heegard-Berger problem [11], [12], whose complete solution
is not known, when the side information at the decoders is not degraded. Moreover, the situation is a
bit more complex because of the presence of 3-way interaction. This similarity between the Heegard-
Berger problem leads us to consider the generation of two sets of messages at each node: common
messages destined to all nodes and private messages destined to some restricted sets of nodes. On the
other hand, when each node is acting as a decoder it needs to recover a set of common and private
messages generated at different nodes (i.e. at round [ node 3, needs to recover the common descriptions
generated at nodes 1 and 2 and the private ones generated also at nodes 1 and 2). This is reminiscent
of the Berger-Tung problem [5]-[7], [19] which is also an open problem. Again, the situation is more

involved because of the cooperation induced by the multiple rounds of exchanged information. Particularly
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(X174, D12) (X7, Dy3) (X34, Da1) (X35, Dos)

(X%, D31) (X3, D32)

Figure 1: Three-Terminal Interactive Source Coding. There is a single noiseless rate-limited broadcast
channel from each terminal to the other two terminals. D;; denotes the average per-letter distortion

between the source X' and X{; measured at node ¢ for each pair 7 # j.

important is the fact that, in the case of the common descriptions, there is a cooperation based on the
conditioning on the previous exchanged descriptions in addition to the cooperation naturally induced by
the encoding-decoding ordering imposed by the network. This explicit cooperation for the exchange of
common messages is accomplished through the use of a special binning technique to be explained in
Appendix B.

Despite the complexity of the problem, we give an inner bound to the rate-distortion region that
allows us to recover the two node Kaspi’s region. We also recover several previous inner bounds and
rate-distortion regions of some well-known cooperative and interactive —as well as non-interactive— lossy

source coding problems.

Special cases

As the full problem seems to offer a formidable mathematical complexity, including several special
cases which are known to be long-standing open problems, we cannot give a full converse proving the
optimality of the general achievable region obtained. However, in Section V we provide a complete answer
to the rate-distortion regions of several specific cooperative and interactive source coding problems:

(1) Two encoders and one decoder subject to lossy/lossless reconstruction constraints without side infor-
mation (see Fig. 2).
(2) Two encoders and three decoders subject to lossless/lossy reconstruction constraints with side infor-

mation (see Fig. 3).
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(3) Two encoders and three decoders subject to lossless/lossy reconstruction constraints, reversal delivery
and side information (see Fig. 4).
(4) Two encoders and three decoders subject to lossy reconstruction constraints with degraded side
information (see Fig. 5).
(5) Three encoders and three decoders subject to lossless/lossy reconstruction constraints with degraded
side information (see Fig. 6).
Interestingly enough, we show that for the two last problems, interaction through multiple rounds could
be helpful. Whereas for the other three cases, it is shown that a single round of cooperatively exchanged
descriptions suffices to achieve optimality. Table I summarizes the characteristics of each of the above

mentioned cases.

Cases | Ri Ry R3 | Constraints at Node 1 Constraints at Node 2 Constraints at Node 3

(1) #0 | #0 | =0 & (is not reconstructing & (is not reconstructing Pr (X;}l # Xl") <e
any source) any source) E [d( X5, X;“‘)] < Dss

@ [#o|#0] =0 Blaxn xn]<Dn | br(Xn2x1) < Pr (K # Xi') <e
E [d(X3, X3)| < Daz

B | #0|#£0|=0] E [d(XIé,XS)} <Dy | Pr (X;a # X?) <e Pr (ng ” X;) <e
E [d(X31, X1)] < Da
@ | A0 | #£0| =0 | E[dXkX))| <Dw | B|dX5,X7)] < D E [d(X5, X7)] < Dan
E [d(X3, X3)| < D2

(5) | #0 | #0 | #0 | o (is not reconstructing Pr (X;l # X{L) <e Pr (Xg‘l £ Xf) <e
any sources) E [d(X35, X5)| < Das | B[d(X5, X5)] < Dao

Table I: Special cases fully characterized in Section V.

Next we summarize the contents of the paper. In Section II we formulate the general problem. In
Section III we present and discuss the inner bound of the general problem. In Section IV we show
how our inner bound contains several results previously obtained in the past. In Section V we present
the converse results and their tightness with respect to the inner bound for the special cases mentioned
above providing the optimal characterization for them. In Section VI we present a discussion of the
obtained results, their limitations and some numerical results concerning the new optimal cases from the
previous Section. Finally in Section VII we provide some conclusions. The major mathematical details

are relegated to the appendixes'.

! Additional mathematical details are provided in an extended version available online on ArXiv/1502.01359.
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Notation: We summarize the notation. With ™ and upper-case letters X" we denote vectors and
random vectors of n components, respectively. The i-th component of vector z" is denoted as z;. All
alphabets are assumed to be finite. Entropy is denoted by H(-) and mutual information by I(-;-). Ha(p)
denotes the entropy associated with a Bernoulli random variable with parameter p. With h(-) we denote
differential entropy. Let X, Y and V be three random variables on some alphabets with probability
distribution pxyy. When clear from context we will simple denote px (x) with p(x). If the probability
distribution of random variables X,Y,V satisfies p(x|yv) = p(x|y) for each x,y, v, then they form a
Markov chain, which is denoted by X -e- Y —e- V.. The probability of an event A is denoted by Pr{ A},
where the measure used to compute it will be understood from the context. Conditional probability of a
set A with respect to a set B is denoted as Pr {A‘B } Following [20] the set of strongly typical sequences
associated with random variable X is denoted by [?(}e where € > 0. Similarly, given 2™ € X" we also
denote the set of conditional typical sequences by 7'[§L,| X]e(a;”). We simply denote these sets as 7" when
clear from the context. The cardinal of set A is denoted by ||.A||. The complement of a set is denoted
by A. With Z>, and R>z we denote the integers and reals numbers greater than « and 3 respectively.

co (A) denotes the convex hull of a set A € RV, where N € N,

II. PROBLEM FORMULATION

Assume three discrete memoryless sources (DMS’s) with alphabets and probability mass function
(pmf) given by (Xl x Xo X X3,0x,X, Xg) and arbitrary bounded distortion measures: d; : X; x /'?j —
R>p, jEM £ {1,2,3) where {)E'J }jem are finite reconstruction alphabets®. We consider the problem
of characterizing the rate-distortion region of the interactive source coding scenario described in Fig. 1.
In this setting, through K rounds of information exchange between the nodes each one of them will
attempt to recover a lossy description of the sources that the others nodes observe, e.g., node 1 must
reconstruct —while satisfying distortion constraints— the realization of the sources (X%, X§') observed by

nodes 2 and 3. Indeed, this setup can be seen as a generalization of the well-known Kaspi’s problem [1].

Definition 1 (K -step interactive source code): A K-step interactive n-length source code, denoted for

*The problem can be easily generalized to the case in which there are different reconstruction alphabets at the terminals. It
can also be shown that all the results are valid if we employ arbitrary bounded joint distortion functions, e.g. at node 1 we use

d(XQ,XS;X27X3)‘
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the network model in Fig. 1, is defined by a sequence of encoder mappings:

Fhar x <J21 X Jg x o x Ja b x j?f*l) — Ji, (D
125 x (TEx Th s x T L) — T4 2
g 5 (T X T x T x T) — T4 3)

with I € [1 : K] and message sets: J; = {1,2,...,Z!} , T} € Z>¢, i € M, and reconstruction mappings:

gij X< Q) (Thx - x TK) — Al i 4)
meM, m#i

The average per-letter distortion and the corresponding distortion levels achieved at the node ¢ with
respect to source j are:

E|d; (X7 %) <Dy ijeM, i#) 5)

with d (2", y") = 13"

= > m—1d(®m,Ym). In compact form we denote a K-step interactive source coding

by (n, K, F,G) where F and G denote the sets of encoders and decoders mappings.

Remark 1: The code definition depends on the node ordering in the encoding procedure. Above we
defined the encoding functions { f{, fé, f?l)}ll; assuming that in each round node 1 acts first, followed
by node 2, and finally by node 3, and the process beginning again at node 1.

Definition 2 (Achievability and rate-distortion region): Consider tuples R £ (R, Ry, R3) and D £
(D12, D13, D21, Da3, D31, D32). The rate vector R is (D, K)-achievable if Ve > 0 there is ng(e, K) € N

such that Vn > ng(e, K) there exists a K -step interactive source code (n, K, F,G) with rates satisfying:
1 X
~ g | T < Rite i€ M 6)
1=1
and with average per-letter distortions at node ¢ with respect to source j:
B [d(X], X5)| < Dij+e ijeM, i#], ™

where XZ; = gij (Xi”, e, mri (VAR jnff)) , 1 # j € M. The rate-distortion region R3(D, K)
is defined by:
R3(D, K) = {R ‘R is (D,K)—achievable} )

Similarly, the D-achievable region R3(D) is given by R3(D) = J¥_, Rs(D, K)*, that is:

R3(D) = {R : R is (D, K)-achievable for some K € ZZl} . )
3Notice that this limit exists because it is the union of a monotone increasing sequence of sets.
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Remark 2: By definition R3(D, K) is closed and using a time-sharing argument it is easy to show

that it is also convex VK € Z>1.

Remark 3: R3(D, K) depends on the node ordering in the encoding procedure. Above we defined the
encoding functions { f{, fé, f?l)}l]i1 assuming that in each round node 1 acts first, followed by node 2,
and finally by node 3, and the process beginning again at node 1. In this paper we restrict the analysis
to the canonical ordering (1 — 2 — 3). However, there are 3! = 6 different orderings that generally
lead to different regions and the (D, K)-achievable region defined above is more explicitly denoted
R3(D, K, 0.), where o, is the trivial permutation for M. The correct (D, K)-achievable region is:

Rs(D,K)= |J Rs(D,K,0) (10)
ceX (M)

where X'(M) contains all the permutations of set M. The theory presented in this paper for determining

R3(D, K, 0.) can be used on the other permutations o # o, to compute (10)*.

ITI. INNER BOUND ON THE RATE-DISTORTION REGION

We first present a general achievable rate-region where each node at a given round [ will generate
descriptions destined to the other nodes based on the realization of its own source, the past descriptions
generated by a particular node and the descriptions generated at the other nodes and recovered by the
node up to the present round. In order to precisely describe the complex rate-region, we need to introduce
some definitions. For a set A, let C (A) = 24\ {A, } be the set of all subsets of A minus A and the
empty set. Denote the auxiliary random variables:

Uisi;, SeCM),i¢S 1=1,... K. (11)

Auxiliary random variables U;_,5; will be used to denote the descriptions generated at node ¢ and at

round [ and destined to a set of nodes S € C (M) with i ¢ S. For example, U;_,23; denote the description

generated at node 1 and at round [ and destined to nodes 2 and 3. Similarly, U;_,2; will be used to denote
the descriptions generated at node 1 at round [ and destined only to node 2. We define variables:

W;,;) = Common information® shared by the three nodes available at node i at round [ before encoding,

Vis,1,i) = Private information shared by nodes in S € C (M) available at node i € S, at round [, before

encoding.

*It should be mentioned that this is not the most general setting of the problem. The most general encoding procedure will
follow from the definition of the transmission order by a sequence t1,t2,13, ..., t x| xx With t; € M. This will cover even the
situation in which the order can be changed in each round. To keep the mathematical presentation simpler we will not consider

this more general setting.

>Not to be confused with the Wyner’s definition of common information [21].
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In precise terms, the quantities introduced above for our problem are defined by:

Wi ={U1523 k> U213 & Ussizp by

Wi =Wy U Ui—asg s Wiz = W UUzsas s
Vg 1=1U1-2,k, U2H1,k}i;_:11 s Vigg2) = Vizg Y Uisa
Vs =tU1-3., Ui Vs = Vs Y Ui-s
Vioz.21=1U2-3.k> Usoso i i Vi23,,3] = V23,20 U U230 -

Before presenting the general inner bound, we provide the basic idea of the random coding scheme
that achieves the rate-region in Theorem 1 for the case of ' communication rounds.

Assume that all codebooks are randomly generated and known to all the nodes before the information
exchange begins and consider the encoding ordering given by 1 — 2 — 3 so that we begin at round
I =1 in node 1. Also, and in order to maintain the explanation simple and to help the reader to grasp
the essentials of the coding scheme employed, we will consider that all terminal are able to recover the
descriptions generated at other nodes (which will be the case under the conditions in our Theorem 1).
From the observation of the source X', node 1 generates a set of descriptions for each of the other
nodes connected to it. In particular it generates a common description to be recovered at nodes 2 and
3 in addition to two private descriptions for node 2 and 3, respectively, generated from a conditional
codebook given the common description. Then, node 2 tries to recover the descriptions destined to it
(the common description generated at 1 and its corresponding private description), using X3 as side
information, and generates its own descriptions, based on source X} and the recovered descriptions from
node 1. Again, it generates a common description for nodes 1 and 3, a private description for node 3
and another one for node 1. The same process goes on until node 3, which tries to recover jointly the
common descriptions generated by node 1 and node 2, and then the private descriptions destined to him
by node 1 and 2. Then generates its own descriptions (common and private ones) destined to nodes 1
and 2. Finally, node 1 tries to recover all the descriptions destined to it generated by nodes 2 and 3 in
the same way as previously done by node 3. After this, round [ = 1 is over, and round [ = 2 begins
with node 1 generating new descriptions using X7*, its encoding history (from previous rounds) and the
recovered descriptions from the other nodes.

The process continues in a similar manner until we reach round [ = K where node 3 recovers the
descriptions from the other nodes and generates its own ones. Node 1 recovers the last descriptions
destined to it from nodes 2 and 3 but does not generate new ones. The same holds for node 2 who only

recovers the last descriptions generated by node 3 and thus terminating the information exchange proce-
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dure. Notice that at the end of round K the decoding in node 1 and node 2 can be done simultaneously.

This is due to the fact that node 1 is not generating a new descriptions destined to node 2. However,

in order to simplify the analysis and notation in the appendix we will consider that the last decoding of

node 2 occurs in round K + 1°. After all the exchanges are done, each node recovers an estimate of the

other nodes, source realizations by using all the available recovered descriptions from the K previous

rounds.

Theorem 1 (Inner bound): Let R3(D, K) be the closure of set of all rate tuples satisfying:

K
! ! !
Ry = Z (Rglzza + Rglm + Rglz&)

Ry = Z (Rglm + Rglu + RSL:%)

=y

K
5= (B, 15 + RY,, + RY,)

! ! ! ! !
Ry + Ry = Z (R§l>23 + Réi)lfﬂ + R(L?) + Rélﬁa + Rglﬂ + Rélﬁ

=1
ey ! -1 ! !

Ry + R = Z (R11>23 + R:(;—n)z + Rglﬁ + R:(a—>2) + Rglcz + Réll)
=1

K
I I ! I I !
Ry + Ry = Z (Réln:a + ROy + RO+ RY, + RY + Rf(ilﬂ)
=1

where’ for each [ € [1: K|:
1_,23 > 1 X1;Ur93 X2W[1,l]V[12,z,1]V[23,l—1,3])
R2_>13 > I Xo;Us13y X3W[2,l]V[lg,z,1]V[23,l,2]>

(
(
(
(
(
(

R3a12 >1

X3;Us 12,1 X1W[3,l]V[12,z,2]V[13,l,3])
RYL% + RQ%B > I (X1Xo; U1—>23,lU2—>13,l‘XSW[LZ]V[13,l,1]V[23,l,2])

Rglm + R;ng > I ( X2X3;Uz13 lU3—>12l‘X1W[2 q V2, Q]V[13l3])

Rgle;; + R;le > 1 X1X3;U1 5231 Us 12, 1‘XQW[?),Z—I]V[12,Z,I]V[23,l—1,3})

(12)

13)

(14)

(15)

(16)

A7)

(18)
19)
(20)
2D
(22)

(23)

®This is clearly a fictitious round, in the sense that there is not any true encoding of information in it. In this way, there is

no any practical loss if we consider this additional round.

"Notice that these definitions are motivated by the fact that at round 1, node 2 only recovers the descriptions generated by

node 1 and at round K + 1 only recovers what node 3 already generated at round K.
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R:HQ > I (Xs; U3—>2,l—1‘X2W[2,l]V[23,l—1,3]v[12,l,2])
1%2 > I Xy U1—>2,l‘X2W[2,l]V[23,l,2]V[12,l,1]>
RﬁLz + R:HQ > I (X1X3; U1—>2,1U3—>12,1—1‘X2W[2,z}V[23,Z—1,3]V[12,z,1])

1%3 > I (Xy; Ul—>3,l‘X3W[3,l]V[23,l,3]v[13,l,1])

(

(

(

(
Rgﬁg > 1 (Xz; U2—>3,l‘X3W[3,l]V[23,l,2]v[13,l,3])
Rﬁig + R2*>3 > 1 (X1X2, U1—>3lU2—>3Z‘X3W3l]v[23,l,2]v[13,l,1])
Rzﬁl > 1 (Xz; U2—>1,l‘X1W[1,1+l]V[12,l,2]V[13,l+1,1])
Rgﬁl > 1 (X3, Us—1 I‘X1W[1 1+ V12,041, 1]V[13,l,3])
Rgll - Réll > I (Xsz; U2—>1,lU3—>1,l‘X1W[1,1+1]V[IZ,I,Q]V[13,1,3]>

with R = RETY — 0 and Uy, 50 = Uss.x1 =@ for S€C(M) and i ¢ S.

i—S T Ti—S

With these definitions the rate-distortion region satisfies®:

J RsD,K)CRsD,K),
peP(D,K)

(24)
(25)
(26)
27
(28)
(29)
(30)
3D

(32)

(33)

where P(D, K) denotes the set of all joint probability measures associated with the following Markov

chains for every [ € [1: K]:

1) Ui2s1 = (X1, Winy) o (X2, X3, Viza1), Vass Viesa2) o

2) Uis21 - (X1, Wi Vi) o (Xa, X3, Vs 1y, Viesn2)

3) Ui—sy o (X1, Wi, Viisay) - (Xo, X3, V2.2 Viea,2)) »

4) Uz—13) o (X2, Wiay)) o= (X1, X3, V2.2 Vs ,3)s Vizsi2) »

5) Ua—ig o (Xo, Wiz, Vinea2) = (X1, X3, Vs 3, Vizsa2)

6) Uz—y31 -~ (X2, Wiz, Vizsr2) = (X1, X3, Vg1, Visng)
7) Ussi21 o (X3, Wzgy) o (X1, Xo, Viaus1,1 Viisaa) Vizsn3) »
8) Us—1,1 - (X3, Win a1y Vinaazy) & (X1, Xo, Via i1y, Vizsa3)

9) Us—21 - (X3, Wi 41)s Vipsag) o= WX, Xo, Vinaaga,)s Visasy)

81t is straightforward to show that the LHS of equation (33) is convex, which implies that the convex hull operation is not

needed.
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and such that there exist reconstruction mappings:

9i5 (X, Viij k1,0, k041) = Xy (34)

with |E {dj(Xj,Xij)} < D;; for each 7,5 € M and i # j.
The proof of this theorem is relegated to Appendix C and relies on the auxiliary results presented in
Appendix A and the theorem on the cooperative Berger-Tung problem with side information presented

in Appendix B.

Remark 4: It is worth mentioning here that our coding scheme is constrained to use successive decoding,
i.e., by recovering first the coding layer of common descriptions and then the coding layer of private
descriptions (at each coding layer each node employ joint-decoding). Obviously, this is a sub-optimum
procedure since the best scheme would be to use joint decoding where both common and private
informations can be jointly recovered. However, the analysis of this scheme is much more involved.
The associated achievable rate region involves a large number of equations that combine rates belonging
to private and common messages from different nodes. Also, several mutual information terms in each
of those rate equations cannot be combined, leading to a proliferation of many equations that offer little

insight to the problem.

Remark 5: The idea behind our derivation of the achievable region can be extended to any number M
(> 3) of nodes in the network. This can be accomplished by generating a greater number of superimposed
coding layers. First a layer of codes that generates descriptions destined to be decoded by all nodes. The
next layer corresponding to all subsets of size M — 1, etc, until we reach the final layer composed by
codes that corresponding to private descriptions for each of the nodes. Again, successive decoding is
used at the nodes to recover the descriptions in each of these layers. Clearly, the number of required
descriptions (and the number of equations in the rate-distortion region) will increase exponentially with

the number of nodes.

Remark 6: It is interesting to compare the main ideas of our scheme with those of Kaspi [1]. The
main idea in [1] is to have a single coding tree shared by the two nodes. Each leaf in the coding tree
is a codeword generated either at node 1 or 2. At a given round each node knows (assuming no errors
at the encoding and decoding procedures) the path followed in the tree. For example, at round [/, node
1, using the knowledge of the path until round ! and its source realization generate a leaf (from a set of
possible ones) using joint typicality encoding and binning. Node 2, using the same path known at node
1 and its source realization, uses joint typicality decoding to estimate the leaf generate at node 1. If there

is no error at these encoding and decoding steps, the previous path is updated with the new leaf and both
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-node 1 and 2- know the updated path without error. Node 2 repeats the procedure. This is done until
round K where the final path is known at both nodes and used to reconstruct the desired sources.

In the case of three nodes the situation is more involved. At a given round, the encoder at an arbitrary
node is seeing two decoders with different side information®. In order to simplify the explanation consider
that we are at round [ in the encoder 1, and that the listening nodes are nodes 2 and 3. This situation
forces node 1 to encode two sets of descriptions: one common for the other two nodes and a set of
private ones associated with each of the listening nodes 2 and 3. Following the ideas of Kaspi, it is
then natural to consider three different coding trees followed by node 1. One coding tree has leaves that
are the common descriptions generated and shared by all the nodes in the network. The second tree is
composed by leaves that are the private descriptions generated and shared with node 2. The third tree is
composed by leaves that are the private descriptions generated and shared with node 3. As the private
descriptions refine the common ones, depending on the quality of the side information of the node that
is the intended recipient, it is clear that descriptions are correlated. For example, the private description
destined to node 2, should depend not only on the past private descriptions generated and shared by
nodes 1 and 2, but also on the common descriptions generated at all previous rounds in all the nodes and
on the common description generated at the present round in node 1. Something similar happens for the
private description destined to node 3. It is clear that as the common descriptions are to be recovered by
all the nodes in the network, they can only be conditioned with respect to the past common descriptions
generated at previous rounds and with respect to the common descriptions generated at the present round
by a node who acted before (i.e. at round / node 1 acts before than node 2). The private descriptions,
as they are only required to be recovered at some set of nodes, can be generated conditioned on the
past exchanged common descriptions and the past private descriptions generated and recovered in the
corresponding set of nodes (i.e., the private descriptions exchanged between nodes 1 and 2 at round [,
can only be generated conditioned on the past common descriptions generated at nodes 1, 2 and 3 and
on the past private descriptions exchanged only between 1 and 2).

We can see clearly that there are basically four paths to be cooperatively followed in the network:

e One path of common descriptions shared by nodes 1, 2 and 3.
¢ One path of private descriptions shared by nodes 1 and 2.
e One path of private descriptions shared by nodes 1 and 3.

e One path of private descriptions shared by nodes 2 and 3.

“Because at each node the source realizations are different, and the recovered previous descriptions can also be different.
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It is also clear that each node only follows three of these paths simultaneously. The exchange of common
descriptions deserves special mention. Consider the case at round / in node 3. This node needs to recover
the common descriptions generated at nodes 1 and 2. But at the moment node 2 generated its own
common description, it also recovered the common one generated at node 1. This allows for a natural
explicit cooperation between nodes 1 and 2 in order to help node 3 to recover both descriptions. Clearly,
this is not the case for private descriptions from nodes 1 and 2 to be recovered at node 3. Node 2 does
not recover the private description from node 1 to 3 and cannot generate an explicit collaboration to
help node 3 to recover both private descriptions. Note, however, that as both private descriptions will be
dependent on previous common descriptions an implicit collaboration (intrinsic to the code generation)
is also in force. In appendix B we consider the problem (not in the interactive setting) of generating
the explicit cooperation for the common descriptions through the use of what we call a super-binning

procedure, in order to use the results for our interactive three-node problem.

IV. KNOWN CASES AND RELATED WORK

Several inner bounds and rate-distortion regions on multi-terminal source coding problems can be

derived by specializing the inner bound (33). Below we summarize only a few of them.

1) Distributed source coding with side information [5], [19]: Consider the distributed source coding
problem where two nodes encode separately sources X} and X7 to rates (R;, R2) and a decoder by
using side information X3 must reconstruct both sources with average distortion less than D; and Da,
respectively. By considering only one-round/one-way information exchange from nodes 1 and 2 (the
encoders) to node 3 (the decoder), the results in [5], [19] can be recovered as a special case of the inner

bound (33). Specifically, we set:
Ur523,=Us130 = Uz12) = U2, = U1, = U3z 1, = Uz = I, VI
Urs3,=Uss3, =92, VI > 1.
In this case, the Markov chains of Theorem 1 reduce to:
Uisgi—o-X1 o (X2, X3,Us31), Uszi o Xo - (X1, X3,U1531) (35)
and thus the inner bound from Theorem 1 recovers the results in [19]:

Ry > I(X1;U153,1|1X3U2-3.1), R2 > 1(X2;Uz31|X3U153,1) (36)

Ry + Ry > I(X1X2; U153,1U2531/X3) . 37)
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2) Source coding with side information at 2-decoders [11], [12]: Consider the setting where one en-
coder observes X" and transmits descriptions to two decoders with different side informations (X%, X3)
and distortion requirements Dy and Ds3. Again we consider only one way/round information exchange
from node 1 (the encoder) to nodes 2 and 3 (the decoders).

In this case, we set:
Us13,=Uz 5120 = Uz 510 = U341, = U339, = U3, =9, VI
Ur523,=U15231 = U142, =U13, =9, VI > 1.
The above Markov chains imply:
(Ui1523,1,U152,1, Ur3,1) == X1 - (X2, X3) (38)
and thus the inner bound from Theorem 1 reduces to the results: in [11], [12]
Ri>max {I(X1;Ui931|X2) , 1(X1;U155031]X3) }

+1(X1; U521 XoUrs23,1) + 1(X1; U531 X3U1523.1) - (39)

3) Two terminal interactive source coding [I]: Our inner bound (33) is basically the generalization
of the two terminal problem to the three-terminal setting. Assume only two encoders-decoders which
observe X{" and X¥ must reconstruct the other terminal source with distortion constraints D and Do,

and after K rounds of information exchange. Let us set:
Ur523,=Us 4131 = U312 = U153, =U3z 1, =Us3; =Us 0, =, VI, X3=0 .
The Markov chains become
Uiy - (X1, Vo) & Xo,  Ussiy - (Xo, Vg g) < Xa, (40)
for [ € [1: K] and thus the inner bound from Theorem 1 permit us to obtain the results in [1]:

Ry > I(X1; Vg k41,171 X2),  Ra > 1(X2; Vg k41,21 X1) - 41)

4) Two terminal interactive source coding with a helper [15]: Consider now two encoders/decoders,
which observe X and X7, and must reconstruct the other terminal source with distortion constraints Do
and D3, respectively, using K communication rounds. Assume also that another encoder X{' provides
both nodes (2, 3) with a common description before beginning the information exchange and then remains

silent. Such common description can be exploited as coded side information. Let us set:

Us—13,=Uz 120 = U153, = Uis9) = U3 = Uss1y = U1 = @, VI, Upno3; =9, VI > 1.
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The Markov chains reduce to:
Uis2s1 o= X1 o (Xo, X3),  Uzzy o (X2, U231, Viez ) & (X1, X3) (42)
Us—y2,1 = (X3, U231, Vios,,3) & (X1, X2) - (43)

An inner bound to the rate-distortion region for this problem reduces to (using the rate equations in

our Theorem 1):

Ry > max {I(X1;U15231|X2), [(X1; U231

X3)} . (44)

Ry > I(X2; Vg3 k41,2][ X3U15231), Rs > I(X3; Va3, k41,21 X2U1231) - (45)

This inner bound contains as a special case the rate-distortion region in [15]. In that paper it is further
assumed (in order to have a converse result) that X; -~ X3 -e— X5. When this is the case, the lower

bound of R1 is I(Xl; U1H2371|X2).

V. NEW RESULTS ON INTERACTIVE AND COOPERATIVE SOURCE CODING

A. Two encoders and one decoder subject to lossy/lossless reconstruction constraints without side infor-

mation

Consider now the problem described in Fig. 2 where encoder 1 wishes to communicate the source X'
to node 3 in a lossless manner while encoder 2 wishes to send a lossy description of the source X3’ to
node 3 with distortion constraint Dsq. To achieve this, the encoders use X communication rounds. This
problem can be seen as the cooperating encoders version of the well-known Berger-Yeung [6] problem.
A practical situation where this setting could be of interest arises in wireless sensor networks (WSN)
where the nodes collect measurements of spatially correlated sources and a fusion center (FC) requires
the reconstruction of the different sources with distinct degrees of fidelity. As the information is correlated
the agents can cooperate in order to efficiently exploit the sources dependence structure. The cooperation
is done with exchanges of messages over the wireless medium. Because of the broadcast nature of the
wireless channel the FC have also access to those messages.

Theorem 2: The rate-distortion region of the setting described in Fig. 8 is given by the union over all

joint probability measures px, x, such that there exists a reconstruction mapping:

U2~>13

932 (X1,Uss13) = X3 with E[d(Xg,X'gg)] < Dy, (46)
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Figure 2: Two encoders and one decoder subject to lossy/lossless reconstruction constraints without side

information.

of the set of all tuples satisfying:

Ry > H(X1|X2) , (G
Ry > I(X9; Us—13|X1) (48)
Ry + Ry > H(X1) + I(X2; Us—13| X1) . (49)

The auxiliary random variable Us_,13 has a cardinality bound of |[Ua_ 13| < || X1 ]]]| X2 + 1.

Remark 7: 1t is worth emphasizing that the rate-distortion region in Theorem 2 outperforms the non-
cooperative rate-distortion region first derived in [6]. This is due to two facts: the conditional entropy
given in the rate constraint (47) which is strictly smaller than the entropy H(X;) present in the rate-
region in [6], and the fact that the random description Us_,13 may be arbitrarily dependent on both sources
(X1, X2) which is not the case without cooperation [6]. Therefore, cooperation between encoders 1 and
2 reduces the rate needed to communicate the source X; while increasing the optimization set of all

admissible source descriptions.

Remark 8: Notice that the rate-distortion region in Theorem 2 is achievable with a single round of
interaction K = 1, which implies that multiple rounds do not improve the rate-distortion region in this

case. This holds because node 3 reconstructs X7 in a lossless fashion.

Remark 9: Although in the considered setting of Fig. 8 node 1 is not supposed to decode neither a
lossy description nor the complete source X2, if nodes 1 and 3 wish to recover the same descriptions the
optimal rate-region remains the same as given in Theorem 2. The only difference relies on the fact that
node 1 is now able to find a function g2 (X1, Us—13) = X 12 which must satisfy an additional distortion
constraint I£ |:d(X2, X 12)} < Djqs. In order to show this, it is enough to check that in the converse proof
given below the specific choice of the auxiliary random variable already allows node 1 to recover a

general function X12[t] = g12 (Xl[t], U2_>13[ﬂ) for each time t € {1,...,n}.
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Proof: The direct part of the proof simply follows by choosing:
Us12,=U13) = U2, =Us1) =Us3; = Us1; = Uzy0; = @, VI
Urs231=X1, Uiso3y=Ussi3; =2V I1>1,

being straightforward to show that the rate-distortion region (33) reduces to the desired region. We now
proceed to the proof of the converse.

If a pair of rates (Rj, R2) and distortion D3y are admissible for the K-step interactive cooperative
distributed source coding setting described in Fig. 8, then for all ¢ > 0 there exists ng(e, K), such
that Vn > ng(e, K) there exists a K-step interactive source code (n, K, F,G) with intermediate rates
satisfying + S log||FH < Ri 4 ¢, i € {1,2} and with average per-letter distortions with respect to

the source 2 and perfect reconstruction with respect to the source 1 at node 3:

E [d(Xg,ng)} < Dspte, Pr (X{‘ ”] ng) <e, (50)
where
Xgy = gao (A", ) L Xgy = gan (A, ) (51)
For each t € {1,...,n}, define random variables U,_, 3, as follows:
Up_y13p = (jl[LK]vjz[l:K}le[lzt—l]vXl[t+1:n]> : (52)

By the condition (50) which says that Pr (X{l # X;ﬁ) < ¢ and Fano’s inequality [22], we have
H(XTIX3,) < Pr (X7 # X3 ) logy (1] = 1) + Ha (Pr(XT # X31)) 2nen, (53)

where €,(¢) — 0 provided that ¢ — 0 and n — oo.

1) Rate at node 1: For the first rate, we have

n(By+e) > 1 (71 xp1x7) (54)
W o H (X1 Xs) — H (X?\ngl[“q jg[”q) (55)
(b) N
> nH(X1|Xz) — H(X}|X5) (56)
®)
> nH(X1|X2) — ney, (57)

where
o step (a) follows from the fact that by definition of the code the sequence jQ[LK] is a function of
the source X7 and the vector of messages jl[l:K],
o step (b) follows from the code assumption that guarantees the existence of a reconstruction function
X5 = g (", A,

o step (c) follows from Fano’s inequality in (53).
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2) Rate at node 2: For the second rate, we have

n(Ry+e) > 1 () x7x ) (58)

(a)

> 1 (jg[l K, X1) +ZI< ];XQ[t}|X1[t]X1[t+1:n]X1[1:t—1]X2[1:t—1}) (59)

b -~ .

Uy (jg[l K, Xl) + ZI <\72[1’K]X1[t+1:n]X1[1:t—1]X2[1:t—1];X2[t]|X1[t}) (60)
=1

(o)

> 1 (jQ[I A xp ) +ZI Up—1311; Xopg| X1p) (61)
=1

d

@y (~72[1 A, X?) + ZI Us—1310); X201 X1jg), Q = t) (62)
=1

Yy (52[1 A, X1> + nl (Usoasiqp; X201 X11q) @) (63)

o))

> 1 (5 X7) o (Taos Xa X)) (64)

(9)

> nl (U2~>133X2|X1> ; (65)

where

step (a) follows from the chain rule for conditional mutual information and non-negativity of mutual
information,

step (b) follows from the memoryless property across time of the sources (X', X),

step (c) follows from the non-negativity of mutual information and definitions (52),

step (d) follows from the use of a time sharing random variable ) uniformly distributed over the
set {1,...,n},

step (e) follows from the definition of the conditional mutual information,

step (f) follows by letting a new random variable Usyiz 2 (Us—1310): Q)

step (g) follows from the non-negativity of mutual information.

3) Sum-rate of nodes 1 and 2: For the sum-rate, we have

n(Ry+ Ry +2¢) > H (‘71[”(]) +n(Ry +€) (66)
D (7)1 (A X7) + 0l (Tazs Xol X1 (67)
- <j1[1:K]|j2[1:K]> ) <j1[1:K]; j2[1:K]>
+1 (JQ[I:K];X?) +nl <ﬁ2a13;X2|X1> (68)
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v

I (jl[uq; X{L|j2[1:K]> iy (jl[uq; j2[1:K]> <j[1 K] n)

n (Upong; Xa| X1 ) (69)

= +

=n [H(Xl) +1 (ﬁzﬂlg;XﬂXl)} ~H (Xﬁjl[”q)

+ 1 (xp g gt ) (70)
© . K] [

>n |H(Xy)+1 <U2~>13;X2|X1>:| - H (X?|~71[1'K]~72[1'K]> (71)
@ . .

>n|H(X1)+1 (U2—>13;X2|X1)} — H(X7'X3)) (72)
(e ~

>n |H(X)+1 (U2—>13;X2’X1) - 671} ) (73)

where
o step (a) follows from inequality (64),
o step (b) follows from the memoryless property across time of the source X{* and standard properties
of mutual information,
e step (c¢) follows from non-negativity of mutual information,
o step (d) follows from the code assumption that guarantees the existence of reconstruction function
X 3 =931 (j (K] WA [ K]> and from the fact that conditioning reduces entropy,
o step (e) from Fano’s inequality in (53).
4) Distortion at node 3: Node 3 reconstructs lossless Xg‘l = g31 <j[1 K] jQ[LK]) and lossy X:?Q =
932 <\71[1:K],~72[1:K]>. For each t € {1,...,n}, define a function ng[t] as the t-th coordinate of this

estimate:

X32[t] (Uss13p) = 9321 (j K] «7[1 K) (74)

The component-wise mean distortion verifies

Dy + > E |d (Xz, g (71, 1) )| 75)
rlzilE { <X2 Q]7X32[Q} (Uss30) ) ‘ Q= t} (76)
t
= E |d (X210 Xsziq) (V2-131a) )| 7
=K [d <X2,)?32 ([72413)” ; (78)

where we defined function )?32 by

X3 <(72—>13) = X3 (Q, UZHIS[Q}) = X32[Q} (U2»13[Q}) . (79)
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(X{L% D12)

X?
Ry
Xg =~ X7
Rl R2 %
(X§L27 D32)
Ry n

X5 o~ X7
Figure 3: Two encoders and three decoders subject to lossless/lossy reconstruction constraints with side

information.

This concludes the proof of the converse and thus that of the theorem. [ ]

B. Two encoders and three decoders subject to lossless/lossy reconstruction constraints with side infor-

mation

Consider now the problem described in Fig. 3 where encoder 1 wishes to communicate losslessly the
source X{' to nodes 2 and 3 while encoder 2 wishes to send a lossy description of its source X3’ to nodes
1 and 3 with distortion constraints D15 and Dsg, respectively. In addition to this, the encoders overhead
the communication using K communication rounds. This problem can be seen as a generalization of the
settings previously investigated in [4], [6]. A practical motivation for this model could be a heterogeneous,
decentralized and multi-task WSN where the nodes collect spatially correlated information and require
to estimate, with varying degrees of quality, the source measurements of other nodes or some predefined

functions of them (see [23] and the references therein for more specific examples).

Theorem 3: The rate-distortion region of the setting described in Fig. 3 is given by the union over all

joint probability measures px, x,X,U,_,,sUs,_, Satisfying the Markov chain
(U213, Ua3) = (X1, X2) o= X3 (80)
and such that there exists reconstruction mappings:

932 (X1, X3, Us 13, Uz y3)=X32 with E [d(X27X32)] < D3y , (81)

912 (X1,Uz13)=X12 with B [d(XQ,Xm)] < D3z, (82)
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of the set of all tuples satisfying:

Ry > H(X1|X2) , (83)
Ry > I(Uz—3; Xo| X1) + I(Ua—y3; Xo2|Ua—13X1X3) (84)
Ri + Ry > H(X1|X3) + I(Uz—13Uz3; Xo| X1X3). (85)

The auxiliary random variables have cardinality bounds: |Us—13]] < ||X1||||X2]| + 2 and |Us—3]| <
[0 [[[] X[t 13| + 1.

Remark 10: Notice that the rate-distortion region in Theorem 3 is achievable using a single round of
interactions K = 1, which implies that multiple rounds do not improve the rate-distortion region in this

case.

Remark 11: It is worth mentioning that cooperation between encoders reduces the rate needed to

communicate the source X, while increasing the optimization set of all admissible source descriptions.
Proof: The direct part of the proof follows by choosing:
Us12,=U1531 = U0 = Uss1y =Us1; = Uz = &, VI
Ur—23=Urs231 = X1, Uiz =Uss13;=Uss3 =V I>1.

and Us_13,1 = Us—s13 and Ua_,31 = Us_,3 are auxiliary random variables that according to Theorem 1

should satisfy:
Uss13 = (X1, Xo) o X3, Usz, - (Uzosi3, X1, X2) - X3. (86)

Notice, however that these Markov chains are equivalent to (80). From the rate equations in Theorem 1,

and the above choices for the auxiliary random variables we obtain:
Ri23>H (X1 X2) , 87)

Ro_s13>max {I(X2; Us—13|X1), I(X2; Us—s13| X1 X3) }

=1(X2; Uz 13| X1) (88)
Ri93 4+ Ro13>H(X1|X3) + I(X2; Us—13| X1 X3) (89)
Ry_,3>1(Xo; Us—3|Us—13X1X3) . (90)

Noticing that Ry = Rj_,23 and Ry = R2_;13+ Ra_,3 the rate-distortion region (33) reduces to the desired
region. We now proceed to the proof of the converse.
If a pair of rates (R;, R2) and distortions (Di2, D32) are admissible for the K-step interactive coop-

erative distributed source coding setting described in Fig. 3, then for all ¢ > 0 there exists ny(e, K),
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such that Vn > ng(e, K) there is a K-step interactive source code (n, K, F,G) with intermediate rates

satisfying:

K

1

HE log || 7| < Ri+¢, i€ {1,2} 91)
=1

and with average per-letter distortions with respect to the source 2 and perfect reconstruction with respect

to the source 1 at all nodes:

Pr (XfL # X%) <e, Pr (X{l # Xg‘l) <eg, (92)
E[d(X3. X}y)] < Di» +e, E[d(X], X5)] < Dy + <. 93)
where
Xy = g (A" A X)L Ky =g (A XT) (94)
X3 = ga (~711 gyt X:?) . X3 =gm (~71 X XQ) : (95)
For each ¢t € {1,...,n}, define random variables Us—13p¢ and Us_,3p) as follows:

K K
Upizp £ (jl[l g jz[l ! Xl[l:tfl}vXl[t+1:n}7X3[1:tfl]> , Ussaiy) £ (Uasasgs Xsjrting> Xopia—1])
(96)
The fact that these choices of the auxiliary random variables satisfy the Markov chain (80) can be obtained

from point 6) in Lemma 5. By the conditions (92) and Fano’s inequality, we have
H(XTIX3y) < Pr (X7 # X3 ) logy (1] = 1) + Ha (Pr(XT # X31)) 2 e, (O7)
H(XT|X5) < Pr (X7 # X5 ) logy (17| = 1) + Ho (Pr(XT # X31)) 2 e, 98)

where €, (¢) — 0 provided that ¢ — 0 and n — oo.
1) Rate at node 1: From cut-set arguments similar to the ones used in Theorem 2 and Fano inequality,
we can easily obtain:

n(Ry+¢) > n[H(X1|X2) — €] (99)

2) Rate at node 2: For the second rate, we have

n(Rs —|—€) (j“K X{‘X;“”Xg) (100)
®

> 1 (" xp x| xy) (101)

© Z[ ( gt K]j[l X1[1:t—1) X1 [t+1:) X3[1:— 1]7X3t]|X1[t]> (102)
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+

I (Jl[l K]j[l K] X1 X [1:m) X3 [1:0—1) X34 1:m) Xo[1:0—1)5 X2 [ X1 X3[t]> } (103)

=
R

[I (Ussaspgs Xapg 1 Xapg) + 1 (Usssaspgs Xopg | X Xap)

-
Il

1

+1 (Ussspy; X2[t}’Xl[t]XS[t}UQHB[t])] (104)

=
[

[I (Ussazpegs Xopg | Xap) +1 (U2H3[t]§X2[t]‘Xl[t}X3[t]U2al3[t])} (105)

-+
Il

1

1=
[

[I (Uasziqp; Xo@) Xij@) @ = 1) + I (Uzosaiqps X)X @) XsiQ1Uz2-1310) @ = t) }

-+
Il

1

n[f <172—>13;X2\X1) +1 <ﬁ2—>3;X2!X1X3l72—>13>} , (106)

—~
=

g

v

where

step (a) follows from the fact that jQ[LK] is a function of the sources (X', X?3'),

step (b) follows from the fact that Jl[Q: is a function of 7, [1:K] and the source X{" and from the
non-negativity of mutual information,

step (c) follows from the chain rule for conditional mutual information and from the memoryless
property across time of the sources (X', XJ, X7),

step (d) follows from the chain rule for conditional mutual information and the definition (96),
step (e) follows from the Markov chain Us_, 31 o~ (X1py, Xopy)) o= Xspy, for all t € {1,...,n},
step (f) follows from the use of a time sharing random variable @) uniformly distributed over the
set {1,...,n},

step (g) follows by letting new random variables Us_, 13 £ (Ua—13)g)> @) and Up_ys & (Usr—31q), Q)-

3) Sum-rate of nodes 1 and 2: For the sum-rate, we have

n(Ry+ Ry +2¢) > H (") + 1 (7)) (107)
U;) (j [1: K]j[l K] X?X:?Xg) i <j1[1:K]; J2[1:K]) (108)
(®)
> ] (le]j“K X{LXQ\X;L) (109)

H (XT|X3) - (X”\Jl“ K]j21KX”) +I(J1K]J2[1 K, XQ\X?X?,)am)

©
> H(XP1X5) — HOXP&3) + 1 (o978 xg xpxs) (1)
(@)
> n[H (X1|X3)—en]+I(JlK]j[1K X;;X{LXQ) (112)
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& ZI< T T X 1 Xt X 1 X i Xofr—1s Xogg | X t]X3[t])

+ n[H (X1]X3) — €] (113)

) .

= n[H (X1|X3) — en] + Y T (Uass13i0Ua3005 Xopg | X1 X301 (114)
t=1

(9)

= n [H (X1|X3) — en + 1 (Uss1310) Uzssig); Xop0) | X 1101 X510): Q) (115)

h ~ ~

® [H (X1|X3) — en + 1 (U%lg,U%g; X2|X1X3)} , (116)

where
o step (a) follows from the fact that jl[lzK] and j2[1:K] are functions of the sources (X7', X, X%),
o step (b) follows non-negativity of mutual information,
o step (c) follows from the code assumption in (95) that guarantees the existence of reconstruction
function X2 = g31 (jll K] 7LK] Xg),
o step (d) follows from Fano’s inequality in (93),
o step (e) follows from the chain rule of conditional mutual information and the memoryless property
across time of the source (X', X, X7),
o step (f) from follows from (96),
o step (g) follows from the use of a time sharing variable ) uniformly distributed over {1,...,n},
« step (h) follows by letting new random variables Upiz 2 (Us—s131q); @) and Uz & (Ua—s3i), Q)-
4) Distortion at node 1: Node 1 reconstructs a lossy X7, = g12 <‘72[1:K},X f) It is clear that we write
without loss of generality X7, = gio (j[l K] JQLK],X{L). For each ¢t € {1,...,n}, define a function
Xu[ﬂ as being the ¢-th coordinate of this estimate X12[t] (U2_>13[t],X1[t]) = g12[1] («71 j[l K] X{‘)

It is straightforward to show, as in Theorem 2, that the component-wise mean distortion verifies

Dy +e>E [d <X27)~(12 ((72—>13,X1))} (117)
where we defined function Xi2 by
X1 ((72—>13,X1> = X12 (Q, Uassizig X11q) = Xizig) (Vassig) Xijq)) - (118)
5) Distortion at node 3: Node 3 reconstructs a lossy description X32 = g32 (j [1:K] jQ[I:K], X;}) For
each t € {1,...,n}, define a function ng[t] as being the ¢-th coordinate of this estimate:
KXot (Uasasiegs Usssie] X)) 2 gsop (jl[l:K}7J2[1:K],X§‘) : (119)

Similarly to the distortion at node 1, the component-wise mean distortion verifies

D3y +e>E [d (X2,)~(32 (ﬁ2a137 ﬁza?,,Xa))] ; (120)
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where we defined function )~(32 by )~(32 ((72%13, ﬁgﬁg, Xg) = X32[Q] (U2_>13[Q], U2_>3[Q],X3[Q]) . This

concludes the proof of the converse and thus that of the theorem. [ ]

C. Two encoders and three decoders subject to lossless/lossy reconstruction constraints, reversal delivery

and side information

Consider now the problem described in Fig. 4 where encoder 1 wishes to communicate losslessly the
source X7 to node 2 and a lossy description to node 3. Encoder 2 wishes to send a lossy description
of its source X3 to node 1 and a lossless one to node 3. The corresponding distortion at node 1 and
3 are Djo and Dsj, respectively. In addition to this, the encoders accomplish the communication using
K communication rounds. This problem is very similar to the problem described in Fig. 3, with the
difference that the decoding at node 3 is inverted. Again, a motivating example for this problem could
be in the field of multitasking on decentralized WSN. The resulting optimal region for this problem can

be seen to be a special case of Theorem 3.

(X7, D12)

X3 =~ XP
Figure 4: Two encoders and three decoders subject to lossless/lossy reconstruction constraints, reversal

delivery and side information.

Corollary 1: The rate-distortion region of the setting described in Fig. 4 is given by the union over all

joint probability measures px, x,x,U,_.,, satisfying the Markov chain
Us—y13 = (X1, X2) = X3 (121)
and such that there exists reconstruction mappings:
931 (X2, X3, Upy13)=X5 with E {d(Xthl)} < D3 , (122)

912 (X1,Uz 413)=X12 with B [d(X%Xlz)} < Da, (123)
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of the set of all tuples satisfying:

Ri>H(X1|X3) , (124)
Ry>1(Uz—y13; Xo| X1) + H(X2|Uz13X1 X3) (125)
Ry + Ro>H (X1 X5|X3) . (126)

The auxiliary random variable has cardinality bounds: |[Us— 13| < || X1 ][] X2 + 3.

Remark 12: Notice that the rate-distortion region in Corollary 1 is achievable with a single round of
interactions K = 1, which implies that multiple rounds do not improve the rate-distortion region in this

case.

Remark 13: Notice that, although node 3 requires only the lossy recovery of X7, it can in fact recover
X, perfectly. This is due to the fact that node 3 requires also the lossless reconstruction of Xs. In this
way, node 3 has the same information than node 2, which also has to recover X losslessly. This explains
the sum-rate term, which can be recognized to be the rate that guarantees the perfect recovery of X,
and X at node 3. We also see, that the cooperation helps in the Wyner-Ziv problem that exists between

node 2 and 1, with an increasing of the optimization region thanks to the Markov chain (121).

Proof: The direct part of the proof follows by making exactly the same choices for the auxiliary
variables than in Theorem 3, with the exception of Us_,31 which is chose as X5. The converse proof

follows along the same lines of the corresponding one for Theorem 3. [ ]

D. Two encoders and three decoders subject to lossy reconstruction constraints with degraded side

information

Consider now the problem described in Fig. 5 where encoder 1 has access to X; and X3 and wishes to
communicate a lossy description of X; to nodes 2 and 3 with distortion constraints Dy; and Ds;, while
encoder 2 wishes to send a lossy description of its source X} to nodes 1 and 3 with distortion constraints
D12 and D3o. To achieve this, encoders 1 and 2 communicates their descriptions using K communication
rounds. This problem can be seen as a generalization of the settings previously investigated in [19]. This
setup is motivated by the following application. Consider that node 1 transmits a probing signal X3
which is used to explore a spatial region (i.e. a radar transmitter). After transmission of this probing
signal, node 1 measures the response X; at its own location. Similarly, in a different location node 2
measures the response Xs. A natural Markov chain X; -e- X3 -~ X5 can be assumed for modeling this
situation. Descriptions of signals X; and X» have to be sent to node 3 (e.g. the fusion center) which has

knowledge of the probing signal X3 and wants to reconstruct a lossy estimate of X; and X5. Although it
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Xg

(X3, Da1)

Figure 5: Two encoders and three decoders subject to lossy reconstruction constraints with degraded side

information.

is not strictly necessary for this application we also requires that nodes 1 and 2 recover in a lossy fashion

X5 and X respectively. Nodes 1 and 2 cooperate through multiple rounds to accomplish the task.
Theorem 4: The rate-distortion region of the setting described in Fig. 5 where X; -o- X3-o- X, form a
Markov chain is given by the union over all joint probability measures px, x, X; Wi, 41 Uss. Satisfying

the following Markov chains:

Ui23; & (X1, X3, Wpy) = X2, (127)
Ua—131 = (X2, Wiay)) & (X1, X3) , (128)
Uiz ik o (X1, X3, Wp k) = X2, (129)

for all [ = [1: K], and such that there exist reconstruction mappings:

912 (X1, X3, Uisa,5, Wi y1)) = X1z with B [d(Xz,Xm)} < D2, (130)
921 (X2, Wi k1) = Xo1 with E [d(Xl,Xﬂ)} < Do , (131)

931 (X3, Wi k1), Uios i) = X3 with E [d(Xl,X?)l)] <Dz, (132)
932 (X3, Wit ik 41), U3, ) = X3 with E [d(X%X:az)] < D3, (133)

with Wy ) = {U1231, Us—s13, )4y for all I = [1: K,'° of the set of all tuples satisfying:
Ry > I(Wp g 417; X1 X3 X2) + I (U153, 15 X1Wh k411 X3) (134)

Ry > I(Wp ie41 Xl X3) . (135)

Notice that Us_y12,; = @ for all [ because R3 = 0.
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The auxiliary random variables have cardinality bounds:

-1

et o3l < (X1 ] T lehasill [Uamnsall +2, 1€ [1: K], (136)
=1
-1
ozl < 1|2t —os || T th 23l o sasall +2, 1€ (L K], (137)
=1
K
sl < 121 TT eh—esill 1ozl + 3 - (138)
=1

Remark 14: Notice that multiple rounds are needed to achieve the rate-distortion region in Theorem 4.
It is worth to mention encoders 1 and 2 cooperate over the K rounds while only during the last round
node 1 send a private description to node 3. Because of the Markov chain assumed for the sources we
observe the following:
e Only node 1 send a private description to node 3. This is due to the fact that node 3 has better side
information than 2.
o For the transmissions from node 2, both node 1 and 3 can be thought as an unique node and there
is not reason for node 2 to send a private description to node 1 or node 3.
o Notice that the there is not sum-rate. Node 3 recovers the descriptions generated at nodes 1 and 2
without resorting to joint-decoding. That is, node 3 can recover the descriptions generated at nodes

1 and 2 separately and independently.

Proof: The direct part of the proof follows by choosing:
U2y = Uz = Us12) = Uz 11 = Uz 0, = U3, =D VI, Ui,3,=0 I <K .

and Uy_,93; and Us_,13; and Uy_,3 i are auxiliary random variables that according to Theorem 1 should
satisfy the Markov chains (127)-(129). Cumbersome but straightforward calculations allows to obtain the
desired results. We now proceed to the proof of the converse. If a pair of rates (R;, R) and distortions
(D12, D21, D31, D39) are admissible for the K-step interactive cooperative distributed source coding
setting described in Fig. 5, then for all £ > 0 there exists ng(e, K), such that Vn > ng(e, K) there exists
a K-step interactive source code (n, K, F,G) with intermediate rates satisfying %Z{; log || T} <

R; 4+ ¢, i € {1,2} and with average per-letter distortions
E [d(X], X3)] < Do +e, B [d(XT,X3)] < Dy +e (139)

B [d(Xg,fqg)} <Dp+e, B [d(Xg,X;}Q)] < Dgpte, (140)
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where
Xy = g (A1 A X3) L Ky = g (7 A XX (141)
X3 =g (le] j[lK :?) , X5 =gn (j[lK] ~721K] Xz) : (142)
For each t € {1,...,n}, define random variables (U;_,3 g, Us—3 ;) and the sequences of random

variables (U193 k(1] Ua—13,k, [ ) k=[1:K] as follows:
Ul—>23,1,[t] £ (j117X3[1:t—1]aX2[t+1:n]) ) U1—>23,k,[t} = j1k , Vk=[2: K]
Ussisgg = Jo k= [1: K], U k1) = Xttt - (143)

From Corollary 4 in the Appendices we see that these choices satisfy equations (127), (128) and (129).

1) Rate at node 1: For the first rate, we have

—
=

n(Ry+e) > I (JP:K];X{LXQXQ) (144)
2 1 (g xp x| x) (145)
© Zn: I (j[l K]j[lzK}X2[1:t—1]X2[t+1:n]X3[1:t—1]X3[t+1:n]X1[1:t—1]; X1y \X2[t}X3[t]>

t=1

+1 (Jl[l K]j[LK]X3[1:t71]X2[1:t71]X2[t+1:n]; X3[t]‘X2[t}) (146)
(i) Z": I (~71[1 RNZED GTARTED GNP GHIRTRD CIEED ¢t \Xz[t]X:s[t]>

t=1

+1 (Jl[l K gl X311 X[+ 1:m]5 X3[1] |X2[t]) (147)

Z I ( gl i K}XQ[t—i-l n) X3[1:¢—1]5 X1 X3¢ |X2[t])

+1 <X3[t+1:n]X1[1:t—1];Xl[t]XQ[t]|j1[1:K]j2[1:K]X2[t+l:n]X3[1:t}) (148)
(Q Zn: I (Usoy03. 1.k, 1 U111, 117 X1 X | Xope)

t=1

+1 (U, 5,17 X U523, 1:17, 1 U2 13,1157, X 371)) (149)

@ [ <U1—>23 15 Ua 13,1 K]>X1X3|X2> +1 <U1—>3 i3 X1 |01 23, 1.5 U3 1 K]XB)]
= { (W[l K+1] X1X3!X2> +1 <U1—>3 K,X1!W[1 K+1]X3)i| (150)

where

o step (a) follows from the fact that jl[l:K] is a function of the sources (X7, X%, X¥),

o step (b) follows from the non-negativity of mutual information and from the fact that 7, LK s a
K]

function of jl[l: and the source X7,
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o step (c) follows from the chain rule for conditional mutual information and the memoryless property
across time of the sources (X7, X%, X¥),

o step (d) follows from the non-negativity of mutual information,

« step (e) follows from the Markov chain Xy, -e- (jl[lzK] jQ[I:K]X2[t+1m]X3[1:t]) © (X3t 1:m) X [1:-1])
(Corollary 4 in the appendix A), for all ¢ = [1 : n] which follows from X; -e- X3 - X».,

o step (f) follows from definitions (143) and from the non-negativity of mutual information,

o step (g) follows from the standard time-sharing arguments and the definition of new random variables,

(ie. Uy k] = (Uis2s 10k, jq)» @) and X1 £ (Xqg), Q).

The last step follows from the definition of the past shared common descriptions W j VI. It is also
immediate to show that (ﬁlﬁggyl, (72%1371) satisfies the Markov chains in (127)-(129) for all [ € [1 : K].
2) Rate at node 2: For the second rate, by following the same steps as before (not reproduced for

lack of space) we can obtain:
n(By + ) = nl (Wi sesp; Xl Xs) (151)

3) Distortion at nodes I and 2: Node 1 reconstructs an estimate X7, = g12 <\71[1:K}, g xn, X;})
while node 2 reconstructs X% = g (j [1:K] j21 K] XQ) For each t € {1,...,n}, define functions

X 12[¢) and X 21[¢] as being the ¢-th coordinate of the corresponding estimates of X 15 and X o, respectively:
gizpg (I B XT) 2 Riagyg Mg Vi - Xt Ko KiK.
921[1] <~71[1:K]a jQ[I:K]aXQ) 2 Xoig Wi, k111,000 Xopn) - (152)

The component-wise mean distortions thus verify

Dis+e>E [d (Xg,glg(j[lK K] Xl)ﬂ (153)

ZE[ <X2[t Koy Wi k11,100 U k.1 X1 X Xapa— 1]7X1[t+1n})>] (154)

- ZE [ <X2[t Totg Wik 111> U3,k [0 Xl[t]vXB[t]))} (155)

U [d (XQ;XH <W[1,K+1]7(71—>3,K,X17X3>>] ) (156)

where
o step (a) follows from (152),
o step (b) follows from Markov chain Xy -~ (Xl[t], X3, jl[uq,jQ[Mq,Xg[lzt,l],Xg,[th],
XQ[tH:n]) e (Xl[lzt—1}>X1[t+1:n]) V ¢t = [1 : n] (which can be obtained from Corollary 4 in the

appendices) and Lemma 4.
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o step (c) follows from the following relations:

X1 (W[LKH}, (71—>3,K7X17X3) 2 XTQ[Q] (W[l,KHL[Q}’ UHS,K,[Q}le[Q%XS[Q}) :
By following the very same steps, we can also show that:
Doy +e > E [d <X1,)~(21 (VA\7[1,K+1]7X2>)] ) (157)

where we used the Markov chain Xy, —o- (XQ[t],Jl[l:K],jz[lzK],Xg[lzt,l},Xz[tH:n}) - Xy ¥

t = [1: n] (which can be obtained again from Corollary 4 in the appendices) and Lemma 4.

4) Distortions at node 3: Node 3 compute lossy reconstructions )A(gll = g3 (j [1:K] jQ[IIK], Xg"”) and
X2 = g3 (jll K] j[l K ) For each ¢t € {1,...,n}, define functions Xgl[t] and ng[t] as being the
t-th coordinate of the corresponding estimates of X 2y and X 39, respectively:

S 1K 1K
Xs1 Wi 1)1 Urss i1 Xar) < 9311 (jl[ ],Jz[ ],Xff) ; (158)
5 [LK] [1:K
KXo Wi, k111,10 Uros,i 1 Xap) < 9o (J g «72[ ]7X:?) : (159)

The component-wise mean distortions can be easily analyzed following similar arguments as in the

previous theorems to obtain

Dy +2 > E |d (X1, Xar (Wi, Ui Xa) )| (160)
with X3, (VA\?[LKH], ﬁHg,K,Xa) XBI[Q] (W[1 K+1),[0)> U153,K,[Q]» X3[Q) and

Dy + & 2 E |d (Xa, Koo (Wi rc i), Uioaies X3 ) )| (161)
with Xso (VA\E[LKH}, Uls k., X3) X32[Q] (Wi, k111,001 U3, k,Q]» X3j¢)) / This concludes the proof

of the converse and thus that of the theorem. [ ]

E. Three encoders and three decoders subject to lossless/lossy reconstruction constraints with degraded

side information

Consider now the problem described in Fig. 6 where encoder 1 wishes to communicate losslessly the
source X{" to nodes 2 and 3 while encoder 2 wishes to send a lossy description of its source X3’ to
node 3 with distortion constraints D3 and encoder 3 wishes to send a lossy description of its source
X3 to node 2 with distortion constraints D»3. To achieve this, the encoders perform the communication
using K communication rounds. This problem can be seen as a generalization of the settings previously
investigated in [11]. This setting can model a situation in which node 1 generate a process X; (e.g.,
a radar probing signal). This process physically propagates to the locations of nodes 2 and 3. These

nodes measure X» and X3 respectively. If node 2 is closer to node 1 than node 3 we can assume that
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X1 —o— X5 —e— X3. In this manner, we can think that signals X5 and X3 incorporate some kind of
information about the characteristics of the surrounding area (which clearly influence the way signal X;
propagates) where node 1, 2 and 3 are. Nodes 2 and 3 then interact between them and with node 1,
in order to reconstruct X; in lossless fashion and X» and X3 with some distortion level. In this way,
nodes 2 and 3 could use the knowledge of X; and the received signals X9 and X3 (with the predefined
levels of distortion in order to limit the rate of their exchanges) to get some knowledge (in a cooperative

manner) about the physical characteristics of the areas where they are.

(X513,D23) Xgl ~ X7

(X2, Dag) X ~ X7

Figure 6: Three encoders and three decoders subject to lossless/lossy reconstruction constraints with

degraded side information.

Theorem 5: The rate-distortion region of the setting described in Fig. 6 where X; -o— X5 - X3

form a Markov chain is given by the union over all joint probability measures px, x,X;Us o150 Us 51151

satisfying the Markov chains
Usy31 —o= (X1, X2, Vjp319) = X3, Usay - (X1, X3, V3.3 == X2, (162)
Vil € [1: K], and such that there exist reconstruction mappings:

g23 (X17X27V[23,K+1,2]) = XQ?, with E [d(Xg,ng)] S D23 R

932 (X13X37V[23,K+1’2]) = X32 with IE [d(XQ,XgQ)] S D32 R
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of the set of all tuples satisfying:

Ry > H(X1[X2) , (163)
Ry > I(Vp3 k11,21 X2| X1X3) (164)
Ry > I(Vss i1 Xs| X1 X2) | (165)
Ri+ Ry > H(X1|X3) + 1 (V23 re+1,2); X2 X1 X3) - (166)

The auxiliary random variables have cardinality bounds:

-1
sl < 12Xl ] [ Itosaill iUds 2l + 3, 1€ [1: K] (167)
i=1
-1
leds o]l < 1] X5 [Uas il [ [ 125l ihs il +3, 1€ [1: K] (168)
=1

Remark 15: Theorem 5 shows that several exchanges between nodes 2 and 3 can be helpful. Node 1
transmit only once its full source at the beginning.

Proof: The direct part of the proof follows according to Theorem 1 by choosing:

Uiy =Uisy =Uss1y =Uss1y =Us 519, =2, Vie[l: K
Upyos1 = Upyiz = @, Vie[2: K]
and U231 = U131 = X1. The remaining auxiliary random variables satisty VI € [1 : K]:
Us—31 o= (X1, X2, Vja3,.2) o X3, Ussay o= (X1, X3, V]33] o Xa. (169)

With these choices and after some manipulations we obtain the desired region. For the converse, assume
that rates (R1, Ra, R3) and distortions (Da3, D32) are admissible for the K-step interactive cooperative
distributed source coding setting described in Fig. 6. Then for all £ > 0 there exists ng(e, K), such
that Vn > ng(e, K) there exists a K-step interactive source code (n, K, F,G) with intermediate rates
satisfying %lei Jog |FHI < Ri+ ¢, i € {1,2,3} and with average per-letter distortions with respect

to the source 2 and perfect reconstruction with respect to the source 1 at all nodes:
B [d(X5, X5)| < Dop+e B [d(X), X3)] < Dos+<, (170)
Pr (X? £ f(gl) <e Pr (Xf ” X;}1> <e, (171)
where

j1[1:K17 2[1:K}’j3[1:K]’X§1> : ng = go3 <j1[1:K}7jQ[I:K]’jg[lzK]’XgL) ’ (172)

jl[lzK]7 2[1:K},j3[1:K]’X§L> : Xgl = go1 <\71[1:K},jZ[I:K],ng:K],XgL) . (173)

X§L2 = 932 (

Xgﬁ = 931 (
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Foreacht € {1,...,n} and [ € [1 : K], we define random variables Us_,3; (s and Us_,5; [ as follows:
Uz = (T Ta s Xapr—1]s X 1:n]> Xofe 1:n) Xa[:-1]) » (174)
Uz, <j17j2) €2: K], Usyoupy= Ji, lel: K]. (175)

These auxiliary random variables satisfy the Markov conditions (162). This can be verified from Lemma

6 in the appendices. By the conditions in (171) and Fano’s inequality, we have
H(X{|X3)) < Pr (X7 # X3 ) logy (17| = 1)+ Ha (Pr(X} # X31)) 2nen, (176)
H(X}|X3,) < Pr (X7 # X3 ) logy (17| = 1) + Ha (Pr(X} # X31)) 2 nen s (177)

where €, () — 0 provided that ¢ — 0 and n — oo.
1) Rate at node 1: For the first rate, it is straightforward to obtain (following similar arguments used

for the previous theorems)
n(Ry +¢) > n[H(X1|X2) — €] , (178)

2) Rate at nodes 2 and 3: For the second rate, we have

(a)

n(Ry +¢) = <j2[1 K], X{LX;XS) (179)
21 (A g (180)
D1 (g 7 g, X xp ) (181)
() ZI( [1K 1K]jlK];XQ[t]]X?X;?XQ[tH:n]) (182)
2 Z:I (Vies, k11,2015 X [ X110 X1 (183)
2 Zn: T (Vizs 41,2115 Xal@l| X101 Xz, @ = 1) (184)
o (17[237K+172};X2|X1X3> , (185)

where
o step (a) follows from the fact that JQ[I:K] is a function of the sources (X7, X7, X¥'),
« step (b) follows from the non-negativity of mutual information,
o step (c) follows from the fact that (jl[lzK], jz[lzK], j:,,[l:K}) are functions of the sources (X7, X3', X¥'),
o step (d) follows from the chain rule for conditional mutual information,
« step (e) follows from the definitions (174) and (175), the memoryless property of the sources and

the non-negativity of mutual information,
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o step (f) follows from the use of a time sharing variable ) uniformly distributed over {1,...,n},

o step (g) follows by letting a new random variable )7[237 K4+1,2] = (Vies,k+1,2110)> @)-

By following similar steps, it is not difficult to check that

n(Rs +¢) > ZI 23, K+1,2] 1] X1 X1 X)) (186)
= ZI 23,5 +1,2)1Q)3 X[ X111 Xap), @ = 1) (187)
> I (Vigg 11,2 Xal X1 Xz) (188)

3) Sum-rate of nodes 1 and 2: For the sum-rate, we have

n(Ry+ Ry +22) > H (™) + i (A1) (189)
(a) . .
> 1 (g9 Xy ) (190)
_ 7 <j1[1:K]j2[1:K];X?|X§> Iy (j“ K] j[1:K]j3[1;K];Xg‘X?X§> (191)
(b . . . .
> H(X}1X5) - B(XPIXg) + 1 (g g, xg xpxy ) (192)
(e)
> Z I ( g gt g K] X1t ) X[t 1m) X311 Xofe 1:0)3 Xojg [ X1 t]X3[t]>
+n [ (X1|X3) — €n] (193)
d n
Y [H (X1]X5) — €] + > T (Vs 1,213 Xopg 1 X119 Xsp0) (194)

t=1

Do [H (X11Xs) — en+ T (Vs Xal Xi Xs)] (195)

where

o step (a) follows from the fact that jl[l:m and j2[1:K] are functions of the sources (X7, X3, X%),
and from non-negativity of mutual information,

o step (b) follows from the code assumption in (173) that guarantees the existence of reconstruction
function ngl = g3 (jll K] j[l K] .73[1:1{], XQ),

o step (c) follows from Fano’s inequality in (176), the chain rule of conditional mutual information
and the memoryless property across time of the sources (X7, X7, X§') and non-negativity of mutual
information,

o step (d) from follows from the definitions (174) and (175),

o step (e) follows from the use of a time sharing random variable ) uniformly distributed over the

set {1,...,n} and from definition )7[237[(“,2] = (17[23’[(“’2} Q) @)-
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4) Distortion at node 2: Node 2 reconstructs a lossy )@3 = g3 (jl[lzK],jQ[I:K},jB[LK],X§‘>. For

each t € {1,...,n}, define a function X23[t] as the t-th coordinate of this estimate:

> 1:K 1:K 1:K

Xogir) Vios,re+1.2011) Xop) = 92311 (nﬂ[ ]7~72[ }733[ ]aX§> - (196)
The component-wise mean distortion can be easily analyzed mimicking previous developments to obtain

Das+e = E[d (Xs, Ko (Vias 11, X2) )| (197)

where we defined function X. 23 by

Xo3 <9[23,K+1,2}7X2) == XQS[Q] (Vs k1,210 X2qq]) - (198)
5) Distortion at node 3: Node 3 reconstructs a lossy description X, = g32 (jl[uq, jQ[IZK], j?)[LK], Xg‘).
For each ¢t € {1,...,n}, define a function X32[t} as the ¢-th coordinate of this estimate:
> K K K n
Xsorg (Vs k+1,2111 X3p1) = 93201 (31[1 ]7\72[1 }773[1 ]7X3) . (199)

The component-wise mean distortion is identical to one corresponding to node 2. We can easily obtain:

Dy +e > E[d (Xa, Koz (Vias 112, X3) )| (200)

where we defined function 5(:32 by 5(:32 (V[Qg,K_‘_Lg,],Xg) = XgQ[Q] (V[23,K+1,3}[Q]7X3[Q]) . |

VI. DISCUSSION
A. Numerical example

In order to obtain further insight into the gains obtained from cooperation, we consider the case of two
encoders and one decoder subject to lossy/lossless reconstruction constraints without side information in

which the sources are distributed according to:

1 x2 1 3
X, (T1,22) =al{z; =1 exp|—2% ) +(1—a)l{z; =0 ex —2>201
pralon) = o oy =1} exp (—% ) + (1= a)t o =0} —o—exp (% oD

This model yields a mixed between discrete and continuous components. We observe that X; follows a
Bernoulli distribution with parameter o € [0, 1] while X5 given X follows a Gaussian distribution with

different variance according to the value of X; € {0, 1}. In this sense, X2 follows a Gaussian mixture
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distribution!!. The optimal rate-distortion region for this case was characterized in Theorem 2 and can
be alternatively written as:
Reoop(D) = U {(Rl,Rg) : Ry > H(X1|X2), Re > I(X9;U|X1), R1+ Re > H(X)) —I—I(XQ;U]Xl)} )

peEL
(202)

where £ = {py|x,x, : there exists (21,u) — g(x1,u) such that E[d(X»,g(X1,U))] < D} . The corre-
sponding non-cooperative region for the same problem was characterized in [6]:
Rio—coop(D) = | J {(Rl,RQ) 1Ry > H(Xq|U), Ry > I(X2;U[X1), Ri+ Ry > H(Xy) + I(Xo; U|X1)} ;

peL
(203)

where £* = {py|x, : there exists (x1,u) — g(z1,u) such that E[d(Xs,g(X1,U))] < D}. From the
previous expressions, it is evident that the cooperative case offers some gains with respect to the non-
cooperative setup. This is clearly evidenced from the lower limit in R; and the fact that £* C L. We
have the following result.

Theorem 6 (Cooperative region for mixed discrete/continuous source): Assume the source distribution
is given by (201) and that, without loss of generality, 03 < o7. The rate-distortion region from Theorem 2

can be written as:

l—a [ 3 o o 3
R1>\/ﬁao exp 542 Hg(g(xQ))dx2+mal exp 242 Hy(g(x2))dxs

0 1
2(1-a) 2q
1
—log %o it D <oj
2 D
o ao
] L D > o}
2 [°g<D<1a>03)] 7
( 2(1—a) 24
1
Fa(a) + L log () D<ol
2 D
R+ Ry > 9 + )
o oo
H. — |1 St N D > o}
)ty [Og (D—(l—a)ff%ﬂ 70

where Hy(z) = —zlogz — (1 — 2)log (1 — z) for z € [0,1], [x] T = max {0, z} and
e
exp | -5
2moy 207
g(x2) = 2 2\
I <_$2> + 129 e <_l‘2>
V2moq 207 V2mo 203

! Although the inner bound region in Theorem 1 is strictly valid for discrete sources with finite alphabets, the Gaussian

(204)

distribution is sufficiently well-behaved to apply a uniform quantization procedure prior to the application of the results of
Theorem 1. Then, a limiting argument using a sequence of decreasing quantization step-sizes will deliver the desired result. See

chapter 3 in [24].
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Proof: The converse proof is straightforward by observing that when D < 08:
1
I(XQ; U|X1) = h(X2|X1) — h(X2|U, Xl) > h(X2|X1) — 5 lOg (27T€D) (205)

and h(X2|X1) = $log (2meo}) + 152 log (2mec?). For the case when 03 < D < aof + (1 — a)og we

can write:

I(X1;U|Xq) 2 h(Xo][X1) — ah(Xo|U, X1 =1) — (1 — a)h(X3| X1 =0)

2me(D — (1 — a)of
= Yog (2me0?) — alog < me(D = ( O‘)"O)> (206)
2 o
T T S (207)
2%\ \D-(1-a )
When D > ao? + (1 — a)o3 we can lower bound the mutual information by zero.
The achievability follows from the choice:
(72 )v ifxi=0
g(U, X1) = 0P (208)
( 91 )U X, =1,
o1t+oz,

and by setting the auxiliary random variable:

Xo+2y if X7=0,
U= (209)
Xo+27p ifX1=1,

where Z, Z; are zero-mean Gaussian random variables, independent from X5 and X; and with variances

given by:
Do? Do?
2 0 2 1
210
92 02—D’ 9z, 2-D’ (210)

for D < 08 while for 08 <D< ao’% +(1- a)ag, we choose:

2 2 _ [D—(l—a)ag]of
7 Th = T D= (1-a)od]

11)

Finally, for D > aof + (1 — a)og, we let 03 — 0o and o7 — oo. |

Unfortunately, the non-cooperative region is hard to evaluate for the assumed source model'?. In order
to present some comparison between the cooperative and non-cooperative case let us fix the same value
for the rate R; in both cases and compare the rate Ro that can be obtained in each case. Clearly, in this
way, we are not taking into account the gain in R; that could be obtained by the cooperative scheme (as

H(X1]|X2) < H(X4|U) for every U -e- X3 -~ X1). For both schemes, it follows that for fixed Ry:

RQ > max {I(XQ, U|X1),H(X1) + I(Xg; U‘Xl) — Rl} . (212)

?However, there are cases where an exact characterization is possible. This is the case, for example, when X; and X, are

the input and output of a binary channel with crossover probability o and the distortion function is the Hamming distance [6].
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From Theorem 6, we can compute (212) for the cooperative case. For the non-cooperative case we need

to obtain a lower bound on I(Xs; U|X1) for pyx, € £L*. It is easy to check that:

11—« ol o o?
I(X2;U|X,) > log (=2 ) + = log [ =L 21
G = H 5 og () + Groe () @1
where
2
fo = Exupx, | (X2 = Exapx, [XalU, X1 = 0])° | X1 = 0], 214)
2
Bi = Ex,uix, | (X2 — Exox, [X2lU, X1 = 1) X1 = 1] 215)
The distortion constraint imposes the condition:
(1—a)Bo+ap <D. (216)

In order to guarantee that (213) and (214) are achievable, under the Markov constraint U -~ Xy - X7,

the following conditions on pys x, (u|z2) should be satisfied:

2
Py, (ul2) e exp (—‘””) P
\/%0'0 20'0 1 {_(1:2 fO(u)) } (217)

foo (u|x2) ! e < x% >dx - 2m o o 250
—exp | ——5
and i . J:%
ulx exp | ——=
P2 e S\ 207 1 (22 — f1(u))?
5 = eXp —_—— B (218)
2 puix, (ulx )71 exp | ——% |dx 2mpL 251
_oo PU|X, 2 N 20% 2
where
fo(U) = EX2|UX1 [Xo|U, X1 =0], 1(U) = IEX2|UX1 (Xo|U, X1 =1] . (219)

The characterization of all distributions py/ x, (u|x2) that satisfies (218) and (219) appears to be a difficult

problem. In order to show a numerical example, we shall simply assume that:

1 . 2
Pu|x, (’U/‘IL’Q) = m exp {_(’LL20-3232)} . (220)

Indeed, this choice satisfies simultaneously expressions (218) and (219). In this way, we can calculate

the corresponding values of 3y and (3 obtaining the parametrization of I(X2;U|X;) as function of o2:

l—«a o2 + o2 a o2 4 o2
I(X2;U|Xy) = 1 0 ") 4+ —log [ L2 221
(Xo; U Xy) 5 og( o2 >+20g< 2 > (221)
with the following constraint:
2 2 2 2
(1-a)520 4 agvl_—p. (222)
oyt o5 oi +oy
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Figure 7: Comparison between the cooperative and the non-cooperative schemes.

We can replace (222) in (212) to obtain an indication of the performance of the non-cooperative case
when R; is fixed.

We present now some numerical evaluations. As equation (212) is valid for both the cooperative and
the non-cooperative setups, it is sufficient to compare the mutual information term I(X»; U|X) for each
of them. Let us consider the next scenarios:

1) a=0.1, 02 =001, 0} =2,

2) a=0.1,02 =05, 07 =2.

From Fig. 7 we see that in the case 03 < o3 the gain of the cooperative scheme is pretty noticeable.
However, as 0(2) becomes comparable to o? the gains are reduced. This was expected from the fact that as
03 — o7, the random variable X» converges to a Gaussian distribution. In that case, the reconstruction
of X9 at Node 3 is equivalent, for the cooperative scenario, to a lossy source coding problem with side
information X at both the encoder and the decoder, while for the non-cooperative setting to the standard

Wyner-Ziv problem. It is known that in this case there are no gains to be expected [3].
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B. Interactive Lossless Source Coding

Consider now the problem described in Fig. 8 where encoder 1 wishes to communicate lossless the
source X' to two decoders which observe sources X35 and X3'. At the same time node 1 wishes to
recover X3 and X3 lossless. Similarly the other encoders want to communicate [ossless their sources

and recover the sources from the rest. It is wanted to do this through K rounds of exchanges.
Xg = X} Xgy ~ XY

n

YN o~ XY YN o~ YT
X3~ XP X3y~ X))

Figure 8: Interactive lossless source coding.

Theorem 7 (Interactive lossless source coding): The rate region of the setting described in Fig. 8 is

given by the set of all tuples satisfying:

Ry > H(X1|X2X3), Ry > H(X2|X1X3), Rz > H(X3|X1X>), (223)

Ry + Ry > H(X1X2|X3), R+ R3 > H(Xng‘Xg), Ry + R3 > H(X2X3|X1) . (224)

Remark 16: 1t is worth observing that the multiple exchanges of descriptions between all nodes can
not improve the rate region that could be obtained using Slepian-Wolf coding [2].
Proof: The achievability part is a standard exercise. The converse proof is straightforward from
cut-set arguments. Both proofs are omitted. [ ]
We should note that for this important case, Theorem 1 does not provide the optimal rate region. That
is, the coding scheme used is not optimal for this case. In fact, from Theorem 1 we can obtain the

following achievable region'3:

Ry > H(X1|X2), Ry > H(Xg‘Xng), R3 > H(X3|X1X2), (225)

BConsider Uy 23,1 = X1, Uz13.1 = X2 and Us_,121 = X3 and the other auxiliary random variables to be constants for

all 1 € [1: K].
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R+ Ry > H(X1X2|X3), Ry + Rg > H(XQXg’Xl) . (226)

It is easily seen that in this region, node 2 is not performing joint decoding of the descriptions generated
at node 1 and 3. Because of the encoding ordering assumed (1 — 2 — 3) and the fact that the common
description generated in node 2 should be conditionally generated on the common description generated
at node 1, node 2 has to recover this common description first. At the end, it recovers the common
description generated at node 3. On the other hand, nodes 1 and 3 perform joint decoding of the common
information generated at nodes 2 and 3, and at nodes 1 and 2, respectively. Clearly, this is a consequence
of the sequential encoding and decoding structure imposed between the nodes in the network and which
is the basis of the interaction. If all the nodes would be allowed to perform a joint decoding procedure
in order to recover all the exchanged descriptions only at the end of each round, this problem would
not appear. However, this would destroy the sequential encoding-decoding structure assumed our coding

scheme which seems to be optimal in other situations.

VII. SUMMARY

The three-node multi-terminal lossy source coding problem was investigated. This problem is not a
straightforward generalization of the original problem posed by Kaspi in 1985. As this general problem
encompasses several open problems in multi-terminal rate distortion the mathematical complexity of it
is formidable. For that reason we only provided a general inner bound for the rate distortion region. It
is shown that this (rather involved) inner bound contains several rate-distortion regions of some relevant
source coding settings. In this way, besides the non-trivial extension of the interactive two terminal
problem, our results can be seen as a generalization and hence unification of several previous works in
the field. We also showed, that our inner bound provides definite answers to some special cases of the
general problem. It was shown that in some cases the cooperation induced by the interaction can be helpful
while in others not. It is clear that further study is needed on the topic of multiple terminal cooperative
coding, including a proper generalization to larger networks and to the problem of interactively estimating

arbitrary functions of the sources sensed at the nodes.

APPENDIX A

SOME USEFUL RESULTS

In this appendix we introduce some useful results to be used in the several proofs contained in the paper.
These results presents can be easily derived from the standard formulations provided in [24] and [20],

and for that reason are presented without proof.
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Lemma 1 (Packing Lemma [24]): Be (U1UsW VIV X)) ~ puv,wvivex, (27, w™, v, vl) € 7E§WV1V2}E/
and ¢ < e @nd € < min {1, e2}. Consider random vectors {U(m1)}2 _ and {UF(mg)}72

777,1:1 mao=1

which are independently generated according to
1 {uf‘ € To.viwle, (v[‘,w”)}

HWUJV;W}Q (wn7 /U':l) ”

and A;, As are positive random variables independent of everything else. Then

y1=1,2,

Pr{(Uf(ml), U3 (m2)) € T v, xwiav)e (@™, w™, 0T, vg) for some (ml,mg)} — 0 (227)

uniformly for every (z",w™, v}, vy) € T[?{WVle e Provided that:

log E [A;.A]

. < I (Uy; XVoUa|WV1) + I (Ug; XV1UL W V) — I (Uy; Ua| XW V1 V) — 6 (228)
where 6 = (e, €/, €1,€e2,n) — 0 when €, ¢, e1,e2 — 0 and n — oo.
Corollary 2: Assume the conditions in Lemma 1, and Pr {(X nWnrVE V) € Txwviva }6,} — 1.

Then:
Pr{(Uf(ml),UQ"(mg),Xn,anvln’Vzn)) € Tt,v, xwv,vs)e for some (ml,mg)} — 0 (229

when (228) is satisfied.
Lemma 2 (Generalized Markov Lemma [25] ): Consider a pmf pyxy belonging to P (X x YV x U)
and that satisfies Y -e- X - U. Consider (z",y") € ’T[;‘(Y]E, and random vectors U™ generated according

to:

1 {u" € ﬁg‘x]eﬁ (a:”)}

PrqU" =u" 2", y", U" € Ty xier (2") ¢ = - (230)
{ L) e e r]
For sufficiently small €, ¢/, ¢’ the following holds uniformly for every (2", y") € Ty
Pr{U™ & Ty @™ y") o, ™, U™ € T xpon (@) | = O (¢7) 231)

where ¢ > 1.
Corollary 3: Assume the conditions in Lemma 2, Pr {(X nYy") e [’;(Y} } —— 1 and that uniformly
n—oo

€

for every (z",y") € T%y)er Pr {(U”,X”,Y") € T[@XY]E} — 1. We have:

Pr{(U",X",Y") € T[}}Xy}e} — 1. (232)

n—oo
Lemma 2 and Corollary 3 will be central for us. They will guarantee the joint typicality of the descriptions

generated in different encoders considering the pmf of the chosen descriptions induced by the coding
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scheme used. The original proof of this result is given in [5] and involves a combination of rather
sophisticated algebraic and combinatorial arguments over finite alphabets. Alternative proof was also
provided in [24], which strongly relies on a rather obscure result by Uhlmann [26] on combinatorics.
In [25] a short and more general proof of this result is given.

We next present a result which will be useful for proving Theorem 1. In order to use the Markov
lemma we need to show that the descriptions induced by the encoding procedure in each node satisfies
(230).

Lemma 3 (Encoding induced distribution): Consider a pmf py xw belonging to P (U x X x W) and
¢ >e Be {U "(m)}i:1 random vectors independently generated according to

1 {u € Ty (0™ }
I T wye (w™) |

and where (W", X™) are generated with an arbitrary distribution. Once these vectors are generated, and

given z" and w™, we choose one of them if (u"(m),w™, z™) € Titrw x)e for some m € [1:S]. If there
are various vectors u” that satisfies this we choose the one with smallest index. If there are none we
choose an arbitrary one. Let M denote the index chosen. Then we have that:

1w € T a0}

Tt xwie (2™, w™) ||

Pr {U"(M) = w2, W, U™ (M) € T ywe(a”, w")} - (233)

Lemma 4 (Reconstruction functions for degraded random variables [1]): Consider random variables
(X,Y, Z) such that X -=- Y -e- Z. Consider an arbitrary function X = f(Y, Z) and an arbitrary positive
distortion function d(-,-). Then 3 ¢g*(Y") such that F [d(X, ¢*(Y))] < E[d(X, f(Y,Z))] .

Finally we present two lemmas about Markov chains induced by the interactive encoding schemes
which will be relevant for the paper converse results.

Lemma 5 (Markov chains induced by interactive encoding of two nodes): Consider a set of three
sources (X", Y™ Z") ~ ﬁ pxvz(xe, yt, 2¢) and integer K € N. For each [ € [1 : K] consider arbitrary

t=1
message sets Z., Izl/ and arbitrary functions

ph (e, g, gy = gl (ve, g, g ) = g (234)

with J! € I. and J} € T}. The following Markov chain relations are valid for each ¢ € [1 : n] and
lel: K]

D (72 Xpa—1)s Yiesam)) o X = Vg Zpy)

2) (T Xjr1m)) - (Ja,[lzl_lhJz;[lzl_l]aX[lst]vY[Hl:n]) o= (Yig, Zpgy) »

3) (TL Vi) +( x[”]aJy[”*l%X[l:t—u’Y[t:n}) = (X1, Z1n) »

4 Xipyr == (I, X, Yiesn ) o (Vg Z0)
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5) Y1 = (j[lzK]ajglzK]vX[l:t—l]vY[tm]) o= (X1, Zp)

6) (jrl A g, X[1:t_1},X[t+1:n]7Z[u—u,Z[t+1:n],Y[1:t—1]) = (X[, Yiy) & Zpy -

Corollary 4: Consider the setting in Lemma 5 with the following modifications:

e X o /oY,

. f{i (X”,Z”,Jx” 1] j[ll 1) :jxl ‘
The following are true:

D (T2 Zpe—) Yierrm)) = Zpg o Yy »

2 (Th Zpremy) o (T T, 2y, Viersom)) o Vi »

3) (T Yi—)) == ( 1, gkt 1}7Z{1:t71]vy[t:n]> o= (X1: Z1n) »

4) (Z[t+1rn]’Xn) - (j:v[lzK]aJy[l:K]vZ[l:t]ay[t+1:n]> - Y[Lt} .

Lemma 6 (Markov chains induced by interactive encoding of three nodes): Consider a set of three
sources (X™, Y™, Z") ~ [[;, pxvz(®t, Yyt z) and integer K € N. For each | € [1 : K| consider

arbitrary message sets Z., IL, 7! and arbitrary functions

7L (3, gy, gy, gha-u) = gt (235)
fgi (Ynnzglzl]’jy[l:lfl}’jz[l:lfl]) _ jyl ’ (236)
7l (2”7 gt g, JJ”‘”) =J! (237)

with 7! € 7L, j@f € ZL and J! € T'. The following Markov chain relations are valid for each ¢ € [1 : n]
and [ € [1: K]:

D (T2 Ty Xpt—1) X m)s Yierrem)s Za:e—11) == (X5 Vi) o= Zpg »

2) (Th T Vi) o (7, g, T X0 Yy, Za ) o 24

3) (L Ziprrm) %‘< L g, g 1}7Xn7Y[t+1:n}7Z[1:t]) - Y ,

4) Zitp1m) o= (j[lK jy[l'K] g X",Y[t+1:n]aZ[1:t]> Yy ,

5) Y1) - (jay'K],jy[lzK] gL X”,Y[t:n},Z[lzt_lo - Zy -

APPENDIX B

COOPERATIVE BERGER-TUNG PROBLEM WITH SIDE INFORMATION AT THE DECODER

We derive an inner bound on the rate region of the setup described in Fig. 9. It should be emphasize that
we will not consider distortion measures, we only focus is on the exchange of descriptions. Encoders
1 and 2 observe source sequences X{" and X7, and also have access to a common side information
V{". Whereas, the decoder has access to side informations (X7, V", V5"). Upon observing X7 and V",

Encoder 1 generates a message M; which is transmitted to Encoder 2 and the decoder. Encoder 2,
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Ry .
Decod ur
ecoaer ﬁ;

Ry

(X3, W, V')

Figure 9: Cooperative Berger-Tung problem.

upon observing (X7, V{") and the message M, generates a message Mo which is transmitted only to
the decoder. Finally, the decoder uses messages (M, Ms) and the side informations (X3, V/™", V5") to
reconstruct two sequences (U}, U3) which are jointly typical with (X7, X%, X2 V/*, V3*). In precise
terms, we will assume the following:

A probability mass function px, x, x.v, vV, v, Which takes values on cartesian product finite alphabets

X X Xy x X3 x Uy X Us x V1 X Vs, and that satisfies the following Markov chains:
Up - (X1, V1) = (X2, X3,V2) , Uz - (Uy, X2, V1) o (X1, X3, V2) . (238)

o Five random vectors (X', X3, X3, V", V3") (not necessarily independently and identically dis-
tributed with px, x, x,1,v, which take values on alphabets X|* x A3 x A3 x V' x V3’ such that, for
every € > 0,

Tim Pr{ (XT. X5 X5 VE) € Thxove ) = 1 (239)
Definition 3 (Cooperative code): A code (n, 1, f3, ", Mi, Mas) for the setup in Fig. 9 is given by:
o Two set of indices Mj, Mo.
¢ An encoding function f]' : AT x V|' — My, such that f*(z},v]) = m.
o An encoding function f3' : X3 x VI' x My — Mg, such that f3(xh, v}, m1) = mo.
o A decoding function g" : X3 x VI' x V3 x My x My — Uf* xU3', such that ¢" (x}, v], v5, m1, me) =

(@, ag).

Definition 4 (Achievable rates): We say that (R, R2) are e-achievable if there exists a code (n, f1', f4,

g", M1, Ms) such that:

1 1
~log [Mi]| < Bi+e, ~log||Maf| < Ro+e (240)
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and

Pr{(f]?, U3, VI, Ve, XP, X, XD) € T[glelezXleXsk} <e. (241)

The closure of the set of all achievable rates (R;, R2) is denoted by Repr.
The following theorem presents an inner bound to Ropr.
Theorem 8: (Inner bound on the rate region of the cooperative Berger-Tung problem) Consider Rglggr

the closure of the set of rates satisfying:

Ry > I(X1;U11X2Vh) . R > I(Xo; Ul XsViVoUy) ,  Ri+ Re > I(X1X9; Ur1Us| X3ViVa)

where the union is over all probability distributions verifying (238). Then Rglg%r C Rear.

Remark 17: Notice that we are not asking for (X', X3, X7, V", VJ") to be independently and iden-
tically distributed. This is in fact not needed for the result that follows. For us, when trying to use this
result, the case of most interest will be when (X7, X5, X%) is generated using the product measure
[T px.xax, (14, 24, 23i), (that is, when (X;X2X3) is a DMS). However, (V{*,V5") will not be
independently and identically distributed. Still, (239) will be satisfied.

Remark 18: Notice that unlike the classical rate-distortion problem we are not interested in an average
per-symbol distortion constraints at the decoder. We only require that the obtained sequences be jointly
typical with the sources. Clearly the problem can be slightly modified to consider the case in which
reconstruction distortion constraints are of interest. In fact, case (C) reported in [27], considers a similar
setting. Here, given the importance of this result for our interactive scheme, we present a slightly different
and more direct proof of the achievability, where we discuss the key points in the encoding and decoding
procedures which will be relevant for our extension to the interactive problem.

Proof: Our proof uses standard ideas from multi-terminal source coding. As V{"* is common to both
encoders and decoder we can set without loss of generality V" = &. Conditioning with respect to Vi

the final expressions can take into account the situation in which V" # @.

A. Coding generation

We randomly generate 2nfs codewords Ur(k), kell: 2R1] according to

1 {“711 € [&1%}

O

, €cd > 0. (242)
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These 2" codewords are distributed uniformly over 2"/ bins denoted by B;(m;), where m; € [1 :
2"R1] For each codeword u7 (k) with k € [1 : 2”R1] , we randomly generate onf codewords according

to:

{1 € T, (F ) }
“7,[(7}2|U1]€cd (uf (k) H

with [ € [1 : 2"R2]. The 2n(fti+F2) resulting codewords generated are distributed uniformly in 27/

US(l, k) ~ , €ed >0 (243)

bins, denoted by Ba(ms), ma € [1 : 27%2]. It is worth to mention that the codewords {UZ(l,k)} are
not distributed in a different structure of bins for each k, but on only one super-bin structure of size
on(fa+1z) /22 where Ba(ms) does not needed to be indexed with k.

As will be clear, this will not constraint the decoder to use successive decoding and instead use joint

decoding in order to recover the desired codewords (U, U3). All codebooks are revealed to all parties.

B. Encoding at node 1

Given !, the encoder search for k € [1 : 2“R1] in such a way that:
(@f,ut (k) € Tix,u,)e,r €2 >0 (244)

If more than one index satisfies this condition, then we choose the one with the smallest index. Otherwise,
if no such index exists, we choose an arbitrary one and declare an error. Finally we select m; as the

index of the bin which contains the codeword v} (k) found and transmit it to nodes 2 and 3.

C. Decoding at node 2

Given = and m;, we search in the bin B;(m;) for an index k € [1 : Q”Rl] such that:
(23, ui (k) € Tix,u]e,» €3 >0 (245)

If there only one index that satisfies this we declare it as the index generated at node 1. If there several

or none we choose a predefined one and declare an error. The chosen index is denoted as 123(2)

D. Encoding at node 2

Given 23 and k(2) we search for [ € [1 : 2"1%2} such that:

(@5, uf (k(2)),u5 (1, (2))) € T, 0n)esr €4> 0 - (246)

If more than one index satisfies this condition, then we choose the one with the smallest index. Otherwise,
if no such index exists, we choose an arbitrary one and declare an error. Finally we select my as the

index of the bin which contains the codeword u% (I, k(2)) selected and transmit it to node 3.
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E. Decoding at node 3

Given z%, vy and mj, ma, the decoder search in the bins Bj(m) and Ba(msz) for a pair of indices

(k1) € [L: 27) x [1 : 2F2] such that
(xga U?,u’f(k‘),ug(l, k)) € 7I§(3V2U1U2]e’ e>0. (247)

If there only one pair of indices that satisfy this we declare it as the indices generated at node 1 and 2.
If there several or none we choose a predefined pair and declare an error. The chosen pair is denoted by

(k(3),1(3)). Finally, the decoder declares (@7, a%) = (u}(k(3)), u(1(3), k(3))).

FE. Error probability analysis

Consider (K, L) the description indices generated at node 1 and 2, and (M, M) the corresponding
bin indices. With K'(2) and (K (3), L(3)) we denote the indices recovered at nodes 2 and 3. We want to

prove that Pr{€} < ¢’ when n is sufficiently large, where

& = {(X1, X3, X3,V UP(R (3)), U3 (L(3), K(3))) ¢ Tk xuxavatnie b - (248)

We consider the following events of error:

o 81 = {(Xl 7X2 7X37‘6 ) ¢ 7-[X1X2X3V2]€1}7 €1 > 0.
> = {(XT,UP () & Tie, YR € [1:27R] ) 2 > 0,
s = {(xp, X3, X7, vz UKD & T xoxovainges > € > 0.
{Hk;&K k€ By(My), (XQ,Ul( )) € T vnte } e3> 0.
5= { (X5 U1 (R ), U3 K@) & Ty, W E 1277}, e >0,
X{L’X2’X3 ) V2 7U1 ( ) U?(L,f(@))) ¢ 7E§(1X2X3V2U1U2]e} , €>0.
. &= {Elkz £ K, # Lk € Bi(M),] € Bo(My), (X;}, v, U k), U3, l%))eﬁ}aszlUﬂe}.

| \
—
>N

Clearly £ C UZ=1 &;. In fact, it is easy to show that {(K(3), L(3)) # (K,L), K(2) # K} C Uzzl &
From hypothesis, we obtain that lim,, ,~, Pr{&€1} = 0. Choosing ¢; < HL%H and €5 < €.4 we can use the

covering lemma [24] to obtain lim,,_,o, Pr{&} = 0 if
Ry > I(Uy; X1) + 6(e1, €2, €ca, ) - (249)

For the analysis of Pr{f3} we can use Lemma 2, its corollary and Lemma 3 defining Y = X X3,

X = X; and U = U; and using €3, €3 and €4 sufficiently small'# to obtain lim,, o, Pr{&3} = 0. For

"“In the following, we will not indicate anymore the corresponding values of the constants €, the arguments of § and the

equivalence between the involved random variables in order to use the lemmas from Appendix A

October 3, 2016 DRAFT



51

the analysis of Pr{&,} we can write:
Pr{&) = EPr{&|K =k M =m}]

- Ere{ U {(x0®) € T |25 - (250)
lfc;ék: ckeB, (ma)
Using Lemma 1 (with the appropriate equivalences on the involved random variables) and the statistical
properties of the codebooks, binning and encoding, we have, that for each k, m;:
: ) K=k | _
am bl (X501 € T} ESE ) =0 2s1)
k#k: keBy(my)

provided that

1

- log E||Bi(mq)|| < I(X2;U1) — d(€1, €3, €cq,n) - (252)

As E[||B1(mq)]]] = on(fi—Ry) Vmi we have that lim,,_,., Pr{&4} = 0 provided that
Ri— Ry < I(Xo;Up) =6 . (253)
The analysis of Pr{&5} follows the same lines of Pr{&;}. The above analysis implies that

lim Pr{(Xg, U{L(K(2))> c T[;QQU%} ~1. (254)

n—oo

Then, by covering lemma [24] we have that lim,,_,o, Pr{&} = 0 if :

Ry > I(X5;Us|Up) + 6 . (255)
From Lemmas 2 and 3, similarly as with Pr{&3}, we have lim,,_,o, Pr{&} = 0. Let us turn to analyze:
Pr{&} = E[Pr{&|K =k, L=1,M =mi, My =my}]

el U (o) U D) € T e St
(é,i);g(@,z) keBi(my)
(kD eBa(ms)

< Elog + az + a3] (256)

where we have

a=p{ U {5000, U500) € T} it} @D
k#k : keBy (m4)
(k,1yeBsy(ms)

w=p{ (Ve urm, 80 0) € T St @59)
Il : (k,l)eBz(mz)

ag = Pr{ U {(X;} v, ur k), und, /%)) s T[?%Ulu]e} \le;ﬁ}@im} . (259)

l;;ék,i;él keB, (ma1)
(k,[)EBQ (mz)
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We can use the Lemma 1 to obtain:

nh_)ngo a; =0, nh_)rglo oy =0, n1—>120 ag =0 (260)
provided that
%log E|[f: (k1) € Botma), b € Baomo) | < 1(XsVas th0) 5, 261)
%log E||i: (k) € Bama)|| < 1(X3Va: Uaftn) 6 (262)
“ log E‘ (kD) : (kD) € Ba(ma), k € By(my)|| < I(X3Va; UrUs) — 6 . (263)
Because on how the binning is performed, we have:
E Hk L (k,1) € Ba(ma), k € Bl(ml)H — gn(i—Ri—Ra) | (264)
E HZ; (k,0) e Bg(mg)H — gnlfa=Ra) (265)
E H(k: 0) : (k,0) € Ba(ma), k € Bl(ml)H = gn(BatRe—Ri—Ra) (266)
which give us:
(Ry — Ry) — Ry < I(X3Va; UyUs) — 4§, (267)
Ry — Ry < I(X3Va; Up|Uy) — 6, (268)
(R1+ Ro) — (Ri+ Ry) < I(X3Va; UrUs) — 6 . (269)

Notice that equation (267) remains inactive because of (269). Equations (249), (253), (255), (268), (269)
can be combined with Rl > R; and 1%1 + Rz > Ry which follow from the binning structure assumed
in the generated codebooks. A Fourier-Motzkin elimination procedure can be done to eliminate Ry and
Ry obtaining the desired rate region (conditioning also the mutual information terms on V7). |

The following corollary considers the case in which a genie gives node 2 the value of M. Indeed,

this case will be important for our main result.

Corollary 5: If a genie gives M; to node 2, the achievable region Ricl}g%r reduces to:

Ry > I(X3;Us| X3V VaUy) (270)
Ri+ Ry > I(XlXQ;U1U2|X3‘/1V2). 271)

The proof of this result is straightforward and thus it will not be presented.

October 3, 2016 DRAFT



53

APPENDIX C

PROOF OF THEOREM 1

Let us describe the coding generation, encoding and decoding procedures. We will consider the
following notation. With M;_,s; we will denote the index corresponding to the true description U}", g,
generated at node i at round [ and destined to the group of nodes S € C (M) with i ¢ S. With M;_,g;(5)

where S € C(M), i ¢ S, j € S we denote the corresponding estimated index at node j.

A. Codebook generation
Consider the round [ € [1 : K]. For simplicity let us consider the descriptions at node 1. We generate
onfios jid. n-length codewords U{L_>237l(m1a23,z,mw[l,”) according to:
1 {u’:rll—>23,l € Ty a Wi Je(1,23.) (wﬁ,q)}
HTﬁmm\wu,u]e(l,za,o (“’ﬁﬂ) H

P (1) . . ..
where m_,93; € [1: Q”RH?S] and let myy,, ,, denote the indices of the common descriptions Wﬁ ] gener-

U{Z_>23,l(m1_,2371,mwuvl]) ~ , €(1,23,1) >0 (272)

n

ated in rounds ¢ € [1 : [ —1]. For example, myy, , = {m1-23,¢, ma 13, mg_,lg,t}i;ﬁ. With Wiy we de-

note the set of n-length common information codewords from previous rounds corresponding to the indices
) AL pM
consider the set of 2"(Fi%zstRs%12)

mw, - For each myy, codewords UI"_)%J(mngg,l, M3—512,1—1,

3,0-1]
MW,,_,). These n-length codewords are distributed independently and uniformly over 2nFi2s bins
denoted by Bi_23; (p1_>237l, mw[syl_”) with p1_y93; € [1: Q"Rgl%]. Notice that this binning structure is
exactly the same we used for the cooperative Berger-Tung problem in Appendix B. Node 1 distributes
codewords U{L_>237l(m1_>23,l, M3 412,01, MW,,_,,) in a super-binning structure. This will allow node 2 to
recover both, m;_,23,; and mg3_,12;_1, using the same procedure as in the Berger-Tung problem described
above. Notice that a different super-binning structure is generated for every myy,,,_,. This is without
loss of generality, because at round [ nodes 1, 2 and 3, will have a very good estimated of it (see below).

We also generate onfils and 2nfils independent and identically distributed n-length codewords

n n T .
UlaQ’l(mlﬁg,l,mWw,mymylyu), and Ulﬁgvl(mlﬁg,l,mw[zyl],my[lg‘lyu) according to:

n n n n
) ]l {ulﬁ2,l E 7—[‘U14,2,l|W[2,1]V[12,1,1]]5(1727” (w[27l]’v[127l,1]>}

n
Ul—>2,l(m1—>2,lv MWz 115 MV 2,1 , (273)

n n n
HWUHM\W[z,z]Vua,z,l]]E(l»?:l) (w[Qvl}’v[lll,l]) H

n mn n n
1 {ulei’},l € 7TUHSJ|W[2,l]v[m,l,l}]e(l,:&,l) (%2,1]?”[13,1,1])}

Uin;)?,’l (ml—>3,l7 mW[zyl] ) mV[lgﬁlyl]) ~ ; (274)

Hﬁ(’,}l—ﬂs,l‘W[Q,l]V[lB,l,l]]€(1»3yl) <w[’§7l],vﬁ37m]> H
where €(1,2,1) > 0, €(1,3,) > 0, and m;_9; € [1 : 2"1%(122] and my3; € [1 : Z”RQS]. These

- . o .
codewords are distributed uniformly on 2nfi%: bins denoted by Bi_a, (plﬁgvl,mW[Q,l],my ) and

[12,1,1]
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: . 0 W
indexed with p;_yo; € [1: 2"%152] and on 2"%1~s bins denoted by By_,3 (p1_>371, MWy > Y ]) and

18,01
indexed with p1_,3; € [1 : 2”Rgll>3], respectively. Notice that these codewords (which will be used to
generated private descriptions to node 2 and 3) are not distributed in a super-binning structure. This is
because there is not explicit cooperation between the nodes at this level. That is, node 2 is not compelled to
recover the private description that node 1 generate for node 3, and for that reason the private description

that node 2 generate for node 3 is not superimposed over the former. Notice that the binning structure

used for the codewords to be utilized by node 1 impose the following relationships:

! 51 A (-1
R5L23 < Rglz:& + Rz(Hl)z ; (275)
R, <R, (276)
RV, <RV, . 277)

The common and private codewords to be utilized in nodes 2 and 3, for every round, are generated by
following a similar procedure and theirs corresponding rates have analogous relationships. After this is

finished the generated codebooks are revealed to all the nodes in the network.

B. Encoding technique

Consider node 1 at round [ € [1 : K]. Upon observing =z} and given all of its encoding and decoding
history up to round [, encoder 1 first looks for a codeword wuf o3 ,;(m1-237,7, (1)) such that

ee(1,23,1) > 0,

('T?’ wﬁ,l] (mw[l,l] (1))7 u?—>23,l(m1—>237lv qu,z] (D)) € 'T[(v}l_ﬂleW[l,”]ec(l,23,l) : (278)

Notice that some components in 1y, , (1) are generated at node 1 and are perfectly known. If more than
one codeword satisfies this condition, then we choose the one with the smallest index. Otherwise, if no
such codeword exists, we choose an arbitrary index and declare an error. With the chosen index m1_,23,
and with 1hyy,,,_,,(1), we determine the index pi_,23; of the bin Bi_,93;(p1-23,1, Miwg,,_,,) to which
u?ﬁ237l(ml_>237l7 m3120-1(1), M, ,_,, (1)) belongs. After this, Encoder 1 generates the private descrip-
tions looking for codewords uy o ;(m1-2,1, Mo, (1) My, 4 (1)), 43 (Masa g, oy, (1), My, (1))

such that

(IL‘?, wa,l] (mW[z,l] (1))a UﬁQ,l,l} (mV[lz,z,u (1))7 u?*}Z,l(ml*)Q,h mW[z,L] (1)? mv[lll,l] (D))
€ 17-[?]1%2,1)(1W[Q,l]v[12,l,1]]6c(1727l)’ ) (279)
(s g oy (1), 01,1 070 (1) W (121 T (1), 1001, (1))

€ 7-[7LU1~>3,ZX1W[2J]V[13‘1,1]]60(1137l) ) (280)
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respectively, where €.(1,2,1) > 0 and €.(1,3,1) > 0. Given (1w, (1), v, 4, (1), My, (1)), the
encoding procedure continues by determining the bin indices p1_2; and p1_3; to which the generated
private descriptions belong to. Node 1 then transmits to node 2 and 3 the indices (p1-23.1, P12, P153,1)-

The encoding in nodes 2 and 3 follows along the same lines and for that reason are not described.

C. Decoding technique

Consider round [ € [1 : K + 1] and node 2. During round the present and previous round node 2

receives (p1-s231, P3—12,01—1, P12,1, P133,1; P3—1,1—1, P3—2,1—1). However, it is easy to see that only the
indices (p1-,23,, P3—12,1—1, P12, P3—2,1—1) are the ones relevant to him. Knowing this set of indices,
node 2 aims to recover the exact values of (m1_231, M3-512,1—1, M1-21, M3-2,1—1). This is done through

successive decoding where first, the common information indices are recovered by looking for the unique

tuple of codewords uf o5 ;(m1523,0 M3—12,0-1, MW, (2))s U519, 1 (M3s120-1, Ty, (2)) that
satisfies:
(l‘g, ZUE“_” (mW[3,z—1] (2))7 UﬁQ,l,l] (mv[u,m] (2))a UE3,Z—1,3] (mVps,z—Ls] (2))7
U051 (M1523.1, M3 512,11, MWy, (2)), U519, 1 (M312,1-1, M,y (2)))
€ 7ITLU1~>23,ZU3~>12,l—IXZW[S,Z—I]V[QS,Z—I,S]V[IZ,L,I]}Edc(27l)7 Edc(Q’ l) >0 (281)

and also belong to the bins indicated by pi_,23; and p3_,12;—1. If there are more than one pair of code-
words, or none that satisfies this, we choose a predefined one and declare an error. After this is done, node
2 can recover the private information indices by looking at codewords uy 5 ;(m1-2,1, 1wy, (2), M0y, (2))

and u?—)?,l—l (m3—>27l—17 mW[l,L] (2)7 mv[23,171,3] (2)) which SatiSfy

(.%’3, w&,l} (mW[z,z] (2))1 UﬁQ,l,l} (mVuz,z,u (2>)7 UEI237[—173} (mV[23,1—1,3] (2))7
u?*)2,l(m1*>2,l7 mW[z,z] (2)7 mV[lZ,l,l] (2))7 u§%2,l71(m3ﬁ\2,l717 qu,z] (2)7 mv[%,zfl,a] (2)>>
€ ,7_['81*>2,ZU3~>2,Z71X2W[2,Z]V[23,l—1,3]v[127l,1]]€dp(27l)7 6dp<27 l) >0 (282)

and are in the bins given by p1_,2; and p3_,o ;1. If there are more than one pair of codewords, or none
that satisfies this, we choose a predefined one and declare an error. The decoding in nodes 1 and 3 is

exactly the same and for that reason are not described.
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D. Lossy reconstructions

When the exchange of information is completed, each node needs to estimate the other nodes sources.

For instance, node 1 reconstruct the source of node 2 by computing:

T125 = g12 (21, vpo, k1,10 WLk +)i) » 0= 1,2, m, (283)

and similarly, for the source of node 3:

2135 = 013 (210, Vs, k1,10 WL K41)) - 0= 1,2, ..., (284)

Reconstruction at nodes 2 and 3 is done in a similar way using the adequate reconstruction functions.

E. Error and distortion analysis

In order to maintain expressions simple, in the following when we denote a description without the

n

corresponding index, i.e. U, 5, or W[l,l]’

we will assume that the corresponding index is the true one
generated in the corresponding nodes through the detailed encoding procedure. Consider round [ and the

event D; = G; N F;, where for ¢; > 0,

gl:{ (X{l7 X£l7 X§L7 ﬁﬂ ) Vﬁ2,l,1]7 Vﬁ&l,l]? V[%ZS,I,Z]) € 7-[7;(1X2X3W[1,l]V[12,l,1]V[ls,z,l]v[%,z,z]]ﬁl } 5 (285)

ﬂ:{MH\S’t(‘j) =M; 54, S€ECM), i ¢S, je S, te[l:1— 1], with exception of
M3—>12,l—1(2), M3—>2,l—1(2)} . (286)

The set G; indicates that all the descriptions generated in the network, up to round [, are jointly typical
with the sources. The occurrence of this depends mainly on the encoding procedure in the nodes. Set F;
indicates, that up to round [, all nodes were able to recovers the true indices of the descriptions. This
clearly implies that there were not errors at the decoding procedures in all the nodes in the network. The
condition in F; on M3_>127l_1(2), M39275_1(2) is due to the fact, that the decoding of those descriptions
in node 2 occurs during round /. The occurrence of D; guarantees that at the beginning of round [:

« Node 1 and 2 share a common path of descriptions W[ \UV[}, , ;) which are typical with (X7, X%, X5).

¢ Node 1 and 3 share a common path of descriptions W[’il]UVﬁ& L] which are typical with (X', X5, X7).

e Node 2 and 3 share a common path of descriptions W[%,l—l} U V§3,l—1,3] which are typical with

(X}, Xp, XB).

Let us also define the event &;:

& ={there exists at least an error at the encoding or decoding in a node during round [}

= Eeneli, 1) U Eaecli, 1) (287)
ieEM
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where Eg.(i,1) contains the errors at the encoding in node i during round ! and Eg.(7,1) considers the
event that at node ¢ during round [ there is a failure at recovering an index generated previously in other

node. For example, at node 1 and during round {:
Eenciyl) = Eenc(1,1,23) U Eenc(1,1,2) U Eene(1,1,3) (288)

where

Eenel(1,1,23)={ (X7 Wity (M s (0)UT 30 0ma 28,0 My (1)) & T xawi e (1029)

Yimyos, € [1: 2’“%5%3]} (289)
Eenel(1,12)={ (X7 W (M (1) Wiy (V0101 (1)s Ul gm0, Moty (1), M0 (1)))

& T s X Wi Vs e (112) Y12 € 12 27F0%2] (290)

Eenel(1,13)={ (X Wiy (M s (1)) Vi1 (M (1), U gma sty Moy (1), M (1))
(1)
¢ ’r[glas 1 XaWh Vs ialec(1,1,3) vm1—>3l = [ : QnRIHB]} : (291)

Event Ege.(i,1) can be decomposed as:
i) = U {Mosali) # Mysuf - (292)
SeC(M),iesS j:j¢S
At the end of the information exchange phase we would expect the occurrence of D 1 nE K+1, where
Ek 41 1s the event of an error during round K + 1. As during round K + 1 only node 2 tries to recover

the descriptions generated during round K in node 3, we have:

Ek+1=Edec(2, K +1) = {M3—>12,K(2) # M3 19,50 OF M3 1(2) # M3—>2,K} . (293)

The occurrence of Dy N Ex 1 guarantees that all the descriptions generated during the K rounds of
information exchange in the network are jointly typical with the sources realizations and that those descrip-
tions can be perfectly recovered in all the nodes. If we can guarantee that Pr {DK+1 neé K+1} m 1,
then with probability converging to one we obtain:
e Node 1 and 2 share a common path of descriptions Wﬁ K41 Y Vﬁz K+1,1] which are typical with
(X1, X3, X3).
e Node 1 and 3 share a common path of descriptions Wﬁ K41 Y Vﬁ& K+41.1] which are typical with
(X}, Xp., XB).
e Node 2 and 3 share a common path of descriptions Wﬁ K+41) U V[’;& K+41,2) which are typical with

(X1, X3, X3).
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Using standard analysis ideas, the average distortions (over the codebooks) at the reconstruction stages in
all the nodes satisfy the required fidelity constraints. From there is straightforward to prove the existence

of good codebooks for the network. In order to prove that Pr{Dx 1 N Ex11} —> 1 let us write:
n—o0
Pr {DK+1 N gK—i—l }:Pl‘ {ﬁK—i—l U €K+1} = Pr {ﬁ[(+1} + Pr {DK+1 N 5K+1}
<Pr {ﬁK+1 N DK} + Pr {'DK} + Pr {DKJrl N 5K+1}

SPr{@K} + Pr{@[(+1 N (DK ﬂgK)} +Pr{Dx NEx} +Pr{Dxi1 NEx+1}

K+1 K
<Pr{Di}+ > Pr{DN&E}+ D Pr{Dn(DiN&)} . (294)
I=1 =1
Notice that
D, = {(X?,XS,X?’}) € 7‘[}1X2X3]61} , €1>0. (295)

From the conditional typicality lemma [24], [20], we see that for every €; > 0, Pr {D; } — 0. Then,
n oo
it is easy to see that Pr{Dg 1 NExy1} — 1 will hold if the coding generation, the encoding and
n—oo

decoding procedures described above allow us to have the following:

1) If Pr{D;} —— 1then Pr{Dj;1} —— 1Vie[l: K+1].

n—oo n—oo
) Pr{DNE} ——0Vie[l: K+1].
n—oo

In the following we will prove these facts. Observe that, at round [ the nodes act sequentially:
Encoding at node 1 — Decoding at node 2 — - -- — Encoding at node 3 — Decoding at node 1.
Then, using (287) we can write condition 2) as:
Pr{D; N EF=Pr{D; N Eepc(1,1)} 4+ Pr{Dy N Egec(2,1) N Eenc(1,1)}
+Pr{D; N Eene(2,1) N Eenc(1,1) N Egec(2,1) } +
oo Pr{Dy N Egec(1,1) N Eenc(1,1) M-+ N Eene(3,1) } - (296)

Assume then that at the beginning of round [ we have Pr{D;} —— 1. Let us analyze the encoding
n—oo

procedure at node 1. Let us consider Pr{D; N Ec,c(1,1)}. We can write:
Pr{D; N Eenc(1, )}<Pr{Eenc(1,1,23) N Dy} + Pr{Eenc(1,1,2) N Dy N Eene(1,1,23)}
+Pr {Eene(1,1,3) N Dy N Eene(1,1,23)} . (297)
From the fact that lim,,_,o Pr{G;} = 1 we have that lim,,_,~, Pr{4;(1,23)} = 1 where:

Ai(1,23) = {(X{‘,Wﬁ’l]) € 7{}1%[”6[} . (298)
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Then, we can use the covering lemma [24] to obtain:

le Pr{&€nc(1,1,23) "D} =0 (299)
provided that
R§IL23 >1 (Xl; U1—>23,Z‘W[1,l}) +0.(1,1,23) (300)

where 6.(1,1,23) can be made arbitrarily small. On the other hand we can write:
Pr{€enc(1,1,2) N Dy N Eenc(1,1,23)} < Pr{enc(1,1,2)NG(1,2) N F} +Pr{G(1,2)} (301
where

gl(la 2) = {(X{lv Xg? Xi?? W[%,l]? VﬁQ,l,l]’ Vﬁ?;,l,l} ) V[g?:,l,Q]) € 7-[;1(1X2X3W[2,l]V[12,L,1]V[13,l.l]v[23,l.2]]5l(172)}

(302)
where €;(1,2) > 0. As explained before, Pr{G,} — 1. Then, from condition (300) we have
Pr {genc(la L 23) N f.l} =Pr {(X{Lv W[g,l]) S 7-[X1W[2,lﬂec(1,l,23)} m L. (303)

Moreover, from the coding generation and the encoding procedure proposed is immediate to use Lemma 3

to show that:
Pr (U?—)Z?),l = u?*)?&l‘x?ll? wﬁ:l}?genc(l’ L, 23) N “7:l> =

n n n n
1 {“Hzal € T0, 05 1| X Wit e (1,23, (5’51 ’ w[M])}

(304)
Hﬁgmg,l|X1W[1,z]]ec(1,23,l) (m?’ wﬁl]) H
Then, from Markov chain

Ui—23,1 —o= (X1, Wiiy) o= (X2, X3, V2,175 Vs Vizsi2) (305)
and the Markov Lemma 2, for sufficiently small (e.(1,7,23),¢;,€,(1,2)) and after some minor manipu-
lations, we can obtain: Pr{G;(1,2)} —— 1.

n—oo
From equation (301) it is clear that we need to analyze term Pr{&c.(1,1,2) N G;(1,2) N F;}. Similarly
as before lim,,_,o, Pr{A4;(1,2)} where:

A(1,2) = { (X W g Vi) € Toowiavieaafa12)} - (306)
which allow us to write:

Pr{Eenc(1,1,2) N GI(1,2) N T} < Pr{€enc(1,1,2) N A(1,2) N F} . (307)

Using again the covering lemma [24] we obtain that Pr{&.,..(1,1,2) N G(1,2) N F;} — 0 provided
that
RYLQ > 1 (X1; U1—>2,1‘W[2,1}V[12,z,1}> +6¢(1,1,2) (308)
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where 0.(1,1,2) can be made arbitrarly small. For the analysis of Pr {Eenc(l, 1,3) N Dy N Eene(l, 1, 23)}

we follow the same procedure. We can write
Pr{€enc(1,1,3) N Dy N Eenc(1,1,23)} < Pr{€enc(1,1,3)NGI(1,3) N F} +Pr{G(1,3)} (309)
with

gl(17 3) = {(X?7 X§7 X§L7 W[%,l]? VﬁQ,l,Q]’ Vﬁf},l,l] ’ V[237l72}) € 77[31(1X2X3W[2)1]V[12‘1,,2]V[l$,l,1]V[23,172]]61,(1,3)} .
(310)
Using the Markov chain

Urs2 o= (X1, Wi, Vi) o (X2, Xa, Vs Vs e2) (311)

the fact that Pr{G;(1,2)} —— 1 and the Markov Lemma 2, and Lemma 3 for appropriately chosen
n—oo
values of (e.(1,1,2),¢/(1,2),€(1,3)) we have:

Pr{G(1,3)} —— 1. (312)
n—oo
Following exactly the same reasoning as above, we have that in order to have
Pr{€enc(1,1,3) N Dy N Eenc(1,1,23)} —— 0, (313)
n—oo
besides conditions (300) and (308) we need:
A (1
R,y > 1 (XUt WoyVisin) +0(1,1,3) (314)

for sufficiently small d.(1,7,3). With these conditions we have proved that the encoding procedure in

node 1 during round ! permit us to have:

Pr{D; N Eenc(1,1)} —— 0 . 315)

n—oo
Another instance of Lemma 2, jointly with Markov chain

Ursp == (X1, Wi, Visaag) o (Xa, X, Voo V23..2) (316)

and Lemma 3 allow us to have:

Pr{G(2,13)} ——1 (317)

where

gl(27 13) = {(bev Xg, XZ?? W[g,l]’ Vﬁ2,l,2]’ Vﬁ?),l,iﬂ ’ V[237l,2]) € lengl/V[Q,z]V[12,1,,2]V[13,1,,3]V[23,1,,2]]61,(2713)} ’
(318)
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At this point we have to analyze the decoding in node 2. If that decoding if successful, and using (317),
the analysis of the encoding at node 2 follows the same lines as above'>. The same can be said of the

encoding at node 3 (after successful decoding). In this way, we terminate round ! with
Pr{Djt1} =Pr{G i NF}t——1 (319)
n—oo

which is one the results we wanted. Clearly, analyzing now the decoding at node 2 (from which
we can easily extrapolate the analysis to the decoding at node 1 and 3) we will be able to obtain
Pr{D; N &} — 0 which is the other required result.

The decoding in each of nodes follows the approach of successive decoding. Decoder 2 will try to find
first the common descriptions M;_,23; and M3_,12;_1. Then, it will try to find the private descriptions
M _,9; and M3_,5 ;1 (using of course the previously obtained common descriptions as side information).
Clearly, the use of joint-decoding could improve the rate region. However, the analysis of this strategy,
besides of being more difficult to analyze, it will give rise to more complex rate region. It can be easily
seen, that the joint-decoding region will contain several sum-rate equations that will contains common
and private rates. Successive decoding allows for a rate region where the sum-rate equations contains
solely common rates or private rates, being more easy to analyze and understand.

In order to analyze the decoding, we can write:
Pr{D; N Egec(2,1) NEene(1,1)} < Pri{€acc(2,1) N FiNG(2,13)} +Pr{G(2,13)} . (320)

As Pr{G;(2,13)} —— 1 we can concentrate on the first term. Event ;..(2,1) can be written as:
n—o0

Eaec(2,1) = Heommon (2,1) U Hprivate(2,1) , where
Hcommon(2al):{<MSH12,l71(2)7M1H23,l(2)> # (M3—>12,l717M1~>23,l)} ; (321)
,Hpm'vate(27l):{<M3—>2,l—1(2)7M1—>2,l(2)> # (M3—>2,z—17M1—>2,z)} . (322)
From these definitions, we can easily deduce that:
Pr{€uec(2,1) N Fr N G1(2,13) }=Pr {Hcommon(2,1) N F; N Gi(2,13)}
FPr { Hprivate (2,1) N Fi N Gi(2,13) 0 Heommon (2,1) }

SPI’ {K:common(Q; l)} + Pr {Icprivate(Q; l)} (323)

'5See that G;(2,13) has, for the encoding at node 2 the same role that G; has for the encoding at node 1 during round .
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(X3, W[%.,l—l]’ Vﬁz,l,uv V[g:s,l—l,s])

Wfévlfl]

Figure 10: Cooperative Berger-Tung decoding problem for node 2.

where

Kecommon (2, 1)2{3(7?11%23,1, m3—i12,1—1) 7 (Mi5231, M3—121-1), (1231, M3512,1—1)
€ Bioasi(P1o231) X Bssi2i-1(Ps—12,0-1) (XS, Wi 1) Viss 1,3 Vii21)»
Ulos1(M15230, M3 5121-1), Us 191 (M3512,-1) € 7-[?{1)/\)[21”V[lzyl,l]V[237l7173ﬂ6dc(27l)> } , (324)
Korivate(2, l):{ﬂ(fmaz,l, m3—o1-1) # (Miso1, M3—0-1), (M2, M3—21-1)
€ BlﬁQ,l(Pl—)Q,l) X B3~>2,l71(P3~>2,l71) : (XS, W[Z,”,V[gg,lfl,g]yVﬁ2,1,1]7
U{l—>2,l(m1—>27l)7 U?:L—>2,l—1(ﬁ13—>2,l—1) € ﬁ?{lwm]vm_’mV[%“ﬂedp(g’l)) } , (325)

where €4.(2,1), €qp(2,1) are carefully chosen'®, and for a saving of notation we considered only the indices
to be recovered, i.e., Uf_>23’l(m1_>2371,mg_,m_l) = U{L_>237l(ﬁz1_>23,l,m3_>127l_1,MW[SWH]) Consider
first the recovering of the common descriptions. Node 2 has to recover two indices from a binning
structure as the one in the cooperative Berger-Tung problem described in Appendix B.

In Fig. 10, we have a representation of the problem seen at decoder 2. Node 3 generate a common
description at rate Rél__j% using Wiz ;) as side information. Similarly node 1, after decoding the common
description from node 3, generate its own description using the recovered one and also W[?:ls,l—u as side
information. All these operations all done using the super-binning structure as in the cooperative Berger-
Tung problem in Appendix B. Then, node 2, using (X3§, W[%,l—uv v[qQJ’H,v[g&l_Lg]) as side information

tries to recover the descriptions generated at node 3 and 1. Remember the fact that the encoding procedure

1Tt is straightforward to see that: G;(2,13) C (XS, Wiz Viza,i—1,3) Viiz.1)) € T&lw[z,z]V[m,z,l]V[zs,z_l,s]]edc(ll)) , and
Gi1(2,13) C <X§L7W[Z,L],V[Zg,z,zp\?ﬁz,z,z]) € 7’[5?1W[Q,,]v[w,,,“]v[QSYLQ]]edp(z,Z))
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Wiz -1 Vs i-1,3)

Encoder 3

-1 o (M)

Decoder 2

-1
R:(3—>2)

X]',:L

(W[T:la,lfuv Vﬁz,l,u)

U:Lz,lfl(MBHZ,lfl)

(X3, W[%,l—u’vﬁzz,uv V[g3,z—1,3])

Figure 11: Berger-Tung decoding problem for node 2 when it tries to recover the private descriptions

generated in nodes 1 and 3.

at nodes 1 and 3 requires:

R, > 1(Xa3 Us a1 Wiay) + 6:(1,1 — 1,12) (326)
R, s > T(X15Ur 030 Wing) + 8e(1,1,23) (327)
Ry gy < By + REZY) (328)
and that the following Markov chains:
Us—12,0-1 o (X3, Wiz 1)) = (X1, X2, Vja2,1.1), Viz31-1.3)) (329)
Ui231 = (X1, W) o (X2, X3, Vii2,1), Vies.2)s (330)

are implied by the Markov chains in the conditions of Theorem 1. In this way, we can use the results in

Appendix B to show that the following rates imply Pr{Kcommon(2,1)} —— 0:

n—oo

R&gg > 1(X1; Ursaz| XoWn g Vies—1,3Vn2,,1)) + 6de(2,1) (331)
Rﬁigg + R;(gl;PQ > I(X1X3; Urso31Us 512,01 | XoWis o1 Vs i—1,5 Vi) + 0ae(2,1) . (332)

where 6,4.(2,1),0,.(2,1) can be made arbitrarily small'’.

""Here we considered the corollary to Theorem 8. That is we assumed, that node 1 knows perfectly the value of M3z_,12,;—1.
This follows from the assumed fact, that at the beginning of round [, the probability of decoding errors at previous rounds in
all nodes is goes to zero when n — oo. In this way, the constraint on rate R3_,12;—1 that should be considered, according
to Theorem 8 is not needed. In fact, constraints on rate R3_,12;—1 will arise when at node 1 we consider the recovering of
Ms_s12,;—1 and Ma_,13,;—1. For that reason, the analysis carried on is valid. Through this analysis we avoid carrying a lengthy

and difficult Fourier-Motzkin procedure to eliminate RYLQS, Réll)ls, Rggu forl=[1:K].
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The decoding of the private descriptions can be seen as a standard Berger-Tung decoding problem (see
Fig. 11) where the binning used to transmit the descriptions generated in node 3 and 1 is not cooperative
(in the sense of Theorem 8) as in the case of the common descriptions. Lemma 1 can bee easily used to
analyze Pr {Kp,ivate(2,1)}. The following conditions guarantee that Pr {/Cp,iyate(2,1)} —— 0:

n—oo
(1 l
R§L2<R§L2 +1 <U1—>2,l; XaV23,,2] ‘W[2,Z]V[12,l,1]) — 6ap(2,1) (333)
(- -
R§%§)<R§_é) +1 (U3—>2,l—1;X2U1—>23,1V[12,z,2} ‘W[l,l}v[23,l—1,3]) —0g,(2,1)  (334)
A(—1 A1 -1 l
+1 <U3a2,171; XoUi231V12,,2] ’W[l,l] V[23,z-1,3})

-1 <U3a2,171; U2, W[Q,l]V[23,lfl,3}v[12,l,1]X2) — 0gp(2,1) (335)

where 64y (2, 1), 03,(2,1), 63,(2, 1) can be made arbitrarily small. Then, combining all the obtained results,
we have that:

Pr{D; N Eec(2,1) NEene(1,1)} —— 0. (336)

n—oo
At this point, the story is as it was at the encoding stage in node 1 and all the steps can be repeated with

minor modifications, proving the desired results at the end of round I:
Pr {Dl+1} — 1, Pr {Dl N 51} — 0. (337)
n—oo n—oo

The other rates equations are as follows:

e Encoding at node 2:

I:ZSLB > 1 (Xz; U2—>13,Z‘W[2,l}) +6c(2,1,13) (338)
Rélll > 1 <X2; U2—>1,l‘W[3,l]V[12,l,2]) +60(2,1,1) (339)
Ré&g > 1 <X2; U2a3,l‘w[3,l]v[23,l,2]> +0c(2,1,3) (340)
¢ Decoding at node 3:
Rgllg > 1 (Xz; U2_>13,z’X3W[2,z}V[13,z,1}V[23,z,2}> +04c(3,1) (341)

RSLB + RﬁlLQg > 1 (X1X2; U1—>23,lU2—>13,l‘X3W[1,l]V[13,l,1]V[23,l,2]> +04.(3,1)  (342)

Réllg < Ré&g +1 <U2—>3,l; X3V13,,3] ‘W[g,l}V[%,z,z]) — 6ap(3,1) (343)
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Rgng < Ri’ig +1 (U1—>3,l; X3Usz—513,1V]23,1,3] ‘W[2,Z}V[13,l,1}) —0g,(3,1)  (344)
Rglls + Rgls < Rgg:a + Réllg +1 <U2—>37l5 X3Vs3 ’W[&l] V[23J,2])
+1 (U1—>3,z; X3U25131V|23,,3] ‘W[Zl] V[13,Z,1]>
—1 <U1H3,l§UQ%S,I)W[3,l]V[23,l,2]v[13,l,1]X3> —0gp(3,1)  (345)

e Encoding at node 3:

R:(zgm >1 <X3; U3~>12,I‘W[3,l]> +6¢(3,1,12) (346)
Rg,lll > 1 <X3; U:Hu’W[1,1+1]V[13,z,3]> +6:(3,1,1) (347)
B > 1 (Xos Usaa Wit Vs ) +00(3,1,2) (348)
¢ Decoding at node 1:
Ry, 1> 1 (X3; U3—>12,l‘X1W[3,l]v[12,l,2}V[13,l,3}> + dac(L,1) (349)

RélLH + Réﬂlg > 1 (X2X3; U2—>13,lU3—>12,l‘X1W[2,l]V[12,l,2]V[13,l,3]> +94.(1,1)  (350)

]:1,:()2)1 < R;(glll +1 (U:Hu; X1V[12,z+1,1]‘W[1,1+1]V[13,l,3]> — dap(1,1) (351)
Rélll < Rélll +1 (U2—>1,z; X1U3—>12,lv[13,l+1,1]‘W[3,Z]V[12,l,2]> — 0g,(1,1)  (352)
Rgil + R:(fll < Régl + Rélll +1 (U3—>1,l; X1Vn2,41,1] ‘W[1,z+1]V[13,z,3])
+1 <U2—>17l§ X1Us—121V13,141,1] ’W[g,z] V[12,l,2])
—1 (UQHLZ;USal,l‘W[l,l+1]V[lZ,l,Z]V[13,l,3]X1) —gp(1,1) . (353)

The final private rate equations in Theorem 1 follow from a rather simple Fourier-Motzkin elimination

procedure [24].
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