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We present a formalism which allows one to define probabilities for expressions that involve properties at
different times for classical and quantum systems and we study its lattice structure. The formalism is based on the
notion of time translation of properties. In the quantum case, the properties involved should satisfy compatibility
conditions in order to obtain well-defined probabilities. The formalism is applied to describe the double-slit
experiment.
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I. INTRODUCTION

For each state of a quantum system at a given time, the Born
rule can be used to compute well-defined probabilities on a
special set of properties called a context. Properties belonging
to different contexts are not considered in the same description
of a quantum system.

In the orthodox interpretation of quantum mechanics, the
choice of the context of properties is dictated by the classical
measurement instruments acting on the quantum system. A
realistic interpretation of quantum mechanics should consider
the measurement instruments also as quantum systems inter-
acting with the quantum system to be measured. In this type
of interpretation an additional rule has to be given to select the
relevant context of properties. For the pointer variables of the
measurement instrument, decoherence is commonly used as a
selection rule of privileged classical variables.

In this paper we are not going to consider the criterion for
the selection of a context at a given time, but rather we are going
to discuss the compatibility of different contexts at different
times. Quite often it is necessary to deal with properties
at different times: It is necessary to relate some properties
of a microscopic system before the measurement process
with the pointer position after the measurement process or,
in the double-slit experiment, it is necessary to argue about
the impossibility to assert through which slit has passed the
electron that produces a dot on the photographic plate [1].

For the conjunction of properties at different times, Bal-
lentine suggested using the Heisenberg representation, but he
did not discuss the conditions for well-defined probabilities
(see Ref. [2], Sec. 9.6). Consistent or decoherent histories,
involving sequences of properties at different times, have been
considered by Griffiths [3], Omnès [4], and Gell-Mann and
Hartle [5]. Properties at different times are imposed with a
consistency condition which is state dependent.

In a previous paper [6], two of us presented an approach
based on the concept of time translation of properties. In this
approach, well-defined probabilities are obtained if the proper-
ties translated to a common time are represented by commuting

projectors. This compatibility condition is a natural extension
of the usual notion of a context of properties at a fixed time,
and it replaces the consistency conditions of Refs. [3–5]. This
condition is independent of the state of the system, and it
provides a simple procedure to search for Boolean lattices of
properties as possible universes of discourse about a quantum
system. Time translations of properties have been applied to
quantum measurements [7] and to quantum decay processes
[8].

In this paper we present in full detail the lattice structure and
probability definitions for expressions involving properties at
different times for classical and quantum systems. We also
apply our formalism to analyze the double-slit experiment.

In Sec. II we present the lattice of time-dependent classical
properties, showing that the probabilities involving properties
at different times are obtained from the properties translated
to a common time. The concept of time translation is used
in Sec III to obtain the lattice of time-dependent quantum
properties and the corresponding probabilities. In Secs. IV
and V we apply our formalism to discuss the famous double-slit
experiment. We show that, with no measurement instruments
at the slits, the impossibility to assert that the particle has
passed through one of the slits can be deduced from our
formalism. When measurement instruments are included, the
elimination of interferences can be obtained with no reference
to the projection postulate. The conclusions of the paper are
in Sec. VI. To prevent the reader from being distracted from
the main line of the arguments of our work, definitions and
theorems about the lattice structure have been included in
Appendices A and B.

II. CLASSICAL MECHANICS

A. Probabilities for properties at a fixed time

In classical mechanics the states of a physical system are
represented by points in the phase space � (i.e., the space
of generalized coordinates and momentums). The dynamics
of the state is determined by the Hamilton equations. A state
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represented by the point x ∈ � at the time t evolves into a
state represented by the point x ′ = St ′t x at the time t ′, where
the map St ′t : � −→ � is invertible (S−1

t ′t = Stt ′) and volume
preserving.

Each property of the physical system is identified with a
subset of �. The system has (does not have) the property
C ⊂ � if it is in a state represented by a point x ∈ C (x /∈ C).

The set of all properties of the system is the power set P(�)
of the phase space �. P(�) with the order relation given by the
inclusion (⊂) is a Boolean lattice (i.e., it is orthocomplemented
and distributive). The infimum and the supremum are given
respectively by the intersection and the union [Inf(C1,C2) =
C1 ∩ C2 and Sup(C1,C2) = C1 ∪ C2]. The null element is the
empty set φ ⊂ � and the universal element is the phase space
�. The complement of a set C ⊂ � is the set � − C.

In some cases there is no precision about the point
representing the state at a given time. Therefore, there is no
certainty about the system having or not having a property, but
only about the probability to have it.

In these cases it is necessary to appeal to what is known
as a probability distribution. It is represented by a function
ρt : � −→ R, non-negative and normalized (

∫
�

ρt (x)dx = 1).
If ρt (x) is the state probability density at time t , the probability
density at time t ′ is given by

ρt ′ (x) = ρt

(
S−1

t ′t x
)
. (1)

Using the density function ρt it is possible to define a
probability on the set of all properties. Classical statistical
mechanics gives for the probability of a property C at time t

the following expression:

Prt (C) =
∫

C

ρt (x)dx,

which satisfies the Kolmogorov axioms (i) Prt (C) =∫
C

ρt (x)dx � 0 for all properties C, (ii) Prt (�) =∫
�

ρt (x)dx = 1, and (iii) if C ∩ C ′ = φ, then Prt (C ∪ C ′) =
Prt (C) + Prt (C ′).

In classical statistical mechanics Prt : P(�) −→ R gives
the probabilities for properties at a fixed time t . In what follows
we are going to present a formalism suitable for including
different properties at different times in a probabilistic classical
description of a physical system.

B. Probabilities for properties at different times

A property C at time t will be called an event and it will be
identified with the pair (C,t). The space of all events of a given
system will be denoted by E. In this section we are going to
define the probability associated with these events.

According to classical statistical mechanics the probability
for a property C at time t is given by

Prt (C) =
∫

C

ρt (x)dx.

Using Eq. (1) we obtain

Prt (C) =
∫

C

ρt ′(St ′t x)dx =
∫

St ′ t C

ρt ′(x)dx = Prt ′ (C
′), (2)

FIG. 1. The equivalence class [C,t].

where C ′ = St ′tC. We give to the property C ′ = St ′tC the
interpretation of the time translationof property C from time
t to time t ′.

Expression (2) shows that in classical statistical mechanics
the probability Prt for the property C at time t has the
same value as the probability Prt ′ for the time translated
property C ′ = St ′tC at time t ′. However, it should be noted
that Prt (C) and Prt ′(C ′) are obtained from different probability
distributions ρt and ρt ′ .

The time translation defines a relation � on the space of
events E [(C ′,t ′) � (C,t) if and only if C ′ = St ′t C]. This
relation is transitive, reflexive, and symmetric, and is an
equivalence relation on E.

The space E can be partitioned in equivalence classes. We
denote by [C,t] the class of events which are equivalent to
the single event (C,t). The set of all equivalence classes E/�
will be denoted by [E]. An equivalence class of events is
represented in Fig. 1 for a two-dimensional phase space.

Events belonging to the same equivalence class are not
essentially different. They are obtained one from the other by
time evolution and they have the same value of probability in
classical statistical mechanics.

In order to compute well-defined probabilities of properties
at different times we are going to endow the set of equivalence
classes [E] with a Boolean lattice structure.

A partial order relation � between two classes of events in
[E] is defined in the following way:

[C1,t1] � [C2,t] if and only if St0t1C1 ⊆ St0t2C2 ,

where t0 is an arbitrary time. This definition is independent
of the arbitrary time t0, because if St0t1C1 ⊆ St0t2C2 , then
St ′0t0St0t1C1 ⊆ St ′0t0St0t2C2 , and therefore St ′0t1C1 ⊆ St ′0t2C2 .

From this order relation we obtain

[C,t] ∧ [C ′,t ′] ≡ Inf([C,t],[C ′,t ′]) = [(St0tC ∩ St0t ′C
′),t0],

[C,t] ∨ [C ′,t ′] ≡ Sup([C,t],[C ′,t ′]) = [(St0tC ∪ St0t ′C
′),t0].

The null element of [E] is [φ,t], where φ ⊂ � is the
empty set and t is an arbitrary time. The universal element
is [�,t], where t is an arbitrary time. The complement of
[C,t] is [C,t] ≡ [� − C,t]. The set [E] of equivalence classes
of events, with the just defined order relation, is a Boolean
lattice.

Generalizing the probability already given in classical
statistical mechanics, we can now define a probability on the
lattice [E] of equivalence classes of events

Pr[C,t] ≡
∫

C

ρt (x)dx.
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FIG. 2. The properties for [C1,t1] ∧ [C2,t2].

It is easy to see that Pr : [E] −→ R is well defined, i.e.,
it does not depend on the representative element of the class.
Given (C1,t1) ∼ (C2,t2), then St2t1C1 = C2, and

Pr[C1,t1] =
∫

C1

ρt1 (x)dx =
∫

St2 t1 C1

ρt1

(
S−1

t2t1
x ′) ∣∣∣∣ ∂x

∂x ′

∣∣∣∣ dx ′

=
∫

C2

ρt2 (x ′)dx ′ = Pr[C2,t2].

Moreover it is easy to prove that Pr : [E] −→ R satisfies the
Kolmogorov axioms.

We have obtained a lattice structure, suitable for dealing
with probabilities involving different properties at different
times. The probability for the conjunction is given by

Pr([C1,t1] ∧ [C2,t2]) = Pr([C10,t0] ∧ [C20,t0]

= Pr([C10 ∩ C20,t0])

=
∫

C10∩C20

ρt0 (x)dx, (3)

where C10 = St0t1C1 and C20 = St0t2C2 are the time translation
of properties C1 and C2 to the common time t0. The properties
involved in Eq. (3) are represented in Fig. 2 for the particular
case of a two-dimensional phase space.

For the disjunction we obtain

Pr([C1,t1] ∨ [C2,t2]) = Pr([C10,t0] ∨ [C20,t0])

= Pr([C10 ∪ C20,t0])

=
∫

C10∪C20

ρt0 (x) dx.

In this section we presented a formalism to assign probabil-
ities to expressions involving different properties at different
times for a classical system. In the next section we will develop
a formalism for quantum systems.

III. QUANTUM MECHANICS

A. Probabilities for properties at a fixed time

A Hilbert space H and a Hamiltonian operator Ĥ :
H −→ H are associated with each isolated physical system. A
state of the system at time t is represented by a non-negative,
self-adjoint operator ρ̂t : H −→ H, with Tr(ρ̂t ) = 1.

The time evolution of the state is generated by the
Liouville–von Neumann equation. If ρ̂t is the density operator
representing the state at the time t , the state at a different time
t ′ is given by

ρ̂t ′ = Û (t ′,t) ρ̂t Û (t ′,t)−1, Û (t ′,t) = e−(i/h̄)Ĥ (t ′−t). (4)

Each property of the quantum system is identified with a
closed vector subspace V of the Hilbert space H. For each
closed subspace V there exists only one orthogonal projection
operator �̂V : H −→ H such that V = �̂VH, and therefore
the property can also be identified with the projector �̂V .

The set of all closed vector subspaces of a Hilbert space H,
with the partial order relation given by the set inclusion (⊂),
is an orthocomplemented nondistributive lattice. The infimum
and the supremum of V and V ′ are given by

Inf(V,V ′) = V ∩ V ′, Sup(V,V ′) = V + V ′.

The zero property is identified with the subspace {0H}, where
0H is the zero element of H, and the universal propertyis
identified with the whole space H. The complement of a
property V is the orthogonal complement V ⊥ of the subspace
V in H.

A very special feature of quantum mechanics is that not all
the possible properties can be simultaneously considered in
a description of the system. There is no accepted probability
formula for the conjunction of properties whose corresponding
projectors do not commute [9,10]. When the projectors do
commute, the corresponding properties are called compatible.
Only compatible properties can be included in a description of
a quantum system.

The standard rule to obtain a Boolean lattice of properties
in quantum mechanics is to start with a set B of mutually
orthogonal closed subspaces of H which expand the whole
Hilbert space, i.e.,

B =
{

Vi | i ∈ σ , Vi is a closed subspace of H,

Vi ⊥ Vj if i �= j ,
∑
i∈σ

Vi = H
}

, (5)

where σ is a set of indices.
From this set of atomic properties B, a context CB of

properties can be obtained as the set of all subspaces which
are the sums and intersections of elements of B:

CB = {0,Vi,Vi + Vj ,Vi + Vj + Vk, . . . ,H; i,j,k, . . . ∈ σ }.
(6)

The context of properties CB , generated by the set of atomic
properties B, with the partial order relation defined by the
inclusion (⊂), is a Boolean lattice.

The projectors �̂i corresponding to the subspaces Vi ∈ B

satisfy the relations∑
i∈σ

�̂i = Î , �̂i�̂j = δij �̂j , i,j ∈ σ, (7)

where Î is the identity operator in H. Moreover, any pair
of properties of the context CB are compatible, i.e., they are
represented by commutative projectors.

If ρ̂t is the state operator for the system at time t , the Born
rule can be used to compute

Prt (V ) = Tr(ρ̂t �̂V ), (8)

for each property V . If we restrict the properties V to be
elements of a context CB , the function Prt satisfies the
Kolmogorov axioms (i) Prt (V ) � 0, (ii) Prt (H) = 1, and
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(iii) if V1 ∩ V2 = 0, then Prt (V1 + V2) = Prt (V1) + Prt (V2).
Therefore, the function Prt : CB −→ R is a well-defined
probability on the context of properties CB .

In this section we have described how to construct a context
CB of properties from the whole set of properties and we have
defined a probability on the context for a fixed value of time.
In the next section we will develop a formalism to deal with
different properties at different times.

B. Probabilities for properties at different times

Following the steps of the classical case we define an event
as a property V at a given time t , identified with the pair (V,t).
We also define the set E of all possible events for a system,
i.e.,

E = {(V,t) | t ∈ R and V is a closed vector subspace of H}.
We will say that (V ′,t ′) is the time translation of the event

(V,t) if V ′ = Û (t ′,t)V . It is interesting to notice that the Born
rule gives the same probability to the property V at time t and
to the property V ′ at time t ′. Let us consider two events (V,t)
and (V ′,t ′) such that Û (t ′,t)V = V ′. The associated projectors
satisfy �̂V ′ = Û (t ′,t)�̂V Û−1(t ′,t). If ρ̂t and ρ̂t ′ are the state
operators for the times t and t ′, the Born rule (8) and Eq. (4)
give

Prt ′(V
′) = Tr(ρ̂t ′�̂V ′) = Tr[ρ̂t ′Û (t ′,t)�̂V Û−1(t ′,t)]

= Tr[Û (t,t ′)ρ̂t ′Û
−1(t,t ′) �̂V ] = Tr(ρ̂t �̂V ) = Prt (V ).

This result strongly suggests that the events connected
by a time translation should not be considered as essentially
different. Moreover, the relation (V ′,t ′) � (V,t) defined by
V ′ = Û (t ′,t)V is an equivalence relation (see Proposition 1 in
Appendix B). Therefore, each element of E belongs to only
one set of equivalent events. We will denote by [V,t] the class
of events which are equivalent to the event (V,t), i.e.,

[V,t] ≡ {(V ′,t ′) | (V ′,t ′) ∼ (V,t)}.
We also call [E] ≡ E/∼ the set formed by all equivalence

classes of events,

[E] = E/∼= {[V,t] | (V,t) ∈ E}.
To endorse a lattice structure to the set [E], we need to

define a partial order relation (�). We propose the following
definition:

[V1,t1] � [V2,t2] if and only if Û (t2,t1)V1 ⊂ V2.

In Appendix B (Propositions 2 and 3) we prove that � is
a well-defined relation on [E], i.e., it does not depend on the
representative elements of the equivalence classes, and also
that it is a partial order relation on [E].

It is also easy to prove that for each pair of elements
[V,t],[V ′,t ′] ∈ [E], Sup{[V,t],[V ′,t ′]} and Inf{[V,t],[V ′,t ′]}
exist and they are given by

[V,t] ∨ [V ′,t ′] ≡ Sup{[V,t],[V ′,t ′]}
= [Û (t0,t)V + Û (t0,t

′)V ′,t0],
(9)

[V,t] ∧ [V ′,t ′] ≡ Inf{[V,t],[V ′,t ′]}
= [Û (t0,t)V ∩ Û (t0,t

′)V ′,t0],

where t0 is an arbitrary fixed time. The proofs are given in
Propositions 4 and 5 of Appendix B. As for each pair of
elements of [E] there are a supremum and an infimum, then
([E], �) is a lattice.

The lattice ([E], �) has zero and universal elements given
by [{0H},t] and [H,t], respectively (see Proposition 6 in
Appendix B). It is also a complemented lattice, with [V ⊥,t]
the complement of [V,t] (see Proposition 7 of Appendix B).

As mentioned above, we need a complemented and dis-
tributive lattice in order to define a probability function. Even
though ([E], �) is a complemented lattice, it is not distributive
if dim H � 2 (see Proposition 8 in Appendix B).

It is possible to obtain a Boolean sublattice of ([E], �)
starting from an ordinary context of properties CB having the
form given by Eqs. (5) and (6). For a given fixed value t0 of
time, we prove in Proposition 9 of Appendix B that the set of
equivalence classes [E]B ⊂ [E] given by

[E]B ≡ {[V,t0] ∈ [E] | V ∈ CB}
is a Boolean sublattice of ([E], �). As CB is generated by B,
we will say that the lattice [E]B is generated by B.

Once we have a Boolean sublattice [E]B ⊂ [E], a well-
defined probability Pr : [E]B −→ R can be defined as a
generalization of the Born rule

Pr[V,t0] ≡ Tr
(
ρ̂t0�̂V

)
,

where ρ̂t0 is the state of the system at time t0 and �̂V is
the projector corresponding to V ∈ CB (see Proposition 10 of
Appendix B).

The sublattice [E]B is only a trivial generalization of an
ordinary context of properties at a fixed time t . However, our
main interest is to include different properties at different times
in the description of the quantum system. Therefore, we are
going to consider contexts at two different times.

Let us consider a context of properties CB(1) at the time t1,
generated by the atomic properties

B(1) = {
V

(1)
i

∣∣i ∈ σ (1),V
(1)
i ⊥ V

(1)
j if i �= j,

∑
i∈σ (1)

V
(1)
i =H

}
,

where the projectors �̂
(1)
i corresponding to the atomic proper-

ties V
(1)
i satisfy the equations

�̂
(1)
i �̂

(1)
j = δij �̂

(1)
j ,

∑
i∈σ (1)

�̂
(1)
i = Î .

We also consider another context of properties CB(2) at the
time t2, generated by the atomic properties B(2) = {V (2)

μ | μ ∈
σ (2), V (2)

μ ⊥ V (2)
ν if μ �= ν,

∑
μ∈σ (2)V (2)

μ = H}, where the cor-
responding projectors �̂(2)

μ satisfy

�̂(2)
μ �̂(2)

ν = δμν�̂
(2)
ν ,

∑
μ∈σ (2)

�̂(2)
μ = Î .

Properties V (1) ∈ CB(1) and V (2) ∈ CB(2) can be written in
the form

V (1) =
∑

j∈σ
V (1)

V
(1)
j , σV (1) ⊂ σ (1),

V (2) =
∑

μ∈σ
V (2)

V (2)
μ , σV (2) ⊂ σ (2),
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with the corresponding projectors �̂(1) = ∑
j∈σ

V (1)
�̂

(1)
j and

�̂(2) = ∑
μ∈σ

V (2)
�̂(2)

μ .

Taking into account Eqs. (9) the expression “property V (1)

at time t1 and property V (2) at time t2” can be identified with
the equivalence class

[V (1),t1] ∧ [V (2),t2] = Inf{[V (1),t1],[V (2),t2]}
= [V (1,0) ∩ V (2,0),t0],

and the expression “property V (1) at time t1 or property V (2) at
time t2” can be identified with

[V (1),t1] ∨ [V (2),t2] = Sup{[V (1),t1],[V (2),t2]}
= [V (1,0) + V (2,0),t0].

In the previous equations V (1,0) and V (2,0) are the time
translation of properties V (1) and V (2) to a common time t0
[i.e., V (1,0) = Û (t0,t1)V (1) and V (2,0) = Û (t0,t2)V (2)].

It seems natural at this point to consider descriptions
involving properties V (1) at t1 generated by the atomic
properties V

(1)
i (i ∈ σ (1)) and properties V (2) at t2 generated

by the atomic properties V (2)
μ (μ ∈ σ (2)), only if V (1) and V (2)

are compatible when they are time translated to a common
time t0. This will be the case if the corresponding time trans-
lated projectors �̂

(1,0)
i = Û (t0,t1)�̂(1)

i Û−1(t0,t1) and �̂(2,0)
μ =

Û (t0,t2)�̂(2)
μ Û−1(t0,t2) commute (i.e., [�̂(1,0)

i ,�̂(2,0)
μ ] = 0).

Therefore the projectors �̂
(0)
iμ ≡ �̂

(1,0)
i �̂(2,0)

μ satisfy

�̂
(0)
iμ �̂

(0)
jν = �̂

(1,0)
i �̂(2,0)

μ �̂
(1,0)
j �̂(2,0)

ν

= �̂
(1,0)
i �̂

(1,0)
j �̂(2,0)

μ �̂(2,0)
ν

= δij δμν�̂
(0)
jν .

These projectors �̂
(0)
iμ , with i ∈ σ (1) and μ ∈ σ (2), corre-

spond to a set B(0) of atomic properties V
(0)
iμ ≡ V

(1,0)
i ∩ V (2,0)

μ ,
the generators of a context CB(0) at the time t0. All the
expressions involving properties of the contexts CB(1) at t1
and CB(2) at t2 can be written in terms of properties generated
by B(0) at the single time t0. The set of equivalence classes of
events obtained in this way is a Boolean lattice and the Born
rule can be generalized to define

Pr([V (1),t1] ∧ [V (2),t2]) ≡ Pr([V (1,0) ∩ V (2,0),t0])

= Tr
(
ρ̂t0�̂

(1,0)�̂(2,0)
)
,

Pr([V (1),t1] ∨ [V (2),t2]) ≡ Pr([V (1,0) + V (2,0),t0])

= Tr
(
ρ̂t0

{̂
�(1,0)+�̂(2,0)−�̂(1,0)�̂(2,0)})

This is a well-defined probability, satisfying the Kolmogorov
conditions. In this way we have obtained a quantum formalism
for computing the probabilities of expressions involving
properties at different times.

This formalism can be summarized in the following two
postulates, which we propose to incorporate to generalize the
usual formalism of quantum mechanics:

Postulate 1. Descriptions of quantum systems involving
different properties at different times can be considered only
if the set of properties at each time belong to a single context,
and if the projectors corresponding to the generators of the
contexts at each time commute when they are time translated
to a single common time.

FIG. 3. The double-slit experiment.

Postulate 2. The probability for the conjunction or dis-
junction of properties at different times is obtained by first
time translating the properties to a common time and then
computing the probability for the ordinary conjunction or
disjunction using the Born rule.

Our formalism will be applied in the next section to describe
the double-slit experiment with and without a measurement
instrument detecting which slit the particle has passed through.

IV. THE DOUBLE-SLIT EXPERIMENT WITHOUT
MEASUREMENT INSTRUMENTS

In this section we analyze the experiment in which a
quantum particle is passing through a double slit. We assume
there are no measurement instruments detecting the particle.

Let us consider the regions V (1)
u , V

(1)
d , and V (2)

n of Fig. 3.
We want to discuss the possibility of giving a description of
the system in which it would be meaningful to state that “the
particle is in the region V (1)

u (the upper slit) at time t1, and
it is in the region V (2)

n of the vertical zone at time t2.”We are
going to prove that the quoted expression involves properties
at two different times which are not compatible, i.e., they do
not satisfy Postulate 1 formulated at the end of the previous
section.

We first define the relevant properties at times t1 and t2.
For the time t1 we consider the properties represented by the
projectors

�̂(1)
u =

∫
V

(1)
u

d3r |r〉〈r|, �̂
(1)
d =

∫
V

(1)
d

d3r|r〉〈r|,

corresponding to the particle located in the upper or the
lower slit. These two properties are represented by orthogonal
projectors and may be part of an ordinary context for the time
t1.

For the time t2 we need properties represented by the
projectors

�̂(2)
n =

∫
V

(2)
n

d3r|r〉〈r|,

corresponding to the particle located in the region V (2)
n .

We are going to prove that the projectors corresponding to
both slits at t1 and the projectors corresponding to the different
regions V (2)

n at t2 do not commute when they are translated to
a common time.
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If the arbitrary common time is chosen to be t0 = t1, the
projectors �̂(2)

n translated from t2 to t1 are given by

�̂(1)
n = Û (t1,t2)�̂(2)

n Û−1(t1,t2).

To prove that �̂(1)
u and �̂(1)

n do not commute, it is enough
to verify the noncommutation when the projectors act on a
particular vector |φ1〉, which we choose located in the double
slit. For this vector we obtain

�̂(1)
u �̂(1)

n |φ1〉 = �̂(1)
u Û−1(t2,t1)�̂(2)

n Û (t2,t1)|φ1〉
= �̂(1)

u Û−1(t2,t1)�̂(2)
n |φ2〉.

The vector |φ2〉, obtained from |φ1〉 using the Schrödinger
equation, has zones of destructive interference. The wave
function 〈r|φ2〉 vanishes for some region V

(2)
n∗ and therefore

�̂(1)
u �̂

(1)
n∗ |φ1〉 = 0.

We now consider the product of the projectors in different
order,

�̂
(1)
n∗ �̂(1)

u |φ1〉 = Û−1(t2,t1)�̂(2)
n∗ Û (t2,t1)�̂(1)

u |φ1〉.
The vector �̂(1)

u |φ1〉 represents the state we would have
at t1 when only the upper slit is open. Its time evolution
Û (t2,t1)�̂(1)

u |φ1〉 does not have destructive interferences, as
it will not vanish when acted upon by Û−1(t2,t1)�̂(2)

n∗ . Then,
�̂

(1)
n∗ �̂(1)

u |φ1〉 do not vanish. As we have found a vector |φ1〉
for which �̂(1)

u �̂
(1)
n∗ |φ1〉 �= �̂

(1)
n∗ �̂(1)

u |φ1〉, we conclude that �̂
(1)
n∗

and �̂(1)
u do not commute.

According to our Postulate 1, we conclude that it is not
possible to give a description of the quantum system suitable
to talk about which slit passed the particle before reaching
one of the regions of the vertical zone. This impossibility is
deduced from Postulate 1.

V. THE DOUBLE-SLIT EXPERIMENT WITH
MEASUREMENT INSTRUMENTS

We now consider a modified double-slit experiment with
a detector A located in the slit zone, with its pointer variable
indicating au (ad ) if the particle is detected passing through the
upper (lower) slit. The detector A interacts with the particle
in the small time interval (t1,t1 + 
1). A second detector B

is located in the vertical zone to the right of the double slit
with a pointer variable indicating the value bn if the particle
is detected in the zone V (2)

n . The detector B interacts with the
particle in the small time interval (t2,t2 + 
2). The system
S + A + B, composed of the particle and the detectors, is
initially in a state represented by the vector |ϕt1〉|a0〉|b0〉 ∈
HS ⊗ HA ⊗ HB , where |a0〉 and |b0〉 are the initial states of
the instruments.

The following equations give the state vector of the
composed system for different times:

�(t1) = ∣∣ϕt1

〉|a0〉|b0〉,
�(t1 + 
1) = (

�̂(1)
u

∣∣ϕt1

〉)|au〉|b0〉 + (
�̂

(1)
d

∣∣ϕt1

〉)|ad〉|b0〉,
�(t2) = [

Û (t2,t1 + 
1)�̂(1)
u

∣∣ϕt1

〉]|au〉|b0〉
+ [

Û (t2,t1 + 
1)�̂(1)
d

∣∣ϕt1

〉]|ad〉|b0〉,

�(t2 + 
2) =
∑

n

[
�̂(2)

n Û (t2,t1 + 
1)�̂(1)
u

∣∣ϕt1

〉]|au〉|bn〉

+
∑

n

[
�̂(2)

n Û (t2,t1 + 
1)�̂(1)
d

∣∣ϕt1

〉]|ad〉|bn〉,

where Û (t2,t1 + 
1) is the free time evolution operator for the
particle from t1 + 
1 to t2.

We are now going to consider the possibility of giving
a description involving the pointer indication of detector A

at time t1 + 
1 and the pointer indication of detector B at
time t2 + 
2. The relevant properties for the time t1 + 
1 are
represented by the projectors

�̂au
= ÎS ⊗ |au〉〈au| ⊗ ÎB, �̂ad

= ÎS ⊗ |ad〉〈ad | ⊗ ÎB .

For the time t2 + 
2 the relevant properties correspond to
the projectors

�̂bn
= ÎS ⊗ ÎA ⊗ |bn〉〈bn|.

To know if these properties can be included in a description
of the system according to our Postulate 1, we should verify
if the corresponding projectors commute when translated to a
common time, which we choose to be t1. We obtain

�̂(1)
au

�̂
(1)
bn

= Û−1(t1 + 
1,t1)�̂au
Û (t1 + 
1,t1)

× Û−1(t2 + 
2,t1)�̂bn
Û (t2 + 
2,t1)

= Û−1(t1 + 
1,t1)�̂au
Û (t1 + 
1,t2 + 
2)

× �̂bn
Û (t2 + 
2,t1)

= Û−1(t1 + 
1,t1)Û (t1 + 
1,t2 + 
2)

× �̂au
�̂bn

Û (t2 + 
2,t1)

= Û−1(t2 + 
2,t1)�̂au
�̂bn

Û (t2 + 
2,t1),

�̂
(1)
bn

�̂(1)
au

= Û−1(t2 + 
2,t1)�̂bn
Û (t2 + 
2,t1)

× Û−1(t1 + 
1,t1)�̂au
Û (t1 + 
1,t1)

= Û−1(t2 + 
2,t1)�̂bn
Û (t2 + 
2,t1 + 
1)

× �̂au
Û (t1 + 
1,t1)

= Û−1(t2 + 
2,t1)�̂bn
�̂au

Û (t2 + 
2,t1)

= Û−1(t2 + 
2,t1)�̂au
�̂bn

Û (t2 + 
2,t1),

and therefore we find that �̂
(1)
bn

and �̂(1)
au

commute. The same

result is obtained for �̂
(1)
bn

and �̂(1)
ad

.
Therefore, according to Postulate 1, it is possible to give a

description of the composed system S + A + B involving the
pointer indication of instrument A at the time t1 + 
1 and the
pointer indication of instrument B at the time t2 + 
2.

According to our Postulate 2, the probability for the particle
to be detected in the upper slit by instrument A is

Pr
([

�̂(1)
au
H,t1

]) = Tr
(
ρ̂t1�̂

(1)
au

) = 〈
ϕt1

∣∣〈a0|〈b0|Û−1(t1 + 
1,t1)

× �̂au
Û (t1 + 
1,t1)

∣∣ϕt1

〉|a0〉|b0〉
= 〈

ϕt1

∣∣�̂(1)
u

∣∣ϕt1

〉
. (10)

Moreover, the probability for the particle to be detected in
the upper slit by A at time t1 + 
1 and to be detected in the
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volume V (2)
n by B at the time t2 + 
2 is

Pr
([

�̂
(1)
bn

�̂(1)
au
H,t1

]) = Tr
(
ρ̂t1�̂

(1)
bn

�̂(1)
au

)
= 〈

ϕt1

∣∣〈a0|〈b0|Û−1(t2 + 
2,t1)

× �̂au
�̂bn

Û (t2 + 
2,t1)|ϕt1〉|a0〉|b0〉
= 〈

ϕu,t2

∣∣�̂(2)
n

∣∣ϕu,t2

〉
, (11)

where |ϕu,t2〉 ≡ Û (t2,t1 + 
1)�̂(1)
u |ϕt1〉.

Taking into account Eqs. (10) and (11), the probability for
the particle to be detected in the volume V (2)

n by instrument B

at the time t2 + 
2, conditional on having been detected in the
upper slit by instrument A at the time t1 + 
1, is

Pr
([

�̂
(1)
bn

�̂(1)
au
H,t1

]∣∣[�̂(1)
au
H,t1

]) ≡
〈
ϕu,t2

∣∣�̂(2)
n

∣∣ϕu,t2

〉〈
ϕt1

∣∣�̂(1)
u

∣∣ϕt1

〉
= 〈

ϕ̃u,t2

∣∣�̂(2)
n

∣∣ϕ̃u,t2

〉
,

where |ϕ̃u,t2〉 ≡ Û (t2,t1 + 
1)|ϕ̃u,t1〉 and |ϕ̃u,t1〉 = �̂
(1)
u |ϕt1 〉

||�̂(1)
u |ϕt1 〉|| .

The state vector |ϕ̃u,t2〉 is the free time evolution from
time t1 + 
1 to time t2 of the normalized state vector |ϕ̃u,t1〉,
emerging at time t1 + 
1 from the upper slit. This is a
well-known result, showing no interference pattern. Usually
it is obtained from the collapse postulate. With our formalism
we obtained the same result, but without invoking the collapse
postulate.

VI. CONCLUSIONS

In this paper we have developed a formalism for a de-
scription of classical and quantum systems involving different
properties at different times. We first presented the classical
case, where each property is identified with a subset of the
phase space, and we defined an event as a property at a given
time. The time translation of an event is obtained from the time
evolution generated the by Hamilton equations.

Events connected by a time translation are not considered as
essentially different and they belong to the same equivalence
class. A Boolean lattice structure is defined on the equivalence
classes of events. With this structure, the probability for
expressions involving different properties at different times
is well defined as a generalization of the usual probability of
classical statistical mechanics.

We followed a similar approach for the quantum case,
where the properties are identified with closed subspaces of the
Hilbert space and events are properties at a given time. The time
translation of these events is generated by the Liouville–von
Neumann equation. Events which are connected by a time
translation have the same probability given by the Born rule
and satisfy an equivalence relation. A very special feature of
ordinary quantum mechanics is that it is necessary to restrict
to a context the set of properties that can simultaneously be
considered. As this context is Boolean the Born rule gives
probabilities satisfying the Kolmogorov axioms.

When properties at different times are involved, it is not
only necessary to consider properties that at each time belong
to a context, but also to impose a compatibility condition
between properties at different times, namely, when they are
translated to a common time, their corresponding projectors
should commute (Postulate 1). With this postulate a Boolean

lattice of equivalence classes of events can be obtained and a
probability can be defined using Postulate 2.

Finally, we applied our formalism to describe the well-
known double-slit experiment. Without measurement instru-
ments, we deduced from Postulate 1 of our formalism the
impossibility of a description of the trajectory of the particle.

We also considered a different physical process in which
there is a measurement instrument at the double slit and another
measurement instrument at a vertical zone in front of the slits.
In this case we described the particle and both measurement
instruments as parts of a compound quantum system. We found
that the pointer indications of the measurement instruments
are compatible properties at different times (i.e., they satisfy
Postulate 1). The conditional probability we obtained is the
same as the one obtained using the collapse postulate, but we
obtained it without this postulate.

Using Postulate 2 we compute the probability to detect
the particle in front of the double slit, conditional on having
detected it going through one of the slits. We reestablish
noninterference results without invoking the collapse of the
wave function.

Our description of the double-slit experiment shows that
this formalism is suitable for dealing with physical situations
involving properties at different times. Preliminary results for
the delayed choice experiment are encouraging us to extend
our work along this line.

APPENDIX A: DEFINITIONS

Equivalence relation. Given a set A and a binary relation
R on A, we say that R ⊂ A × A is an equivalence relation if
it satisfies the following properties:

Reflexivity: ∀a ∈ A,aRa.
Symmetry: ∀a,b ∈ A,aRb ⇒ bRa.
Transitivity: ∀a,b,c ∈ A,aRb,bRc ⇒ aRc.
Order relation. Given a set A and a binary relation R on A,

we say that R ⊂ A × A is an order relation if it satisfies the
following properties:

Reflexivity: ∀a ∈ A,aRa.
Antisymmetry: ∀a,b ∈ A,aRb,bRa ⇒ a = b.
Transitivity: ∀a,b,c ∈ A,aRb,bRc ⇒ aRc.
Lattice. Given a set A and an order relation � on A,

the pair (A, �) is a lattice if it satisfies the following
properties: (i) ∀a,b ∈ A,∃s ∈ As = Sup{a,b} ≡ a ∨ b and
(ii) ∀a,b ∈ A,∃t ∈ A/t = Inf{a,b} ≡ a ∧ b, where Sup{a,b}
and Inf{a,b} are the supremum and the infimum of {a,b},
respectively.

A lattice satisfies a number of properties. The more
important are the following:

Idempotency: a ∧ a = a, a ∨ a = a.

Commutativity: a ∧ b = b ∧ a, a ∨ b = b ∨ a.

Associativity: a ∧ (b ∧ c) = (a ∧ b) ∧ c, a ∨ (b ∨ c) =
(a ∨ b) ∨ c.

Absorption: a ∧ (a ∨ b) = a, a ∨ (a ∧ b) = a.
Distributive inequality: a ∧ (b ∨ c) � (a ∧ b) ∨ (a ∧ c),

a ∨ (b ∧ c) � (a ∨ b) ∧ (a ∨ c).
Distributive lattice. A lattice (A, �) is distributive if

the distributive inequalities are equalities, i.e., a ∧ (b ∨
c) = (a ∧ b) ∨ (a ∧ c) ∀a,b,c ∈ A, a ∨ (b ∧ c) = (a ∨ b) ∧
(a ∨ c) ∀a,b,c ∈ A.
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Null and universal element of a lattice. Let (A, �) be a
lattice.

An element a ∈ A is a null element if ∀b ∈ A it is a � b.
If a null element exists, then it is unique and it is denoted

as 0.
An element a ∈ A is a universal element if ∀b ∈ A it is

b � a.
If a universal element exists, then it is unique and it is

denoted as u.
Complemented lattice. (A, �) is a complemented lattice if

it is a lattice with null element 0, universal element u, and
with the following property: ∀a ∈ A, ∃a′ ∈ A/Inf{a,a′} = 0
and Sup{a,a′} = u. The element a′ is called a complement
of a.

In a complemented lattice an element can have more than
one complement. However, if the complemented lattice is also
distributive, each element has a unique complement, called
a⊥, and it satisfies (a⊥)⊥ = a. The last condition implies
that the lattice is orthocomplemented. The lattices that are
complemented and distributive are called Boolean lattices.

Probability. Given a Boolean lattice (A, �), then P : A →
R is a probability if

(i) P (a) � 0, ∀a ∈ A.
(ii) P (u) = 1, where u ∈ A is the universal element of A.
(iii) If a ∧ b = 0, then P (a ∨ b) = P (a) + P (b).

APPENDIX B: PROPOSITIONS

In this section we prove some of the results that are stated
in the paper. The basic definitions needed to understand the
propositions are summarized in the Appendix A.

Proposition 1. ∼⊂ E × E is an equivalence relation.
Reflexivity. Û (t,t)V = ÎV = V , therefore (V,t) ∼ (V,t).
Symmetry. If (V ′,t ′) ∼ (V,t), then V ′ = Û (t ′,t)V . There-

fore V = Û−1(t ′,t)V ′ = Û (t,t ′)V ′ and then (V,t) ∼ (V ′,t ′).
Transitivity. If (V,t) ∼ (V ′,t ′) and (V ′,t ′) ∼ (V ′′,t ′′),

then Û (t ′,t)V = V ′ and Û (t ′′,t ′)V ′ = V ′′. Therefore
Û (t ′′,t ′)Û (t ′,t)V = Û (t ′′,t)V = V ′′, then (V,t) ∼ (V ′′,t ′′).

Therefore, ∼ is an equivalence relation. �
Proposition 2. � is a well-defined relation in [E].
If [V1,t1] � [V2,t2], then Û (t2,t1)V1 ⊂ V2. Given (V ′

1,t
′
1) ∼

(V1,t1) and (V ′
2,t

′
2) ∼ (V2,t2) we have Û (t1,t ′1)V ′

1 =
V1 and Û (t2,t ′2)V ′

2 = V2. Therefore, Û (t2,t1)V1 = Û (t2,t1)
Û (t1,t ′1)V ′

1 = Û (t2,t ′1)V ′
1 ⊂ V2 = Û (t2,t ′2)V ′

2. Then Û (t ′2,t2)
Û (t2,t ′1)V ′

1 ⊂ V ′
2, hence Û (t ′2,t

′
1)V ′

1 ⊂ V ′
2. Therefore [V ′

1,t
′
1] �

[V ′
2,t

′
2]. �

Proposition 3. � ⊂ [E] × [E] is an order relation.
Reflexivity. Û (t,t)V = V , then [V,t] � [V,t].
Transitivity. If [V,t] � [V ′,t ′] and [V ′,t ′] � [V ′′,t ′′],

then Û (t ′,t)V ⊂ V ′ and Û (t ′′,t ′)V ′ ⊂ V ′′. Therefore
Û (t ′′,t ′)Û (t ′,t)V ⊂ Û (t ′′,t ′)V ′ ⊂ V ′′. Then Û (t ′′,t)V ⊂ V ′′,
and therefore [V,t] � [V ′′,t ′′].

Antisymmetry. If [V,t] � [V ′,t ′] and [V ′,t ′] � [V,t], then
Û (t ′,t)V ⊂ V ′ and Û (t,t ′)V ′ ⊂ V . Therefore Û (t ′,t)V ⊂ V ′
and V ′ ⊂ Û (t ′,t)V . Then Û (t ′,t)V = V ′, hence [V,t] =
[V ′,t ′]. As � is reflexive, antisymmetric, and transitive, it
is an order relation. �

Proposition 4. Sup{[V,t],[V ′,t ′]} = [Û (t0,t)V + Û (t0,t ′)
V ′,t0].

(i) Û (t0,t)V ⊂ Û (t0,t)V + Û (t0,t ′)V ′. Then [V,t] �
[Û (t0,t)V + Û (t0,t ′)V ′,t0].

(ii) Û (t0,t ′)V ′ ⊂ Û (t0,t)V + Û (t0,t ′)V ′. Then [V ′,t ′] �
[Û (t0,t)V + Û (t0,t ′)V ′,t0].

(iii) Consider [V ′′,t ′′] satisfying [V,t] � [V ′′,t ′′] and
[V ′,t ′] � [V ′′,t ′′]. Then Û (t ′′,t)V ⊂ V ′′ and Û (t ′′,t ′)V ′ ⊂
V ′′. Therefore Û (t ′′,t)V + Û (t ′′,t ′)V ′ ⊂ V ′′, and then
Û (t ′′,t0)(Û (t0,t)V + Û (t0,t ′)V ′) ⊂ V ′′. Hence, [Û (t0,t)V +
Û (t0,t ′)V ′,t0] � [V ′′,t ′′]. Therefore, Sup{[V,t],[V ′,t ′]} =
[Û (t0,t)V + Û (t0,t ′)V ′,t0]. �

Proposition 5. Inf{[V,t],[V ′,t ′]} = [Û (t0,t)V ∩ Û (t0,t ′)
V ′,t0].

(i) Û (t0,t)V ∩ Û (t0,t ′)V ′ ⊂ Û (t0,t)V . Then [Û (t0,t)V ∩
Û (t0,t ′)V ′,t0] � [Û (t0,t)V,t0] = [V,t].

(ii) Û (t0,t)V ∩ Û (t0,t ′)V ′ ⊂ Û (t0,t ′)V . Then [Û (t0,t)V ∩
Û (t0,t ′)V ′,t0] � [Û (t0,t ′)V,t0] = [V,t ′].

(iii) Consider [V ′′,t ′′] satisfying [V ′′,t ′′] � [V,t] and
[V ′′,t ′′] � [V ′,t ′]. Then V ′′ ⊂ Û (t ′′,t)V and V ′′ ⊂
Û (t ′′,t ′)V ′. Therefore V ′′ ⊂ [Û (t ′′,t)V ∩ Û (t ′′,t ′)V ′] =
Û (t ′′,t0)[Û (t0,t)V ∩ Û (t0,t ′)V ′]. Then [V ′′,t ′′] � [Û (t0,t)
V ∩ Û (t0,t ′)V ′,t0]. Therefore, Inf{[V,t],[V ′,t ′]} = [Û (t0,t)
V ∩ Û (t0,t ′)V ′,t0]. �

Proposition 6. [{0H},t] and [H,t] are the zero and the
universal elements of ([E], �).

We have Û (t ′,t){0H} = {0H} ⊂ V ′ for every subspace V ′
of H. Then [{0H},t] � [V ′,t ′] for all [V ′,t ′] ∈ [E]. Therefore
[{0H},t] is the zero element of the lattice [E].

For each subspace V ′ we have Û (t,t ′)V ′ ⊂ H, and
[V ′,t ′] � [H,t]. Hence [H,t] is the universal element
of [E]. �

Proposition 7. ([E], �) is a complemented lattice.
Given any [V,t] ∈ [E] we obtain
Sup([V,t],[V ⊥,t]) = [Û (t,t)V + V ⊥,t] = [V + V ⊥,t] =

[H,t].
Inf([V,t],[V ⊥,t]) = [Û (t,t)V ∩ V ⊥,t] = [V ∩ V ⊥,t] =

[{0H},t].
Then, [V ⊥,t] is a complement of [V,t].
Therefore, ([E], �) is a complemented lattice. �
The previous results could have been obtained taking into

account that ([E], �) and the lattice formed by the closed
vector subspaces of H (with the inclusion as order relation)
are isomorphic. However, the previous proofs are useful to
understand the structure of ([E], �).

Proposition 8. If dim H � 2,([E], �) is not a distributive
lattice.

If dim H � 2, we can consider two nonvanishing linearly
independent vectors u and v and the nonvanishing vector
w = u + v. We will call by U , V , and W the one-dimensional
subspaces of H spanned by u, v, and w, respectively. U ,
V , and W are closed subspaces of H, then [W,t], [U,t],
and [V,t] are elements of [E], where t is an arbitrary
time.

We obtain [W,t] ∧ ([U,t] ∨ [V,t]) = [W,t] ∧ [U +
V,t] = [W,t] and also ([W,t] ∧ [U,t]) ∨ ([W,t] ∧ [V,t]) =
[{0H},t] ∨ [{0H},t] = [{0H},t]. Therefore [W,t] ∧ ([U,t] ∨
[V,t]) �= ([W,t] ∧ [U,t]) ∨ ([W,t] ∧ [V,t]), hence ([E], �)
is not a distributive lattice. �

Proposition 9. Let us consider a set B of mutually
orthogonal closed subspaces of H which expand the whole
Hilbert space, i.e. B ≡ {Vi | i ∈ σ ,Vi is a closed subspace
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of H ,Vi ⊥ Vj if i �= j ,
∑

i∈σVi = H }. The set B gen-
erates the context CB . Then [E]B ≡ {[V,t0] ∈ [E] / V ∈
CB} with the order relation � is a Boolean sublattice
of ([E], �).

Let us consider [V,t0] and [V ′,t0] ∈ [E]B . Then, V and
V ′ are elements of the Boolean sublattice CB . Therefore
V + V ′ ∈ CB and V ∩ V ′ ∈ CB . Moreover, [V + V ′,t0] =
[V,t0] ∨ [V ′,t0] ∈ [E]B and [V ∩ V ′,t0] = [V,t0] ∧ [V ′,t0] ∈
[E]B . Therefore ([E]B, �) is a lattice.

{0H} and H are in CB , then [{0H},t0] ∈ [E]B and [H,t0] ∈
[E]B .

If [V,t0] ∈ [E]B , then V ∈ CB and V ⊥ ∈ CB . Therefore
[V ⊥,t0] ∈ [E]B .

Hence, ([E]B, �) is a complemented lattice.
Now consider [V1,t0], [V2,t0], and [V3,t0], three arbitrary

elements of [E]B . Then V1, V2, and V3 are in CB . As CB is
a distributive lattice of subspaces of the Hilbert space H, we
have V1 ∩ (V2 + V3) = (V1 ∩ V2) + (V1 ∩ V3) and V1 + (V2 ∩
V3) = (V1 + V2) ∩ (V1 + V3).

Then [V1,t0] ∧ ([V2,t0] ∨ [V3,t0]) = [V1,t0] ∧ [(V2 +
V3),t0] = [V1 ∩ (V2 ∪ V3),t0] = [(V1 ∩ V2) ∪ (V1 ∩ V3),t0] =
[(V1 ∩ V2),t0] ∨ [(V1 ∩ V3),t0] = ([V1,0] ∧ [V2,t0]) ∨
([V1,t0] ∧ [V3,t0]).

We also obtain [V1,t0] ∨ ([V2,t0] ∧ [V3,t0]) = ([V1,t0] ∨
[V2,t0]) ∧ ([V1,t0] ∨ [V3,t0]). Therefore, ([E]B, �) is a
Boolean sublattice of ([E], �). �

Proposition 10. Given B ≡ {Vi | i ∈ σ ,Vi is a closed
subspace of H,Vi ⊥ Vj if i �= j ,

∑
i∈σVi = H} and [E]B =

{[V,t0] ∈ B / V ∈ CB}, for each state ρ̂t0 ,Pr : [E]B → R

given by Pr([V,t0]) =Tr(ρ̂t0�̂V ) is a probability.
To prove that Pr is a probability we have to prove the

following conditions:
(i) Given [V,t0] ∈ [E]B we consider the projector �̂V

associated with the subspace V .
Consider B1 = {|ϕi〉, i ∈ I } and B2 = {|ϕj 〉, j ∈ J } or-

thonormal bases of the subspaces V and V ⊥, respectively.
Then B3 = B1 ∪ B2 is an orthonormal base of H.

As �̂V is the orthogonal projector associated with V , we
have the following relations:

�̂V |ϕi〉 = |ϕi〉, if |ϕi〉 ∈ B1.
�̂V |ϕj 〉 = 0, if |ϕj 〉 ∈ B2.
Then Pr([V,t0]) = Tr(ρ̂t0�̂V ) = ∑

|ϕ〉∈B3
〈ϕ|ρ̂t0�̂V |ϕ〉 =∑

|ϕ〉∈B1
〈ϕ|ρ̂t0 |ϕ〉 � 0, because ρ̂t0 is positive.

(ii) Consider the projector �̂H = Î associated with the
subspace H and consider B = {|ϕk〉, k ∈ K} the orthonor-
mal base of H. Then, Pr([H,t0]) = Tr(ρ̂t0�̂H) = Tr(ρ̂t0 Î ) =
T r(ρ̂t0 ) = 1.

(iii) Consider [V1,t1], [V2,t2] ∈ [E]B such that [V1,t1] ∧
[V2,t2] = [{0H},t0].

[V1,t1] = [Ṽ1,t0], with Ṽ1 = Û (t0,t1)V1.
[V2,t2] = [Ṽ2,t0], with Ṽ2 = Û (t0,t2)V2.
Consider the projectors �1, �2, �̃1, and �̃2 associated with

the subspaces V1, V2, Ṽ1, and Ṽ2, respectively. These projectors
are related in the following way:

�1 = Û (t1,t0)�̃1Û (t0,t1), �2 = Û (t2,t0)�̃2Û (t0,t2).

As Ṽ1,Ṽ2 ∈ CB , then the projectors of Ṽ1 + Ṽ2 and Ṽ1 ∩ Ṽ2

are given by

�̃Ṽ1+Ṽ2
= �̃1 + �̃2 − �̃1�̃2, �̃Ṽ1∩Ṽ2

= �̃1�̃2.

Moreover, [Ṽ1,t0] ∧ [Ṽ2,t0] = [Ṽ1 ∩ Ṽ2,t0] = [{0H},t0],
then Ṽ1 ∩ Ṽ2 = {0H}. Hence, �̃Ṽ1∩Ṽ2

= �̃1�̃2 = 0. Then
�̃Ṽ1+Ṽ2

= �̃1 + �̃2.
Therefore,

Pr([V1,t1] ∨ [V2,t2])

= Pr([Ṽ1,t0] ∨ [Ṽ2,t0]) = Pr([Ṽ1 + Ṽ2,t0])

= Tr[ρ̂t0 (�̃1 + �̃2)] = Tr(ρ̂t0�̃1) + Tr(ρ̂t0�̃2)

= Tr[ρ̂t0Û (t0,t1)�1Û (t1,t0)] + Tr[ρ̂t0Û (t0,t2)�2Û (t2,t0)]

= Tr(ρ̂t1�1) + Tr(ρ̂t2�2) = Pr([V1,t1]) + Pr([V2,t2]).

Then, Pr([V,t0]) = Tr(ρ̂t0�̂V ) is a well-defined
probability. �
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