
Available online at www.sciencedirect.com

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 315 (2017) 760–779
www.elsevier.com/locate/cma

Homogenization of the Navier-Stokes equations by means of the
Multi-scale Virtual Power Principle

P.J. Blancoa,d,∗, A. Clausseb,c, R.A. Feijóoa,d
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Highlights

• The Method of Multiscale Virtual Power is used to derive a novel two-scale model for fluid mechanics.
• The model targets the multiscale study of fluid flow in permeable media.
• Model capabilities are demonstrated in controlled study cases and in a comparison against DNS.
• The model is capable of retrieving complex fine-scale interactions observable at a coarse scale.

Abstract

This work addresses the multi-scale modeling of fluid flow in highly complex media based on the concept of Representative
Volume Element (RVE). The Method of Multi-scale Virtual Power developed by the authors is employed to construct a coarse-
scale model from standard fluid flow model at a fine-scale. Kinematic conservation principles, duality arguments and the balance
of virtual power between scales are employed to set the grounds of the scale transition of physical fields. This allows to derive
in a variationally consistent manner (i) the fine-scale problem to be solved at the RVE, and (ii) the homogenization formulae for
coarse-scale dual quantities, namely, the force-like and stress-like fields. Examples of application of flow in permeable media are
presented to show the potential of the present approach.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Multi-scale simulation applied in the field of fluid mechanics has been largely acknowledged as a powerful tool to
model complex flows, with special focus in the modeling of fluid flow through porous media. Furthermore, current
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technological developments aimed at manufacturing microstructures to attain complex, and often counterintuitive,
media properties, pose new challenges to descriptive and predictive modeling [1–5].

The typical problem in which multi-scale modeling has been successfully applied is porous media flow, providing
closure forms for Darcy-like constitutive equations [6–10]. However, there are still open questions about the
generalization of these models to highly permeable media, that is, media in which the porosity is high. In this
regard, multi-scale modeling can definitely help to elucidate the coarse-scale implications of fine-scale intricate
phenomenology.

The asymptotic approach has been the preferred strategy to develop multi-scale models in fluid mechanics as
proposed in Allaire’s seminal work [11–13]. A myriad of applications concerning Stokes flow in porous media
has benefited from this technique [14,7,8], and further extensions were proposed for the complete Navier-Stokes
equations [15–19]. The common feature of all those applications is that small-scale physical phenomena are governed
by viscous dissipation, and therefore the coarse-scale observable phenomena display a Darcy-like behavior. Another
useful application of the multi-scale paradigm is the derivation of closure equations for turbulence models by means of
asymptotic analysis [20]. The asymptotic strategy considers separation of scales as one of the milestones and assumes
periodic conditions for fine-scale flows. It should be noted that there are a number of situations in which these two
hypotheses do not hold and such models can yield misleading results.

Within the field of solid mechanics, multi-scale modeling has traditionally been supported by solid theoretical
grounds originally established in the landmark works of R. Hill [21] and J. Mandel [22]. The so-called principle of
macro-homogeneity (also known as Hill–Mandel principle) has been exhaustively explored in the characterization
of complex material behavior, resulting in an approach that relies on the concept of Representative Volume Element
(RVE). This is also widely known as computational homogenization approach [23–27]. In contrast, in the field of fluid
mechanics, the RVE-based approach has been largely underused. To our knowledge, the only preliminary application
of the Hill–Mandel principle in flow problems is the homogenization of a Stokes flow recently presented in [28].
However, the extension of this multi-scale modeling strategy to general flow conditions is still an open issue.

In turn, a unified theoretical framework for the formulation of RVE-based multi-scale models has been proposed
in [29], based on the so-called Method of Multi-scale Virtual Power (MMVP). In a nutshell, MMVP relies on three
pillars: (1) kinematic coupling between scales, (2) mathematical duality, and (3) the Principle of Multi-scale Virtual
Power to physically couple the scales. Such approach has been employed to account for fine scale phenomena
into coarse scale physics in several problems, such as the analysis of solids with micro-inertia [30], high order
homogenization [31], thermoelasticity [32] and the analysis of material failure [33,34].

In the present article, the MMVP is exploited within the context of fluid mechanics to develop a coarse-scale flow
model by properly homogenizing the steady-state Navier-Stokes equations at a fine-scale describing the flow of an
incompressible fluid amid small obstacles. It is shown that the MMVP naturally leads to consistent homogenization
formulae, retrieving force-like and stress-like coarse-scale closure equations from the homogenization of fine-scale
phenomena in a parameter-free setting. The potential of the MMVP is shown by unveiling the coarse-scale structure
of force- and stress-like objects from fine-scale flow mechanisms.

The article is organized as follows. Section 2 presents the development of the multiscale methodology employed in
this work. Section 3 describes specific choices for the numerical experiments, which are presented in Section 4. Final
remarks are outlined in Section 5.

2. Multiscale modeling

2.1. Hypotheses and setting

Although the framework on top of which the present model is constructed is rather general, we limit the present
work by assuming the following hypotheses to hold
(H1) Two spatial scales are identified, namely a coarse and a fine scale.
(H2) Problem is steady-state.
(H3) Kinematics at coarse scale is that of a first order continuum.
(H4) Flow is incompressible at the fine scale.
(H5) Flow is single phase and Newtonian at the fine scale.
(H6) The fine scale contains rigid fixed obstacles around which the fluid flows.
(H7) No-slip conditions apply over the boundary of the obstacles.
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Because of (H4) and (H6), the flow at the coarse scale is also incompressible. Removal of these hypotheses is in
principle possible, but this is not a straightforward issue and requires careful modification of the multi-scale model.

2.2. Coarse-scale problem

Let us first formulate the incompressible flow problem at the coarse scale in a bounded domain Ω ∈ Rn , typically
n = 2, 3, with boundary ∂Ω = ∂ΩD ∪ ∂ΩN (D: Dirichlet, N : Neumann) with outward unit normal N. Let us
assume that the total virtual power is a linear functional only depending upon the velocity field, denoted U, and its
first gradient. Dual to these quantities there exist a vector C and second order tensor Σ , that allow us to express the
following: the system is at equilibrium if the following variational equation is satisfied

Ω


C · Û + Σ · ∇Ω Û


dΩ =


∂ΩN

T · Û d∂ΩN ∀Û ∈ VΩ , (1)

where U is in a proper linear manifold UΩ = {U ∈ [H1(Ω)]n, divΩ U = 0, U|∂ΩD = U}, ∇Ω (·) is the gradient
operator with respect to coordinates X ∈ Ω , and T is a known datum. Besides, ˆ(·) denotes admissible virtual variations
in space VΩ , which generates the linear manifold UΩ . Also, it will be denoted G = ∇ΩU, and therefore Ĝ = ∇Ω Û.

Variational equation (1) has to be supplied with closure forms for the force-like vector C and for the stress-like
tensor Σ . In the classical single-scale Navier-Stokes setting it is

CNS = ρ(∇ΩU)U = ρGU, (2)

ΣNS = 2µ∇
S
ΩU = 2µGS . (3)

where ρ and µ are the density and viscosity of the fluid, respectively, ∇
S
Ω (·) is the symmetric gradient operator.

In a general setting, the variational equation (1) is closed by providing a functional form for the pair (C,Σ ). These
entities may depend on the velocity field U and on its gradient G, that is C = C(U, G) and Σ = Σ (U, G). Note
that we will allow the skew-symmetric part of the tensor Σ to be non-zero. Furthermore, since only divergence-free
velocity fields are considered in the coarse-scale analysis, tensor Σ is deviatoric.

The Euler–Lagrange equations associated with Eq. (1) are derived by standard variational arguments, and, together
with the essential boundary condition, they read

C − divΩ Σ + ∇Ω P = 0 in Ω ,

divΩ U = 0 in Ω ,

−PN + Σ T N = T in ∂ΩN ,

U = U in ∂ΩD,

(4)

where P denotes the pressure field, which is regarded as the reaction to the divergence-free constraint considered
in the space VΩ . Note that, as said, by replacing (2) and (3) in (4) the steady-state Navier-Stokes equations are
recovered.

Thus, the goal of the multi-scale model to be developed in the forthcoming sections is to provide Eq. (1) with clo-
sure equations for the pair (C,Σ ) as a function of the pair (U, G). This is illustrated in Fig. 1, which features the basic
ingredients in our multi-scale approach. For each point at the coarse scale we associate a fixed fluid Representative
Volume Element (RVE, or simply cell) fixed in space, and in which the flow can have a very complex pattern due to
heterogeneity of obstacles.

2.3. Kinematic coupling between scales

At the coarse scale, the kinematics have been fully characterized in Section 2.2. Recall that the fluid-velocity vector
field is U and the velocity gradient is denoted by G = ∇ΩU. These fields are defined in Ω , in which coordinates are
denoted by X.

At the fine scale, the RVE domain is denoted by ω ⊂ Rn , with boundary ∂ω (outward unit normal n). Coordinates
in ω are denoted by x. Also, we denote by γ the boundaries of the obstacles in the fine scale.

The velocity field at the fine scale is denoted by u. Gradient and divergence operations with respect to coordinates
x ∈ ω are denoted ∇ω(·) and divω, respectively. Based on the assumptions made in Section 2.1, the velocity field at
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Fig. 1. Schematic coupling between coarse and fine scales. Points at the coarse scale X ∈ Ω are coupled with RVE (coordinates x ∈ ω) that
characterize the fine scale in which intricate fluid flow takes place. Downscaling kinematic variables: velocity U and velocity gradient G (see
Section 2.3). Upscaling dual entities: force C (see Section 2.7) and stress Σ (see Section 2.8).

the fine scale must be divergence-free and must vanish at obstacle boundaries, that is

divω u = 0 in ω, (5)
u = 0 on γ. (6)

Fundamental to our analysis, and following the guidelines of [29], are the so-called conservation of kinematic
quantities, which for the present multi-scale model they read

U =
1

|ω|


ω

u dω, (7)

G =
1

|ω|


ω

∇ωu dω, (8)

where U and G denote the coarse-scale fields evaluated at point X which is associated to ω, and ∇ω(·) denotes the
gradient operation with respect to x ∈ ω. That is, in (7) and (8) it must be understood, respectively, that

U ∈ Rn, (9)
G ∈ Tn×n

= {A ∈ Rn×n
; tr A = 0}. (10)

Thus, we define the linear manifold of kinematically admissible velocity fields at fine scale as being

Uω =


u ∈ [H1(ω)]n, u = 0 on γ, divω u = 0,

1
|ω|


ω

u dω = U,
1

|ω|


∂ω

u ⊗ n d∂ω = G

. (11)

Introducing the variations of U and G, denoted by Û and Ĝ, we have the associated space of admissible virtual
variations of the velocity field

Vω =


û ∈ [H1(ω)]n, û = 0 on γ, divω û = 0,

1
|ω|


ω

û dω = Û,
1

|ω|


∂ω

û ⊗ n d∂ω = Ĝ

. (12)

It is important to remark that the linear manifold Uω (and the associated linear space Vω) poses the minimum
constraints to the velocity field (and its virtual variations) at the fine scale. Further assumptions on the velocity field
at such scale are possible provided they are such that these constraints are met, that is, it is possible to construct a
manifold such that U ∗

ω ⊂ Uω with the corresponding space V ∗
ω ⊂ Vω, as discussed in [29]. This will be discussed in

more detail when setting the numerical experiments. From now on, we continue the development with this choice of
minimally constrained sets.

2.4. Mathematical duality

According to (1), the density of total virtual power at a point X ∈ Ω in the coarse scale is a linear functional in the
arguments Û and Ĝ, that is

PΩ |X(Û, Ĝ) = C · Û + Σ · Ĝ. (13)

Hence, C is a vector dual to U, and Σ is a second order tensor dual to G.
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In turn, at the fine scale, the homogenized total virtual power exerted in the RVE is

Pω(û) =
1

|ω|


ω


ρ(∇ωu)u · û + 2µ∇

S
ωu · ∇ωû


dω, (14)

where u is the fluid vector field at the fine scale and û stand for admissible variations of such field. Here we have
considered the power to be produced by viscous dissipation and convective acceleration forces. Here, µ and ρ are
assumed to be constant at the fine scale.

2.5. Principle of Multiscale Virtual Power

The Principle of Multiscale Virtual Power proposed in [29] provides the physical link across scales. This principle
establishes the balance between the total virtual power at the coarse scale (13) and the counterpart at the fine scale
(14) performed by kinematically admissible fields, that is

PΩ |X(Û, Ĝ) = Pω(û) ∀ kinematically admissible Û, Ĝ, û. (15)

At point X we have Û ∈ Rn×n and Ĝ ∈ Tn×n , and the kinematic coupling between scales (kinematical admissibility)
establishes that û ∈ Vω. Thus, the statement of the principle of multi-scale virtual power results as follows.

Principle of Multiscale Virtual Power. Given U ∈ Rn×n and G ∈ Tn×n , it is said that C, Σ and u ∈ Uω satisfy the
Principle of Multiscale Virtual Power if the following variational equation holds

C · Û + Σ · Ĝ =
1

|ω|


ω


ρ(∇ωu)u · û + 2µ∇

S
ωu · ∇ωû


dω ∀(Û, Ĝ, û) ∈ Rn

× Tn×n
× Vω. � (16)

Now, the variational formulation (16) is rewritten using Lagrange multipliers to remove kinematical constraints
present in the linear manifold Uω (see (11)). That is, consider the following Lagrange multipliers

• r ∈ [H−1/2(γ )]n (obstacle forces) associated to the constraint u = 0 on γ ,
• p ∈ L2(ω) (pressure) associated to the constraint divω u = 0 in ω,
• λ ∈ Rn associated to the constraint 1

|ω|


ω

u dω = U,

• Λ ∈ Tn×n associated to the constraint 1
|ω|


∂ω

u ⊗ n d∂ω = G.

Then, the variational formulation can equivalently be written as follows using Lagrange multipliers.

Principle of Multiscale Virtual Power (Lagrange multipliers). Given U ∈ Rn×n and G ∈ Tn×n , it is said that C,
Σ and u ∈ [H1(ω)]n satisfy the Principle of Multiscale Virtual Power if the following variational equation holds

C · Û + Σ · Ĝ =
1

|ω|


ω


ρ(∇ωu)u · û + 2µ∇

S
ωu · ∇ωû


dω

+


γ

r · û dγ +


γ

r̂ · u dγ −


ω

p divω û dω −


ω

p̂ divω u dω

+ λ̂ ·


U −

1
|ω|


ω

u dω


+ λ ·


Û −

1
|ω|


ω

û dω


+ Λ̂ ·


G −

1
|ω|


∂ω

u ⊗ n d∂ω


+ Λ ·


Ĝ −

1
|ω|


∂ω

û ⊗ n d∂ω


∀(Û, Ĝ, û) ∈ Rn

× Tn×n
× [H1(ω)]n

∀(λ̂, Λ̂, p̂, r̂) ∈ Rn
× Tn×n

× L2(ω) × [H−1/2(γ )]n . � (17)

The Euler–Lagrange equations corresponding to the variational problem (17) are derived in the forthcoming
sections.
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2.6. Fine-scale problem

Consider Û = 0 and Ĝ = 0 in (17). Then, the equilibrium problem at the fine scale is defined by the following
variational formulation: given U ∈ Rn and G ∈ Tn×n , find (u, λ,Λ, r, p) ∈ [H1(ω)]n

×Rn
×Tn×n

×[H−1/2(γ )]n
×

L2(ω) such that
ω


ρ(∇ωu)u · û + 2µ∇

S
ωu · ∇ωû − p divω û − p̂ divω u −

1
|ω|

λ · û


dω

+


γ


r · û + r̂ · u


dγ −


∂ω

1
|ω|

Λn · û d∂ω

+ λ̂ ·


U −

1
|ω|


ω

u dω


+ Λ̂ ·


G −

1
|ω|


∂ω

u ⊗ n d∂ω


= 0

∀(û, λ̂, Λ̂, p̂, r̂) ∈ [H1(ω)]n
× Rn

× Tn×n
× L2(ω) × [H−1/2(γ )]n . (18)

Using standard variational arguments, we obtain the associated set of partial differential equations for the problem
in the fine-scale

ρ(∇ωu)u − µ∆ωu + ∇ω p =
1

|ω|
λ in ω

divω u = 0 in ω,

u = 0 on γ,

(−pI + 2µ∇
S
ωu)n = −r on γ,

1
|ω|


ω

u dω = U,

1
|ω|


∂ω

u ⊗ n d∂ω = G,

(−pI + 2µ∇
S
ωu)n =

1
|ω|

Λn on ∂ω.

(19)

From a control perspective, λ is a force term per unit volume that controls that constraint 1
|ω|


ω

u dω = U holds,

while Λn is a force term per unit surface that controls that constraint 1
|ω|


∂ω

u ⊗ n d∂ω = G is also satisfied.

2.7. Force-like vector homogenization

Now, consider non-zero variations of Ũ only in (17), which yields

C = λ, (20)

which implies that the coarse scale force C ∈ Rn is balanced by the reactive force that controls the averaged velocity
at the fine scale.

For this choice of Uω and Vω, it can be shown (see Appendix) that the following expression holds in terms of the
fine scale fields u and r

C =
1

|ω|


ω

ρ(∇ωu)u dω +


γ

r dγ


. (21)

The first term in (21) comprises the classical convective force in the Navier-Stokes equations (see (2)) incremented
with higher order terms, and the second term represents the classical Darcy term observed in porous media models, in
which a volume force appears as a result of the resistance to flow imposed by obstacles.

2.8. Stress-like tensor homogenization

In (17) consider now that just Ĝ ≠ 0. This results in

Σ = Λ, (22)
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that is, the coarse scale stress tensor Σ is equal to the reactive force that controls the averaged velocity gradient at the
fine scale. Clearly, since G ∈ Tn×n , it results Σ ∈ Tn×n .

For this choice of Uω and Vω, it can be shown (see Appendix) that the following characterization holds in terms of
the fine scale velocity field u and of the Lagrange multiplier r

Σ =
1

|ω|


ω


ρ(∇ωu)u ⊗ x + 2µ∇

S
ωu


dω +


γ

r ⊗ x dγ

D

, (23)

where (·)D
= (·) −

1
3 tr(·)I, with I the second order identity tensor, denotes the deviatoric projection.

The first term in (23) contains high order moments of the forces associated to the convective acceleration, the sec-
ond term contains the classical viscous stress in the Navier-Stokes model (see (3)) plus additional higher order terms
because of the non-homogeneous gradient. Finally, the third term describes the moment produced by obstacle forces.

3. Numerical setting

3.1. Boundary conditions

In this section we present the method used to construct boundary conditions for the multi-scale simulations
presented in this work. In principle, any boundary conditions that comply with the kinematic restrictions (7) and
(8) are valid. For example, the microscale velocity field can be decomposed as u = U + Gx + ũ, and periodic
conditions can be imposed on ũ. However, periodic conditions for the fluctuation field ũ may not be appropriate to
model non-periodic micro-structures and may overconstrain physical phenomena. This motivates the development of
an intermediate boundary condition as explained next.

The proposed boundary condition makes use of an extension of the fluid domain ω, by adding a frame, say ω f
whose interface with ω is ∂ω and the external boundary is called ∂ω f . This is represented by the gray filled area
shown in Fig. 2. The extended RVE is denoted by ωe = ω ∪ ω f . Then, the chosen linear manifold U ∗

ω ⊂ Uω and its
associated linear space V ∗

ω ⊂ Vω are such that

U ∗
ω = {u ∈ Uω, u = ue|ω, ue ∈ [H1(ωe)]

n, ue|∂ω f satisfies b.c.}, (24)

and

V ∗
ω = {v ∈ Vω, v = ve|ω, ve ∈ [H1(ωe)]

n, ve|∂ω f satisfies b.c.}. (25)

With such construction, and recalling that the restriction of ue to ω is u, the set of partial differential equations (19)
becomes

ρ(∇ωu)u − µ∆ωu + ∇ω p =
1

|ω|
λ in ω

ρ(∇ωue)ue − µ∆ωue + ∇ω pe = 0 in ω f

divω u = 0 in ω,

divω ue = 0 in ω f ,

u = 0 on γ,

(−pI + 2µ∇
S
ωu)n = −r on γ,

1
|ω|


ω

u dω = U,

1
|ω|


∂ω

u ⊗ n d∂ω = G,

[[(−pI + 2µ∇
S
ωu)n]] =

1
|ω|

Λn on ∂ω,

ue satisfies b.c. on ∂ω f ,

(26)

where [[·]] indicates the jump of the quantity (·) across the boundary ∂ω. Notice that this is a model in which the
traction vector over the RVE boundary ∂ω is not uniform (the traction jump is in fact a uniform quantity).
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Fig. 2. Extension of RVE domain ω through the addition of a frame domain ω f represented by the gray area. The solid line represents the physical
boundary of the RVE, called ∂ω = ∂ωT ∪ ∂ωR ∪ ∂ωB ∪ ∂ωL (outward normal n), while the dashed line represents the external boundary of the
frame domain, called ∂ω f (outward normal n f ). The extended RVE domain is denoted by ωe = ω ∪ ω f .

Remarkably, the RVE is less sensitive to the setting of boundary conditions because the external boundary of the
extended RVE ∂ω f is far from the actual RVE domain in which the fine scale dynamics is being linked to the coarse
scale model. In contrast, the fine scale problem is more expensive to solve because of the larger domain. The boundary
condition over ∂ω f is defined in next section.

3.2. Numerical method

The fine scale problem (26) for n = 2 is numerically solved using the Lattice–Boltzmann method (LBM) to take
advantage of its versatility to handle constraints through the imposition of volume and boundary forces. This has
shown excellent performance in the simulation of flow amid obstacles [35]. Because of the explicit nature of the
LBM, a pseudo-transient problem (pseudo-time denoted by t) is solved until the steady-state is reached. Accordingly,
a rectangular RVE is represented by a regular grid of square cells and the state of the cell at point x and time t is
given by nine scalars fi (x, t) associated to nine grid directions ei (i : 1–4 Cartesian, 5–8 diagonal, 0 null velocity).
The governing equation for each fi is given by

fi (x + ei∆x, t + ∆t) = fi (x, t) +
f e
i (x, t) − fi (x, t)

τ
+ Si (x, t), (27)

from which it is defined v =
∆x
∆t , called the grid velocity.

The chosen equilibrium function f e
i (x, t) is the quasi-incompressible BGK D2Q9 scheme proposed by [36], which

leads to the Navier-Stokes equations in the differential limit and keeps the divergence as low as possible, that is

f e
i (x, t) = wi


ρ∗

+ ρ


3
(vei · u)

v2 −
3
2

u · u
v2 +

9
2

(vei · u)2

v4


(28)

with wi =
4
9 for i = 0, wi =

1
9 for i = 1, 2, 3, 4 and wi =

1
36 for i = 5, 6, 7, 8,

ρ∗(x, t) =

8
i=0

fi (x, t) u(x, t) =
v

ρ

8
i=0

fi (x, t)ei , (29)

and ρ is the mean density. In the LBM the kinematic viscosity ν =
µ
ρ

is given by

ν =
1
3


τ −

1
2


∆x2

∆t
. (30)

The source term Si in Eq. (27) accounts in general for external forces. There are several schemes to take into account
forces that can be applied. Here, the formula suggested by [37] is employed, which showed accuracy and stability in
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simulations of permeable media [35]. Accordingly, an external force field F(x, t) introduces a source term

Si (x, t) =
∆t

3v
wi ei · F(x, t). (31)

It is straightforward to verify that

8
i=0

Si (x, t) = 0
8

i=0

vei Si (x, t) = F(x, t)∆t, (32)

providing the bit of impulse at each time step without perturbing the mass balance.
The calculation of the fine scale field u inside the RVE has to be performed under the constraints given by

Eqs. (26)7 and (26)8, which requires the imposition of forces acting as Lagrange multipliers, called λ and Λn, see
(26)1 and (26)9. Likewise, the no-slip conditions over the boundaries of the internal objects γ , see (26)5, entail the
imposition of the reaction forces r, see (26)6. In order to determine the forces 1

|ω|
λ, 1

|ω|
Λn and r, a model of classical

adaptive proportional–integral control is included, which responds to deviations from each restriction. Accordingly,
at every time t the deviation ε(t) from a given constraint is calculated, and the corrective force is then calculated
as

F(t) = αε(t) + β

t
s=0

ε(s), (33)

where α and β are appropriate control coefficients that should be adjusted to ensure stable and rapid feedback, and are
force-specific. In all the calculations shown in the next section, α and β were set in 1 · 10−6 and 5 · 10−9. In this way,
when the flow reaches the steady state, the residual accumulated in last term corresponds to the force that is necessary
to maintain the corresponding constraint. Actually, this force model can be seen as a sort of predictor–corrector
algorithm with relaxation. In particular, the following deviations are implemented to control the average velocity
(26)7, the average gradient (26)8 and the velocity at the internal boundaries (26)5, respectively

ελ = U −
1

|ω|


ω

u(x, t) dω, (34)

εΛ = G −
1

|ω|


∂ω

u(x, t) ⊗ n(x) d∂ω, (35)

εr = −u(x, t) x ∈ γ. (36)

The force per unit volume 1
|ω|

λ is imposed uniformly on each point x corresponding to the interior of the RVE ω. The

surface force of the obstacles r is imposed on every point x ∈ γ . The surface force 1
|ω|

Λn is imposed uniformly at
each side of the RVE boundary ∂ω. In Cartesian coordinates (ex and ey the unit vectors in x and y directions), we can
rewrite the deviation (35) which guide the computation of the force 1

|ω|
Λn as follows

εT
Λ = −εB

Λ = G · ey −
1

|ω|


∂ωT

u(x, t) d∂ωT −


∂ωB

u(x, t) d∂ωB


, (37)

εR
Λ = −εL

Λ = G · ex −
1

|ω|


∂ωR

u(x, t) d∂ωR −


∂ωL

u(x, t) d∂ωL


, (38)

where the different boundaries of the rectangular RVE were identified ∂ωT (top), ∂ωB (bottom), ∂ωR (right) and ∂ωL
(left). These boundaries are also identified in Fig. 2. In the 2D Cartesian reference frame, εT

Λ and εR
Λ are, respectively,

the first and second rows of tensor εΛ defined in (35).
For the LBM to be fully closed it is necessary to provide the set of boundary conditions for all the scalar fields

fi (x, t) over the boundary ∂ω f of the extended RVE domain. At ∂ω f , periodic boundary conditions for all fields
fi (x, t) are imposed. With this choice, U ∗

ω and V ∗
ω are fully characterized and the problem is closed.

As already said, all test cases that will be addressed in the next section are in the steady-state regime. Therefore the
time-dependent Lattice–Boltzmann problem is solved until the steady state is reached.
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Fig. 3. Diagram of the geometrical configuration chosen for benchmarking the present methodology in a fully controlled case. The side of the RVE
is 5 times larger than the radius of the obstacle. Dashed lines indicate the 16 RVEs used in the calculation of homogenized quantities. Periodic
boundary conditions are imposed over dotted boundaries.

Finally, observe that by solving (26) with the proposed approach we are obtaining the Lagrange multipliers λ and
Λ as feedback forces of the proportional–integral controller. However, the computation of homogenized quantities C
and Σ is carried out using (21) and (23), respectively.

4. Numerical experiments

Firstly, in Section 4.1 a test of consistency is performed on a geometry where a variety of kinematic conditions
of mean velocity and velocity gradient occur. Secondly, the homogeneous magnitudes of a typical RVE subjected to
fully-developed flow conditions were calculated and analyzed in Section 4.2. Finally, the solution delivered by the
multi-scale model is validated by comparison against a solution obtained by direct numerical simulation (DNS) in
Section 4.3.

4.1. Consistency test

The first case consists of a squared channel with a buffer located at mid run to divert the bulk stream, as seen in
Fig. 3. Periodic boundary conditions are imposed between the inlet and the outlet. Hence, the problem can be seen
as a section of a long rectangular channel with alternate upper and lower buffers. An array of circular obstacles was
located inside the channel, from which the flow experiences a variety of velocity U and velocity gradient G conditions.
The complete channel with all the complexity was solved by DNS using also the LBM, obtaining the velocity field in
steady state amid the obstacles.

Fig. 4 shows the contour maps of the components of the velocity field in the channel. The horizontal component,
UX , is larger along a stream of minimum path joining the upper part of each opening passing around the tip of the
buffer. In turn, on either side of the buffer there are regions of high upward and downward vertical velocity UY . Both
fields are also perturbed by the presence of the circular obstacles.

The channel is then divided into 16 square RVEs containing one obstacle each in its center (see Fig. 3). The velocity
and its gradient obtained by DNS are then averaged in each RVE, leading to a set of 16 coarse scale flow conditions
given by the vector–tensor pairs (UDNS, GDNS). Each of these conditions is then applied as coarse-scale data to the
solution of the fine-scale problem of a single RVE cell (which is surrounded by a peripheral frame ω f with periodic
boundaries, as described in the previous section), to obtain the homogenized quantities that will be referred to as
CRVE and ΣRVE. These quantities are then compared with the true values, CDNS and ΣDNS, which are computed by
applying (21) and (23) to the DNS field in the corresponding region of the channel.

Fig. 5 shows the plot of the true (DNS) vs. multi-scale (RVE) components of the force C = (CX , CY ) and of the

stress Σ =


ΣX X ΣXY
ΣY X ΣY Y


, discriminating the symbols by terms and directions in order to appraise the agreement in
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Fig. 4. Magnitude of the components UX (top) and UY (bottom) of the velocity field.

Fig. 5. Comparison of the components of homogenized quantities C = (CX , CY ) (left) and Σ =


ΣX X ΣXY
ΣY X ΣY Y


(right) from fine scale

computations performed at the RVE with corresponding flow conditions given by (UDNS, GDNS) against the homogenization of the results
delivered by the DNS.

each case. The ideal situation occurs when the points lie on the 45 degree line. Remarkably, the correlation between
the DNS calculations and the approximations obtained with the present multi-scale methodology is strong, which
provides convincing evidences of the predictive capabilities of the homogenization procedure. That is, the multi-scale
approach proposed in this work is capable of retrieving most of the physics present in the original fine scale problem.
To further verify and illustrate this statement, Fig. 6 compares the flow field obtained from the DNS and the RVE for
the window indicated with dashed lines in Fig. 4. It is remarkable that the flow patterns computed in the RVE are very
close to the ones obtained from the DNS case, even in the present case where separation of scales is not guaranteed.

4.2. Homogenized parameters of a RVE in fully developed flow

The second problem studied was the influence of the coarse scale flow conditions (U, G) on the homogenized
quantities (C,Σ ) through the solution of the fine scale problem in a flow fully developed in the X direction. These
conditions would be expected for instance in a long rectangular channel filled with a regular array of obstacles (see
the validation against DNS calculations in Section 4.3). The square RVE that characterizes this problem was modeled
by a grid of side LRVE = 100 cells, and contains two semicircular cylinders of radius R =

LRVE
20 , centered at the

midpoint of the upper and lower borders. The density ρ and the relaxation parameter τ were fixed in 0.009 and 0.55
(in grid units), respectively. Since the flow is fully developed it is UY = 0, and UX depends only on the coordinate
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Fig. 6. Comparison of velocity magnitudes UX and UY in the RVE domain corresponding to the dashed window shown in Fig. 4 between the fine
scale computations at the RVE (with corresponding flow conditions (UDNS, GDNS) and the results rendered by DNS).

Y . Therefore, the coarse-scale state of any RVE is determined only by UX and G XY . Different kinematic conditions,
UX and G XY , are imposed upon the RVE, covering a range of Reynolds numbers (Re =

UX LRVE
ν

) from 0 to 30, and a

range of the dimensionless gradient Gd =
G XY L2

RVE
ν

(from now on called Gradient number) from 0 to 60.

For generality, it is convenient to express the coarse magnitudes CX and ΣXY in dimensionless units, that is

C̃X =
CX L3

RVE

ρν2 , (39)

Σ̃XY =
ΣXY L2

RVE

ρν2 . (40)

Fig. 7 (left) shows the magnitude and direction of the velocity field (top), u, and of the acceleration force (bottom),
ρ(∇ωu)u, computed in the RVE subjected to the coarse scale flow conditions given by UX = 0.001 and G XY = 0
(in grid units). The latter corresponds to Re = 6. The velocity field is symmetric with respect to the horizontal axis,
where it reaches the maximum velocity due to the reduction of the cross sectional area. The acceleration force is also
axially symmetric and presents maxima in the neighborhoods of the obstacles and a minimum at the axis. Fig. 7 (right)
shows the same fields for coarse scale flow conditions established by UX = 0.001 and G XY = 5 · 10−6 (in grid units),
corresponding to Re = 6 and Gd = 3. The positive gradient G XY induces the symmetry breaking observed in both
fields.

Fig. 8 (left) shows the dependence of the homogenized magnitude CX with UX in dimensionless units. For the range
of Gd analyzed, CX resulted independent of G XY . If the Darcy law was supposed to govern the relation between CX
and UX , it would be CX =

µ
κ

UX . The permeability κ is a geometrical property of the media with units of square

length. In dimensionless magnitudes, we have C̃X =
L2

RVE
κ

Re, which in the present case gives κ

L2
RVE

= 0.083.

Fig. 8 (right) shows the dependence of the coarse-scale stress component ΣXY with G XY in dimensionless units.
For the range of Re analyzed ΣXY resulted independent of UX . Since the fluid is Newtonian, in the absence of obstacles
the stress should be ΣXY = µG XY (in fully developed flow), which in dimensionless form gives Σ̃XY = Gd. Hence,
the derivative of Σ̃XY with respect to Gd represents the deviation from the homogeneous Newtonian behavior, and it
is interpreted as an effective viscosity µ̃e =

µe
µ

at coarse scale, resulting from the viscous interaction between the flow

and the obstacle at the fine scale, namely, Σ̃XY = µ̃eGd. For the present case the effective viscosity resulted µ̃e = 6.9,
which is consistent with experimental measurements performed in permeable media with similar void fractions and
Re numbers [38]. The main contribution to the effective viscosity comes from 1

|ω|


γ

rx y dγ (XY component of the
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Fig. 7. Velocity u (top row) and convective acceleration ρ(∇ωu)u (bottom row) in the RVE. Flow conditions are given by: (Re, Gd) = (6, 0) (left
column) and (Re, Gd) = (6, 3) (right column). Color scale indicates the magnitude of the field normalized by the mean value.

Fig. 8. Left panel shows the dependence of the force CX with the coarse scale velocity UX . Right panel features the dependence of the stress ΣXY
with the coarse scale gradient G XY . Both plots are presented in dimensionless units.

last term in (23)), while the contribution given by 1
|ω|


ω

ρ(ux
∂ux
∂x + u y

∂ux
∂y )y dω (XY component of the first term in

(23)), is two orders of magnitude smaller.

4.3. Validation against direct numerical simulation

The third case studied was a fully-developed flow in a rectangular channel partially filled with obstacles. This case
was used to compare the solution delivered by the multi-scale model with the solution produced by DNS. In this
case, the comparison is facilitated because the analytical solution for the coarse-scale flow model can be computed,
provided we assume linearity in the relation between CX ,ΣXY and UX , G XY . Such hypothesis is valid in view of the
findings reported in Section 4.2 (see Fig. 8).
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Fig. 9. Illustrative scheme of the problem of flow between parallel plates with half of the cross section filled with circular obstacles. The gray area
highlights the domain of analysis (see details in Fig. 10).

Consider the flow of a fluid between two parallel plates where part of the cross section is obstructed by a permeable
medium consisting of an array circular obstacles, as shown in Fig. 9.

The origin of the transversal coordinate, Y = 0, is located at the center of the channel cross section, coinciding
with the edge of the permeable medium. Assuming steady-state flow fully developed in the axial direction X , the
coarse-scale flow equation reduces to

dΣXY

dY
− CX =

d P

d X
. (41)

The homogenized magnitudes ΣXY and CX depend in general on UX and G XY =
dUX
dY , where UX is the axial

component of the fully-developed coarse scale velocity field (UY = 0). As seen in the previous section, due to the
symmetry of the RVE, inside the permeable region (y < 0) these dependences boil down to

ΣXY = µe
dUX

dY
, (42)

CX =
µ

κ
UX , (43)

whereas in the free-flow region (y > 0) it is

ΣXY = µ
dUX

dY
, (44)

CX = 0. (45)

Combining Eqs. (41)–(45) leads to the following ordinary differential equation for UX (Y )

µ̃e
d2UX

dY 2 −
H(Y )

κ
UX =

1
µ

d P

d X
, (46)

where

H(Y ) =


0 0 < y < h,

1 −h < y < 0.
(47)

Eq. (46) has the following analytic solution (see for example [39])

UX (Y ) =


−

Uo

2


Y

h

2

+ A
Y

h
+ B 0 < y < h,

Uo
κ

h2 + C cosh


Y

Yo


+ D sinh


Y

Yo


−h < y < 0,

(48)

where

Uo = −
h2

µ

d P

d X
, (49)

Yo =


κµ̃e, (50)
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Fig. 10. Details of the array of obstacles in the channel (gray area highlighted in Fig. 9). The shaded regions depict the RVE at the interface between
free flow and permeable media, and an inner RVE within the permeable medium.

and A, B, C , D to be determined through proper boundary and coupling conditions. Over the plates (Y = ±h), the
no-slip condition implies

UX (−h) = UX (h) = 0. (51)

In turn, the coupling conditions at the interface (Y = 0) is a long-time problem that has for many years received, and
still receives, considerable attention [40–50]. Within the present modeling approach, it will be assumed continuity of
velocity and of stress, that is

UX (0−) = UX (0+), (52)

ΣXY (0−) = ΣXY (0+). (53)

It should be noted that the stress should be modeled for the RVE of the interface (see Fig. 10). Such RVE is not
symmetric because there is no obstacle on the side facing the free flow, which induces an imbalance of the moment
of the drag forces with respect to the centerline of the RVE, causing the appearance of a stress term proportional
to the velocity. That is, instead of (42) the following relation between ΣXY and (UX , G XY ) is rendered by the
homogenization procedure

ΣXY (0−) = µb
dUX

dY
(0−) +

µ

ℓb
UX (0−), (54)

where µb is the effective viscosity of the interfacial RVE and ℓb is a length parameter accounting for the asymmetry
of the drag. Combining Eqs. (44), (53) and (54) leads to the following coupling condition at the interface

µb
dUX

dY
(0−) +

µ

ℓb
UX (0−) = µUX (0+). (55)

Using (51), (52) and (55), the coefficients in (48) result

A =
Uo

2
− Ui , B = Ui , C = Ui −

κ

h2 Uo, D =
µYo

µbh


Uo

2
− Ui


1 +

h

ℓb


, (56)

where

Ui = Uo

 1
2 sinh

 h
Yo


+

Yo
h


cosh

 h
Yo


− 1


1 +

h
ℓb


sinh

 h
Yo


+

µbh
µYo

cosh
 h

Yo


, (57)

is the velocity at Y = 0.
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Table 1
Homogenized parameters obtained from the fine scale problem (RVE problem) for the semi-permeable
channel shown in Fig. 10. The parameter d is the diameter of the obstacles, L X and LY are the sizes of
the sides of the RVE, κ is the permeability, µe is the effective viscosity, and ℓb is the length parameter
appearing in Eq. (55).

d/LY κ/(L X LY ) µe/µ µb/µ ℓb/LY

1/4 0.040 1.33 1.20 −0.40
1/5 0.058 1.27 1.17 −0.34

Fig. 11. Fully-developed flow velocity profile (log scale) across the channel for arrays with 9 obstacles of two different sizes d . The black curves
are the DNS solutions, averaged along the X coordinate over the whole X run of the RVE (solid curve) and averaged only over a length LY around
the obstacles (dashed curve). The red lines are the coarse scale (analytical) solutions produced with the parameters delivered by the fine scale
problem, which are reported in Table 1.

Table 1 lists the values of the parameters of the interfacial RVE for two different obstacle sizes characterized by
the obstacle diameter d.

The red curves in Fig. 11 are the solutions of the coarse scale flow model. These solutions are produced by the
parameters of Table 1 that define the relation between (CX ,ΣXY ) and (UX , G XY ) which are rendered by the fine scale
problem. In order to assess the degree of approximation of the proposed multi-scale model, the complete velocity field
at the fine scale was calculated by DNS. Fig. 11 also shows the DNS solution averaged along the X coordinate over the
whole run of the RVE (solid curve with small oscillations) and averaged only over a length LY at the center around the
obstacles (dashed curve with large oscillations). Clearly, the multi-scale model is able to retrieve most of the coarse
scale physics in the homogenized sense. The most challenging aspect in this regard is the transition between the free
flow region and the permeable media, which is well predicted by the multi-scale model.

5. Concluding remarks

In this work we have proposed a multi-scale model to simulate complex phenomena in fluid flow problems using
the concept of representative volume element. The foundations for the methodology are established by the Method
of Multi-scale Virtual Power, which allows a consistent and natural derivation of homogenization formulae of coarse
scale force- and stress-like entities from purely kinematic assumptions (conservation of velocity and conservation of
velocity gradient). The model was tested in steady state problems characterized by different flow conditions, featuring
excellent predictive capabilities in controlled scenarios as well as in comparisons against direct numerical simulations.
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Remarkably, the model behaved accurately in the homogenized sense even in challenging cases such as those posed by
a fluid flowing amid obstacles in permeable media close to interfaces with free flows. Finally, the proposed approach
can be extended to deal with time-dependent phenomena as well as with moving objects. These cases are being matter
of current research.
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Appendix. Explicit characterization of homogenized entities

Let us show in this section that the characterizations of C and Σ given by (21) and (23), respectively, hold.
Consider for simplicity that


ω

x dω = 0. In the RVE domain, and without loss of generality, the velocity field u
can be expanded as follows

u = U + Gx + ũ, (58)

where, U and G are information from the coarse scale, and ũ is a fluctuation field. Then, we have

∇ωu = G + ∇ωũ, (59)

where ∇ω is the gradient operator with respect to coordinates x ∈ ω.
By using (58), we have that (7) is satisfied provided that

ω

ũ dω = 0. (60)

Analogously, using (58), (8) is satisfied if
ω

∇ωũ dω = 0, (61)

or equivalently, integrating by parts,
∂ω

ũ ⊗ n d∂ω = 0. (62)

Also, the velocity field u is divergence-free, i.e. satisfies (5), and has to satisfy the no-slip condition over obstacles
(6), therefore, the fluctuation field satisfies the following two constraints

divωũ = 0 in ω, (63)

ũ = −(U + Gx) on γ. (64)

Thus, we define the linear manifold of kinematically admissible velocity fluctuation fields at fine scale

Ũω =


ũ ∈ [H1(ω)]n, ũ = −(U + Gx) on γ, divω ũ = 0


ω

ũ dω = 0,


∂ω

ũ ⊗ n d∂ω = 0

, (65)

and, then, we have the associated linear space of kinematically admissible variations of the fluctuations field

Ṽω =


ˆ̃u ∈ [H1(ω)]n, ˆ̃u = −(Û + Ĝx) on γ, divω

ˆ̃u = 0


ω

ˆ̃u dω = 0,


∂ω

ˆ̃u ⊗ n d∂ω = 0

. (66)

These sets impose minimal kinematic restrictions to fluctuation fields such that transition between scales is
consistent. Furthermore, proper functional spaces Ṽ ∗

ω ⊂ Ṽω are allowed. For example, periodic boundary conditions
for the fluctuation fields are the most popular choice in the multi-scale literature.
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Now, the Principle of Multiscale Virtual Power formulated in (16) is written using decomposition (58). Then, the
problem amounts to find ũ ∈ Ũω such that

C · Û + Σ · Ĝ =
1

|ω|


ω


ρ(∇ωu)u ·


Û + Ĝx + ˆ̃u


+ 2µ∇

S
ωu ·


Ĝ + ∇ω

ˆ̃u


dω

∀(Û, Ĝ, ˆ̃u) ∈ Rn
× Tn×n

× Ṽω. (67)

Now, the no-slip constraint and the divergence constraint are relaxed using proper Lagrange multipliers r and p,
respectively. This yields the following problem find ũ ∈ Ũ ◦

ω such that

C · Û + Σ · Ĝ =
1

|ω|


ω


ρ(∇ωu)u ·


Û + Ĝx + ˆ̃u


+ 2µ∇

S
ωu ·


Ĝ + ∇ω

ˆ̃u


dω

+


γ

r ·

Û + Ĝx + ˆ̃u


dγ +


γ

r̂ · u dγ −


ω

p divω
ˆ̃u dω −


ω

p̂ divω ũ dω


∀(Û, Ĝ, ˆ̃u) ∈ Rn

× Tn×n
× Ũ ◦

ω ∀( p̂, r̂) ∈ ×L2(ω) × [H−1/2(γ )]n, (68)

where

Ũ ◦
ω =


ũ ∈ [H1(ω)]n,


ω

ũ dω = 0,


∂ω

ũ ⊗ n d∂ω = 0

. (69)

The Euler–Lagrange equations associated to (68) are the following.

• Consider in (68) that Û = 0 and Ĝ = 0, then
ω


ρ(∇ωu)u · ˆ̃u + 2µ∇

S
ωu · ∇ω

ˆ̃u − p divω
ˆ̃u − p̂ divω ũ


dω +


γ

r · ˆ̃u dγ +


γ

r̂ · u dγ = 0

∀( ˆ̃u, p̂, r̂) ∈ Ũ ◦
ω × ×L2(ω) × [H−1/2(γ )]n . (70)

• Consider now that in (68) it is just Û ≠ 0, then

C · Û =
1

|ω|


ω

ρ(∇ωu)u · Û dω +


γ

r · Û dγ


∀Û ∈ Rn, (71)

and therefore

C =
1

|ω|


ω

ρ(∇ωu)u dω +


γ

r dγ


. (72)

• Finally, consider in (68) that just Ĝ ≠ 0, then

Σ · Ĝ =
1

|ω|


ω


ρ(∇ωu)u ·


Ĝx


+ 2µ∇

S
ωu · Ĝ


dω +


γ

r ·

Ĝx


dγ


∀Ĝ ∈ Tn×n (73)

and, noting that for any vectors a, b and for any second order tensor A it is a · Ab = (a ⊗ b) · A, we have

Σ =
1

|ω|


ω


ρ(∇ωu)u ⊗ x + 2µ∇

S
ωu


dω +


γ

r ⊗ x dγ

D

, (74)

where (·)D denotes the deviatoric component of tensor (·).

The characterization of C and Σ given by (72) and (74) is general regardless the choice of the kinematical
constraints adopted for the fluctuation field in (69).
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[24] P. Kanouté, D.P. Boso, J. Chaboche, B. Schrefler, Multiscale methods for composites: a review, Arch. Comput. Methods Eng. 16 (2009)

31–75.
[25] V. Kouznetsova, W. Brekelmans, F. Baaijens, An approach to micro-macro modeling of heterogeneous materials, Comput. Mech. 27 (2001)

37–48.
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