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Generation of chiral solitons in antiferromagnetic chains by a quantum quench
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We analyze the time evolution of a magnetic excitation in a spin- 1
2 antiferromagnetic Heisenberg chain after a

quantum quench. By a proper modulation of the magnetic exchange coupling, we prepare a static soliton of total
spin 1

2 as an initial spin state. Using bosonization and a numerical time-dependent density matrix renormalization
group algorithm, we show that the initial excitation evolves to a state composed of two counterpropagating chiral
states, which interfere to yield 〈Sz〉 = 1

4 for each mode. We find that these dynamically generated states remain
considerably stable as time evolution is carried out. We propose spin-Peierls materials and ultracold-atom systems
as suitable experimental scenarios in which to conduct and observe this mechanism.
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I. INTRODUCTION

Thinking about classical nonlinear physics, solitons are
peculiar solutions which can be characterized by constant
velocity and shape. Recently, Wöllert and Honecker,1 pursuing
the understanding of the extension of the soliton concept to
the quantum regime, chose the easy-axis ferromagnetic XXZ

model as the scenario in which to analyze how a localized
quantum wave packet evolves in time. They have shown that
besides the quantum-mechanical delocalization due to the
uncertainty principle, they are in qualitative agreement with its
classical counterpart. Following this objective of deciphering
the quantum soliton term, we tackle an alternative problem
in which we study the time evolution of a one-dimensional
topological quantum soliton after a quench.

The study of nonequilibrium phenomena in one-
dimensional systems has become a very active area of research
in recent years due to new advances in the experiments with
ultracold atoms in optical lattices2 and the latest studies on
thermalization after quantum quenches.3,4 With these ideas in
mind, we propose a frustrated J1-J2 spin- 1

2 antiferromagnetic
Heisenberg chain as a suitable framework in which to conduct
the analysis. It is known that this model undergoes a phase
transition from a quasi-long-range ordered ground state to
a product of localized singlet clusters as a function of the
next-nearest-neighbor parameter. Moreover, this Hamiltonian
has an exact ground state at the Majumdar-Ghosh (MG) point
J1 = 2J2,5 and a variational approach describes the elementary
excitations adequately.6 More specifically, in this work we
propose a fine-tuned magnetic soliton as the initial pattern
which will be evolved in time after a quantum quench of
the model parameters. In order to create this initial spin- 1

2
excitation, we choose a one-dimensional chain with spin-
phonon coupling as a witness case, which is realized in
quasi-one-dimensional spin-Peierls systems such as CuGeO3

(Ref. 7) and TiOX (X = Cl,Br).8 An alternative approach
would be to prepare the initial excitation and conduct the time
evolution in a setup of ultracold atoms in an optical lattice.

Once the initial soliton is prepared, we follow the dynamics
of this excitation on the uniform zigzag Heisenberg chain,
driven by a quench of the spin-phonon coupling. We observe

that, in the gapless phase of the model, the initial soliton
evolves into two counterpropagating modes, indicating a quan-
tum superposition of left- and right-moving components of the
original soliton. As time evolves, the excitation remains quite
stable despite the quantum-mechanical spreading. On the other
hand, for a highly localized soliton generated in the MG point,
the excitation shows quick spreading with time evolution.

We select the density matrix renormalization group
(DMRG)9 and bosonization10 as the numerical and analytical
techniques to conduct our study. There are plenty of examples
in the literature showing that both methods are convenient for
giving a reliable description of spin-chain systems, particularly
when the coupling to the lattice is also considered.11 Among
different DMRG options,12 we use the algorithm introduced
by Manmana et al.4 that allows us to perform nonequilibrium
simulations for systems with interactions beyond the nearest
neighbors. It is worth mentioning that related studies were
done on spin transport, even at finite temperature.13

II. THE MODEL AND STRATEGY TO GENERATE
EXCITED STATES

In order to generate a soliton-like topological excitation,
we introduce a one-dimensional antiferromagnetic Heisenberg
Hamiltonian with first- and second-neighbor interactions and
spin-lattice coupling, which reads

H =
∑

i

[1 + δi] Si · Si+1 + βSi−1 · Si+1. (1)

Si is a spin- 1
2 operator for the ith lattice site, and we have

set J1 = 1 as the energy scale, such that β = J2/J1 is the
second-neighbor exchange coupling; δi = λ(ui+1 − ui)/J1 is
the dimensionless bond length variation, where ui are the
displacements of the magnetic ions from their equilibrium
positions and λ is the spin-lattice coupling parameter. Al-
though frustration is not necessary to present our ideas, we
introduce the parameter β in order to analyze the case of
the well-known MG limit5 and make a comparison with the
nonfrustrated case. So with the intention of promoting a sort of
quantum topological soliton, we break the lattice symmetry to
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FIG. 1. (Color online) Collective excitation obtained by DMRG
in a finite lattice of Ns = 99 sites, in the absence of frustration (β =
0). The soliton, represented by 〈Sz

i 〉 (circles), was tuned by selecting
δi in a given configuration (squares). The parameters are ξ = 1,δ0 =
0.3. We also show the cumulative magnetization up to a given site
(diamonds). The bosonization result for this magnitude is represented
by the solid line.

manipulate the nearest-neighbor magnetic interaction. From
the studies of models with spin-phonon coupling it is known
that, when phonons are treated adiabatically, the stable pattern
for δi in the Sz = 1/2 sector is the one called the static lattice
soliton, given by δi = (−1)iδ0 tanh( i−i0

ξ
). The domain wall

is centered at site i0, and its width is given by ξ , which
produces an interpolation between two dimerized patterns. The
Sz = 1

2 magnetic soliton generated by this lattice arrangement
is also centered at site i0, and the number of sites involved
within the wall is controlled by the parameters ξ and δ0. In
Fig. 1 we show the lattice configuration generated with the
set of parameters {β = 0,δ0 = 0.3,ξ = 1}, together with the
associated spin pattern given by 〈Sz

i 〉, which was obtained from
Eq. (1) using DMRG in a lattice of size Ns = 99, where the odd
number of sites is to set the total magnetization to 1

2 . We use
open boundary conditions, keeping m = 300 states, enough to
assure the accuracy, with a truncation error of order O(10−9)
in the worst case. We see that most of the spins arrange in
localized singlet clusters, producing zero local magnetization.
However, in the center of the chain where the bonds interpolate
between the two possible dimerized states, 〈Sz

i 〉 �= 0. We also
show the cumulative magnetization up to a given site I , which
is defined as MI = ∑I

i=1〈Sz
i 〉. A clear solitonic profile can be

observed in this quantity.
Let us now resort to the bosonization technique to analyze

the MI parameter. In this representation, the z component of
the spin is connected to a bosonic field φ(x) by10

Sz
i = 1

2π
∂xφ(x = ia) + (−1)i

πα
cos[2φ(x = ia)], (2)

where a is the lattice constant and α is a short-range cutoff in
the bosonization procedure. The quantity MI is obtained by
integration of the previous equation up to a point X. Being
oscillatory at the lattice level, the last term vanishes. In the
Sz = 1

2 subspace the field goes from φ(−∞) = −π
2 to φ(∞) =

π
2 . Therefore, the expression for MI is

MI = 1

2π
〈φ(X = Ia)〉 + 1

4
. (3)

As the bosonized version of the Hamiltonian (1) is not
exactly solvable for general displacements δi , we resort to

a semiclassical solution in order to calculate the mean value
of the field in the corresponding subspace and compare with
the DMRG results. This solution can be obtained by adding an
elastic energy term K

2

∑
i δ

2
i to the Hamiltonian and treating

δi in the adiabatic approximation14,15. The classical solutions
for the continuous fields are δ(x) = δ0 tanh(x/ξ ) and φ(x) =
arcsin[tanh(x/ξ )]. With the inclusion of an elastic energy term,
δ0 and ξ depend on the values of the microscopic parameters K

and J1,2. In the previous DMRG calculation we chose δi with
arbitrary δ0 and ξ , i.e., not subject to fulfilling an adiabatic
equation. In the spirit of a semiclassical quantization16 we
assume the following ansatz for the mean value of the bosonic
field: 〈φ〉 ≡ φS(x) = arcsin[tanh(x/ξ ′)], where the subindex
S refers to a solitonic pattern. In Fig. 1 we show a fitting to the
numerical results using the analytical expression, for which
we obtain a good agreement with ξ ′ = 1.773.

III. QUENCH AND TIME EVOLUTION OF THE SOLITON

We now turn off the spin-lattice coupling and study the
dynamics of this magnetic excitation, which will be conducted
by a homogeneous Heisenberg Hamiltonian H ′ ≡ H [δi = 0].
Once the quantum soliton is constructed, the time-dependent
DMRG (t-DMRG) algorithm enables us to evolve in time
under this new homogeneous Hamiltonian17. As a gapless
phase is stable for 0 � β � βc =0.245, we analyze different
tuned solitons in this zone where the bosonization analysis is
valid. In Fig. 2, we show the dynamics of two witness cases
which are defined by {β =0,δ0 =0.3,ξ =1} and {β =0.24,δ0 =
0.3,ξ =3}. One can observe that the excitations behave in a
subtle way. In both cases, the time evolution shows how the
original soliton evolves in such a way that, at a given time,
two spin clouds are observed, each of them carrying 〈Sz〉= 1

4 .
Remarkably, these right and left modes are quite stable: as
observed in Fig. 2, these modes barely disperse as time evolves.
We will return to this interpretation later.

These left and right excitations travel at a velocity which
agrees very well with the spin-wave velocity of the low-energy
excitations of the homogeneous chain. This can be seen in
Fig. 2 by comparing the evolution of the maximum of 〈Sz

i 〉 with
the spin-wave velocity vs = π

2 predicted by the Bethe ansatz for
the one-dimensional homogeneous Heisenberg chain10 and the
renormalized vs = π

2 (1 − 1.12β) calculated in Ref. 18 using
exact diagonalization in small chains.

Let us analyze the origin of this behavior by study-
ing the time evolution in the bosonization language.
The Hamiltonian H ′ in the bosonic representation cor-
responds to a (1 + 1) free bosonic field theory, up to
marginally irrelevant operators.10 These marginal opera-
tors vanish at β =βc. The time evolution of the mean
value of φ is given by 〈φ(x,t)〉 = 〈e−iH ′tφR(x)eiH ′t 〉 +
〈e−iH ′tφL(x)eiH ′t 〉 = 1

2 [φS(x − vst) + φS(x + vst)]. To ob-
tain the previous expression, we have taken into account that,
in the initial state, the field φ is split into its left and right parts
φ = 1

2 (φL + φR) originating from the left and right fermions
in the bosonization procedure. For a time-independent state,
〈φR〉 = 〈φL〉 = φS (x)

2 as in the initial situation discussed above.
On the other hand, the time evolution of φL is independent of
that of φR , and it is given by a simple shift in vt to the left and
to the right, respectively. In Fig. 3 we show the cumulative
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FIG. 2. (Color online) Time evolution of 〈Sz
i 〉 in the collective excitation obtained by DMRG with and without frustration for the two

witness cases, (a) β = 0,δ0 = 0.3,ξ = 1 and (b) β = 0.24,δ0 = 0.3,ξ = 3. In (a), the black line corresponds to the slope in the time-space
diagram of the spin velocity vs = π

2 obtained by the Bethe ansatz for a homogeneous Heisenberg chain. In (b), the black line shows the spin
velocity renormalized by the frustration. In both cases one observes the splitting of the soliton into two chiral modes.

magnetization for different times compared to the DMRG
results. We used the fitted value to the static solution for
ξ ′ in φS , as shown for the β = 0 case in Fig. 1. A similar
procedure gives ξ ′ = 2.781 for the β = 0.24 case. We also fix
vs to the spin-wave velocity of the homogeneous chains, as
previously discussed. We observe a fairly good comparison
between the DMRG and bosonization results, especially when
β is near the critical value βc. This is due to the reduction
of the finite-size effect in the latter case: as the evolution of
the resulting excitations is slower as β increases, they do not
reach the edge of the chain for the last time, t = 20, obtained
in our calculation. The improved fitting between both results
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FIG. 3. (Color online) Time evolution of the cumulative magneti-
zation as given by DMRG (symbols) and bosonization (solid lines) in
the (a) nonfrustrated and (b) frustrated (β =0.24) cases. The observed
jump to MI = 1/4 as time evolves signals the quantum interference
of left and right soliton states.

could also be due to the fact that the marginal irrelevant term
neglected in the bosonized Hamiltonian could play some role
in the short-distance correlations which, nonetheless, vanishes
at βc. As in the numerical results, we see that the original
soliton does not propagate in a particular direction, but the state
splits into two counterpropagating modes as a consequence of
the chiral symmetry of the Hamiltonian. As this pattern arises
as a sum of two topological protected excitations, one on the
right sector and one on the left sector of the theory, we can
assume that the global excitation is also protected and remains
stable with the time evolution. The jump in MI indicates that
each chiral mode carries 〈Sz〉= 1

4 . This can be interpreted as
a superposition (|L〉 + |R〉)/√2 of two Sz = 1/2 quantum
soliton states, such that |L〉 (|R〉) is a state propagating to
the left (right). The system retains the memory of the initial
state, but the original soliton state evolves into two chiral
states as the time evolution is carried out with a Hamiltonian
whose left and right modes are independent. However, the
elementary excitations of the uniform Heisenberg model are
not these types of solitons; notably, the dynamical states
preserve coherence and disperse quite slowly.

It is worth remarking that working with an odd number of
sites is not a necessary condition for these results. An even
number of sites will sustain a pair of soliton and antisoliton
excitations. For long enough separation between them in order
to prevent interaction effects, the conclusion remains the same,
so that each soliton will split into two left and right modes as
time evolves.

One wonders if, in the limiting case of a soliton of zero
width, i.e., at the MG point (β =1/2), such a mechanism could
come into effect.

IV. SOLITON OF ZERO WIDTH: A FREE SPIN

The MG point is a good scenario to create such a localized
excitation, and as it has an exact eigensolution built of singlets,
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FIG. 4. (Color online) Time evolution of 〈Sz
i 〉 for the free spin on a

lattice of 41 sites at the MG point β =1/2. The solid lines correspond
to the maximum group velocity according to the variational dispersion
relation obtained from Ref. 6.

we analyze the case in order to compare our numerical calcu-
lations with the variational approach of Ref. 6. To recreate this
situation we use δi = 0 and β =1/2 in Eq. (1) and set to zero
the exchange parameters connecting to site i = (Ns + 1)/2 as
well. Thereby, we establish a free spin at the center of the

lattice, separating two MG domains | 〉
with singlets | 〉= 1√

2
[|↑↓〉 − |↓↑〉]. Since the physics we

want to describe is localized, we choose a lattice of Ns =41
in the Sz = 1

2 subspace without worrying about the edge
effects.

In Fig. 4 we show the time evolution of 〈Sz
i 〉 once the

uniform zigzag Heisenberg model is restored, from which
we can appreciate two things. First, we have appropriate
agreement with the variational approach,6 where elementary
excitations are described by ω(k)=2β[ 5

4 + cos(2k)]. The
slope of the solid lines in Fig. 4 agrees with the maximum
group velocity that results from the variational dispersion rela-
tion. We are not aware of other numerical calculations showing
this in the literature. Second, we have qualitative agreement
with the effective Hamiltonian description proposed in Ref. 19
for the dynamics of a free spin hopping between next-nearest
neighbors. It is easy to appreciate that the initial free spin
reduces its module at the center site with the time evolution,
transferring its spin component to the next-nearest neighbor.
The spin uses the mechanism of exchange mediated by J2

to avoid breaking the dimers, which would result in a loss of
magnetic energy. Different from the mechanism previously de-
scribed in which we found a separation into chiral modes, here
the time evolution of 〈Sz

i 〉 shows the expected dispersion of
the original individual excitation moving in a singlet sea. The
initial excitation cannot remain highly localized because of the
uncertainty principle. As the quasiparticle is localized in real
space, it involves a broad range of momenta in the reciprocal
space, in which case the excitation spreads very quickly.

V. POSSIBLE EXPERIMENTAL REALIZATIONS

Two experimental realizations of the previous mechanism
are envisaged. One is on spin-Peierls materials such as

CuGeO3 (Ref. 7) or TiOX (X = Cl,Br).8 At low temper-
atures, below a critical value TSP, these materials undergo
a magnetostructural transition in which the lattice dimerizes
and a spin gap opens in the magnetic spectrum. Applying a
magnetic field larger than the critical one Hc, a soliton lattice
is generated which has been characterized by x-ray scattering
measurements.20 For not too strong a magnetic field above Hc,
the magnetic chains realize our initial state because the solitons
are far apart. Then, the field should be turned off and the
temperature raised above TSP. The system should now be in the
uniform phase, and the magnetism should be described by a ho-
mogeneous Heisenberg Hamiltonian, which will conduct the
time evolution as well. Another possible realization is in recent
experiments of ultracold atoms trapped in a one-dimensional
optical lattice. Recently, the bosonic repulsive Hubbard model
has been successfully accomplished21 to study the dynamics
of spin excitations on a ferromagnetic background. On the
other hand, the fermionic version has been realized,22 and once
the limitations related to the temperature are overcome, it is
expected that the antiferromagnetic Heisenberg model can be
simulated by tuning the Feshbach resonances for large on-site
repulsion.

VI. CONCLUSIONS

We described a mechanism based on the preparation of
a soliton, which after a quench of the interaction drives
the system to the formation of a state composed of two
counterpropagating components as times evolves, producing
two well-defined spin clouds in the chain, each of them with
total magnetization 〈Sz〉=1/4. This state can be interpreted
as a quantum superposition of left- and right-moving Sz =
1/2 quantum soliton states that are protected by the chiral
separation of the Hamiltonian. Remarkably, they remain stable
as time evolves, showing a very slow dispersion. We propose a
recipe to obtain these states, consisting of an initial preparation
of a topological protected excitation by a modulation of the
exchange couplings, followed by a quench of the interactions,
generating new left and right solitonic states that will evolve
in time through a Hamiltonian whose left and right modes
are independent. On the other hand, the situation for the
MG point is different. As the initial excitation is local in
real space, its distribution in momentum space is very broad,
leading to a rapid dispersion of the excitation as time evolves.
The most natural candidates to observe those phenomena
would be spin-Peierls materials and ultracold atoms in optical
lattices.

ACKNOWLEDGMENTS

We thank Armando Aligia, Daniel Cabra, Anibal Iucci,
Luis Manuel, and Adolfo Trumper for useful discussions.
D.M. acknowledges the hospitality of the Dahlem Center.
This work was partially supported by PIP CONICET Grant
No. 0392, Grant No. DMR-1108285, and NSF-PIRE Grant
No. 0730257.

195125-4



GENERATION OF CHIRAL SOLITONS IN . . . PHYSICAL REVIEW B 88, 195125 (2013)
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G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch, ibid. 429, 277
(2004); T. Fukuhara, P. Schauß, M. Endres, S. Hild, M. Cheneau,
I. Bloch, and C. Gross, ibid. 502, 76 (2013); I. Bloch, J. Dalibard,
and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).
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