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Long range ordering in the bcc phase of the Cu-Al-Ni alloy is modelled through the analytical Bragg-
Williams approximation and by means of numerical Monte Carlo simulations. The interchange energies
that govern the ordering reactions are determined by fits to experimental ordering temperatures. A sat-
isfactory agreement with the experimental data is obtained within both models, using slightly different
sets of interchange energies. It is found that ordering in first neighbours is driven by the Ni-Al interac-
tions, whereas the ordering in next nearest neighbours occurs by a reordering of Cu-Al pairs. Monte
Carlo simulations enable a reinterpretation of the experimentally observed ordering reactions. Further
details of the ordering process, such as the existence of tricritical points as the Ni content is reduced,
and the evolution of sublattice occupancies as the ordering proceeds are also discussed: the site occupa-
tion probabilities at low temperatures agree with the experimental values.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Cu-Al-Ni, as other Cu-Al based alloys, has shape memory prop-
erties associated with a martensitic transformation. This transfor-
mation takes place from a high temperature b phase, with bcc
structure, to a low temperature martensitic phase. At temperatures
above the martensitic transformation, the b phase can be in differ-
ent states of long range order (lro). For instance, in the range of
experimentally investigated compositions, the Cu-Al-Ni alloy
undergoes a two stages ordering process: first from a disordered
(or short range ordered) bcc structure, called A2, to a B2 structure
ordered in first neighbours, and then to a L21 phase with order in
first and second neighbours [1,2]. The type and degree of order
in the b phase modifies the properties associated with the marten-
sitic transformation [3]; thus, the understanding of the ordering
processes is of interest from both basic and applied points of view.

The description of the different superstructures can be made
with the help of Fig. 1, which shows the general bcc lattice and
the four interpenetrating fcc sublattices (I to IV) in which it is sub-
divided. In the A2 structure all the sites have the same probability
of being occupied by any of the atomic species, pI

A ¼ pII
A ¼ pIII

A ¼ pIV
A

(A = Cu, Al, Ni). In the B2 structure (ClCs type), the occupation of
the center of the cubes differs from that of the corners,
pI
A ¼ pII

A – pIII
A ¼ pIV

A . In the L21 configuration (Heusler type struc-
ture), there is an additional ordering in second neighbours,
pI
A ¼ pII

A – pIII
A –pIV

A – pI
A.

The most comprehensive experimental assessment of critical
order-disorder temperatures in Cu-Al-Ni is the work by Recarte
et al. [4]. These authors measured critical order-disorder tempera-
tures along three lines of compositions with fixed 13.2 wt% Al,
13.7 wt% Al, and 4 wt% Ni, respectively. For all the investigated
samples, two ordering reactions were observed, that the authors
identified with A2? B2 and B2? L21 ordering processes.

From the theoretical side, there have been three previous
attempts to model the temperatures of atomic long range ordering
in Cu-Al-Ni [4–6]. These studies were based on mean field approx-
imations. In Ref. [4], expressions derived from the point (Bragg-
Williams, BW) approximation [7] were used. It was assumed that
the chemical interactions between AB pairs were determined by
constant (composition and temperature independent) pair inter-

change energies in first and second neighbours, W ðkÞ
AB (AB = CuAl,

CuNi or AlNi, k = 1, 2 for first and second neighbours, respectively).

The values forW ð1;2Þ
CuAl were taken from [8],W ð1;2Þ

AlNi from [9], and it was

assumed that W ð1;2Þ
CuNi ¼ 0. In Ref. [5], the BW model, as modified by

Inden [7] was used to model the A2 + B2 and B2 + B2 coexistence
regions observed experimentally at low temperatures. The inter-
change energies in first and second neighbours for Cu-Al and
Ni-Al were obtained from the (extrapolated) order-disorder tem-
peratures in the corresponding binary alloys, whereas for Cu-Ni
pairs they were assumed to be zero. More recently, a model based
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Fig. 1. The bcc lattice and the four interpenetrating sublattices in which it is
subdivided.
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in the irregular tetrahedron approximation of the cluster variation
method (IT-CVM) [10] was employed by Pelegrina [6] to determine
a new set of interchange energies from a fit to the experimental
critical temperatures.

Despite these previous theoretical efforts, there are some issues
that still remain unclear. One of them is the fact that, in all the
range of compositions experimentally studied, Cu-Al-Ni displays
a two-steps ordering process even for very low Ni contents
(2.73 at.%, [4]). This contrasts with the behaviour of other Cu-Al-
X ternary alloys (X = Zn, Be, Mn), which, for low contents of the
third element X (below �8 at.%), display a single A2M L21 transi-
tion [27–31], consistently with the fact that Cu-Al with composi-
tions close to Cu3Al has also a single ordering transition [23]. The
different behaviour of Cu-Al-Ni could be attributed, in principle,
to a high binding energy for Ni-Al pairs. One of the objectives of
the present work is the construction of realistic model which can
clarify this and other points.

The BW model has the advantage of its relatively easy applica-
tion to the problem of atomic ordering, and, in particular, provides
analytical expressions for the determination of interchange ener-
gies by fitting to experimental order-disorder temperatures. How-
ever, since this model neglects short range order correlations, the
thermodynamical quantities obtained within this approach consid-
erably differs from the results obtained with more realistic meth-
ods [11]; this has been shown to occur, for instance, in the
related ternary Cu-Al-Zn system [12]. A more sophisticated
approach is the Monte Carlo (MC) method, which allows obtaining
quasi-exact results from calculations made on finite systems [13].
However, due to the numerical character of this technique, it may
become difficult determining the interaction parameters from a fit
to experimental data, such as order-disorder transition tempera-
tures. A plausible solution, which will be employed in the present
work, is to use the interchange energies obtained within the BW
model as initial guesses for the MC simulations [11]. This initial
values should be optimized in order to obtain an adequate descrip-
tion of the experimental order-disorder temperatures.

The purpose of the present work is the construction of a model
for the description of ordering phenomena in Cu-Al-Ni. The inter-
change energies are determined by fitting to the experimental
order-disorder temperatures from Ref. [4]. The BW formalism, as
described in Section 2.1, is used as first approximation, and the val-
ues are further optimized for their use in MC simulations
(described in Section 2.2). Two types of MC simulations are per-
formed: first, canonical ensemble simulations with direct atomic
interchanges are used to optimize the energetic parameters and
to analyze the predicted atomic distributions. Then, the phase
equilibrium around the compositions of interest is studied by
means of simulations in the grand-canonical ensemble. The rest
of this paper is organized as follows: in Sections 3.1 and 3.2 we
present and discuss the results obtained with BW and MC, respec-
tively; the validity of the MC model is analyzed by comparing with
other experimental information not included in the fitting. The
main conclusions are drawn in Section 4.
2. Theory

2.1. Bragg-Williams model

The Bragg-Williams (BW) [7] model is the lowest step in a hier-
archy of successive approximations to the free energy of an alloy
known as the Cluster Variation Method (CVM) [10]: In this approx-
imation, the configurational free energy is written in terms of the
probabilities pai for a site in sublattice a (a = I � IV) to be occupied
by an atom of specie i. Since probabilities of larger clusters (for
instance, pair probabilities) are given just in terms of the pai ’s, this
is also known as the point approximation of the CVM [11,14]. For a
bcc ternary alloy A-B-C with atomic fractions cA, cB and cC, and con-
sidering constant pair interactions extended to first and second
neighbours, the configurational free energy per atom, F/N, takes
the form [15]:

F
N

¼ U � TS
N

¼
X
ij

4xixjW
ð1Þ
ij � 3 xixj � 1

2
ðyiyj þ zizjÞ
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ii þ 3V ð2Þ

ii

� �

þ kBT
4

XIV
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pai � ln pai
� 	 ð1Þ

In the above expression, U is the internal energy, T is the abso-

lute temperature and S the entropy; V ðkÞ
ii is the interaction between

a pair of i � i atoms placed as first (k = 1) or second (k = 2) neigh-

bours; W ðkÞ
ij ¼ �2V ðkÞ

ij þ V ðkÞ
ii þ V ðkÞ

jj are the so-called interchange

energies, which determine the tendency to ordering or segregation
between the components i and j. The parameters xi are linear com-
binations of probabilities and quantify the degree of order in first
neighbours

xi ¼ pI
i þ pII

i � pIII
i � pIV

i

4
ð2-aÞ

whereas yi and zi are linear combinations that describe the ordering
between second neighbours,

yi ¼
pI
i � pII

i

2
ð2 - bÞ

zi ¼ pIII
i � pIV

i

2
ð2-cÞ

Due to the conditions
P

ip
a
i ¼ 1, and

P
ap

a
i ¼ 4ci, only six among

the twelve occupation probabilities are independent; the descrip-
tion of the type and degree of lro is then more conveniently per-
formed through the six independent parameters xi, yi and zi (i = A,
B; xC = �xA � xB, yC = �yA � yB, zC = �zA � zB). Thus, in absence of
lro (structure A2), is xi = yi = zi = 0; in a B2 configuration, ordered
in first neighbours, is xi – 0, yi = zi = 0; and for an L21 structure is
xi – 0, zi – 0, and yi = 0.

In Eq. (1), the first term accounts for the energy due to ordering,
the second one is the energy due to mixing, the third one is the
internal energy of the pure components, and the last one is the
configurational entropy (kB being the Boltzmann’s constant). The
summations run over i = A, B, and C, or over ij = AB, AC, BC.
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Since in equilibrium the free energy is a minimum, its deriva-
tive with respect to the order parameters is zero. Particularly, in
the temperature region between TA2$B2 and TB2$L21 , where some
degree of order in first (but not in second) neighbours exists, the
equilibrium conditions

@F
@xA

¼ N �NACxA þ 1
2

NAB � NAC � NBCð ÞxB



þ1
2
kBT � ln ðcA þ xAÞðcC þ xA þ xBÞ

ðcA � xAÞðcC � xA � xBÞ
� ��

¼ 0 ð3 - aÞ

@F
@xB

¼ N �NBCxB þ 1
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2
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admit other solutions beside the trivial xA = xB = 0. In the preceding
expressions,

Nij ¼ 8W ð1Þ
ij � 6W ð2Þ

ij

� �
BW

: ð4Þ

The critical temperature for ordering in first neighbours is given
by the condition [7,15,16]
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Analogously, the critical temperature for the B2M L21 transi-
tion is given by the condition
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where

X ¼ W ð2Þ
AC

� �
BW

cB þ cC þ xAð Þ cA � xAð Þ

þ W ð2Þ
BC

� �
BW

cA þ cC þ xBð Þ cB � xBð Þ

� W ð2Þ
AC þW ð2Þ

BC �W ð2Þ
AB

� �
BW

cB � xBð Þ cA � xAð Þ ð7Þ

In this work, the calculation of the interchange energies using
the BW formalism was performed in three steps: (a) fit to the
experimental TA2$B2’s with expression (5) thus determining the
Nij’s; (b) for each composition, numerical calculation of the first
neighbours order parameters xCu and xNi at the experimental
TB2$L21 (xAl ¼ �xCu � xNi), using Eqs. (3); (c) using these values of

the xi’s, determination of the W ð2Þ
ij

� �
BW

by fitting to the experimen-

tal TB2$L21 using Eqs. (6) and (7).
2.1.1. Short-range order corrections
Since the BWmodel disregard any kind of short range order cor-

relation [17], fitting to experimental results with expressions
obtained within this model leads to the prediction of interchange
energies that are lower than the values obtained by more realistic
methods (MC simulations or IT-CVM, for instance). Conversely, for
given values of the interchange energies, replacement in the BW
expressions (1)–(7) results in the prediction of critical tempera-
tures that are higher than those obtained by other methods. In
order to solve this drawback, Inden [7,17] proposed an a posteriori
correction of the pair interchange energies by a constant factor vij:

W ðkÞ
ij ¼

W ðkÞ
ij

� �
BW

vij
ð8Þ

Here, W ðkÞ
ij

� �
BW

are the energies obtained within the BW formalism,

and theW ðkÞ
ij are the corrected values. The factors vij are different for

different binary subsystems, and depend on the ratio W ð2Þ
ij =W ð1Þ

ij ¼
W ð2Þ

ij

� �
BW

= W ð1Þ
ij

� �
BW

[7,9].

2.2. Monte Carlo method

The Monte Carlo method applied to the problem of ordering or
segregation in alloys is based on the computational simulation of a
crystal lattice [18,19] Each site i of the virtual crystal is associated
with a variable ri representing the atomic species. For our ternary
alloy, we used ri = +1, 0, or �1 to represent Cu, Ni or Al atoms,
respectively. The configurational energy of the alloy is given by
the Ising-like Hamiltonian [20]

H ¼
Xn:n:
ij

J1rirj þ K1r2
i r

2
j þ L1 r2

i rj þ rir2
j

� �n o

þ
Xn:n:n:
ij

J2rirj þ K2r2
i r

2
j þ L2 r2

i rj þ rir2
j

� �n o
ð9Þ

The first summation extends to ij pairs placed as nearest neigh-
bours and the second to next-nearest neighbours. The constants Ji,
Ki and Li are related to the interchange energies:

Ji ¼
1
4
W ðiÞ

AB; Ki ¼ 1
4

2W ðiÞ
AC þ 2W ðiÞ

BC �W ðiÞ
AB

� �
; Li ¼ 1

4
W ðiÞ

AC �W ðiÞ
BC

� �
ð10Þ

Simulations in both the canonical and semi-grand canonical
ensembles were performed. In all the calculations, lattices com-
prising 2 � 323 atomic sites (for which finite size effects are negli-
gible) were used. A few tests using lattices with 2 � 643 yielded
almost identical results.

2.2.1. Canonical ensemble simulations
The simulation of the ordering process was performed as fol-

lows: from a given site i, one of his eight nearest neighbours, j,
was selected at random. The probability p of a direct atomic inter-
change, ri

0 = rj, rj
0 = ri, (where the primes are the values of the

occupation variables after the interchange) was evaluated through
the standard Metropolis algorithm [21]:

p ¼ max 1; exp � DE
kBT

� �
 �
ð11Þ

i.e., the interchange was accepted if the new configuration has
lower energy than the initial (DE ¼ E0 � E 6 0Þ and was accepted

with a probability exp � DE
kBT

� �
if DE > 0. Here, kB is the Boltzmann

constant, T is the absolute temperature, and the energies are
evaluated by means of Eqs. (9) and (10). A number of 2 � L3



Fig. 2. Experimental order-disorder temperatures (from Ref. [4]), fits within the BW
model, and MC calculations. The empty symbols correspond to the A2M B2
transition, and the solid ones to B2M L21. The diamonds and the dotted lines
represent calculated A2M L21 transitions.
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attempts of interchange was defined as a Monte Carlo step (MCs)
(L = 32 or 64 is the side of the virtual box).

In order to test whether the use of this direct atomic interchange
mechanism could influence the calculated equilibrium properties, a
vacancy-mediated mechanism was implemented. In this case, a
vacancy was introduced at random in the crystal, and only
vacancy-atom interchanges were allowed. The computation of the
energy for the ‘ternary alloy plus vacancy’ system was done as for
a four component alloy in which the interaction energy of the
vacancy with any of the atomic species was assumed to be zero.

2.2.2. Semi-grand canonical ensemble simulations
In semi-grand canonical (SGC) simulations the chemical compo-

sition of the lattice do not remain constant; instead, it is modified
according to the chemical potential l of the atomic species. For
fixed values of the temperature and chemical potentials, the simu-
lation proceeds as follows: given an atomic site i, the probability of
replacing the atom ri by a new species ri

0 is calculated by means of
the modified Metropolis algorithm:

p ¼ max 1; exp �
DE�

X
A

lADNA

kBT

0
B@

1
CA

8><
>:

9>=
>; ð12Þ

where the subscript A refers to the different atomic species (A = Cu,
Ni, Al), NA is the number of atoms of each species, and lA is the cor-
responding chemical potential. Note that since the total number of
atoms remains constant, the summation can be reduced to a two-
term summation with a straightforward redefinition of the chemi-
cal potentials. In the SGC simulations, a MC step was defined as a
set of 2 � L3 replacement attempts.

2.2.3. Calculation of observables
Several observables of the system, such as long and short range

order parameters, energy, or entropy [12] can be extracted from
the simulations. In the canonical ensemble, for a fixed value of
the temperature T, the evolution of the system was monitored by
evaluating the lro parameters defined in Eqs. 2(a–c) and also the
accumulated variation of energy. For a given T, it requires a certain
number of MC steps to reach the equilibrium configuration, i.e., the
situation in which no further evolution of the parameters of inter-
est is observed. After the equilibrium is attained, the simulation
continues in order to obtain statistical averages of the quantities
of interest. For canonical simulations with direct atomic inter-
change mechanism, the number of MCs necessary to guarantee
the equilibration was of the order of 5 � 104 MCs at each temper-
ature. Due to critical slowing down, this number was sometimes
increased in the vicinity of the critical temperatures. For the
vacancy-mediated mechanism, the number of MCs necessary to
reach equilibrium increases significantly. In semi-grand canonical
simulations, besides the lro parameters, also the atomic content
ci of each species is a by-product of the simulation.

It should be noted that, when the alloy under study is an inho-
mogeneous state (for instance, coexistence of different phases or
different variants of the same phase), the procedure of averaging
over the entire lattice in the canonical ensemble can lead to mis-
leading results. A way to circumvent this drawback is to subdivide
the lattice in smaller cubes, and to calculate the value of the order
parameters for each of this cubes [22].

3. Results and discussion

3.1. Bragg-Williams model

The fit to the experimental order-disorder temperatures with
the BW expressions was done in the way detailed in Section 2.1.
In order to reduce the number of adjustable parameters, we

assumed W ð1Þ
CuNi ¼ W ð2Þ

CuNi ¼ 0. Although it has been reported that
the interchange energies for Cu-Ni pairs are not exactly zero but
slightly positive [24], this is a reasonable guess taking into consid-
eration the absence of long range order in the binary Cu-Ni phase
diagram. It should be noted, also, that in the only previous attempt
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to determine these interchange energies [6], the values obtained
were close to zero. Contrary to what was asserted by Pelegrina
[6], we did not found here that improper atom configurations were
stabilized under this restriction, since our calculations predict the
correct ordering sequence in the range of compositions experimen-
tally studied. Besides, due to the scattering in the experimental
data, we included only the experimental order-disorder tempera-
tures corresponding to compositions with fixed 13.2 wt.% Al. The
inclusion of the remaining data leads to unphysical results (such
as interchange energies diverging to very large negative or positive
values). Despite this simplification, the agreement of our final
results with the experimental data is satisfactory for the three lines
of composition. The corresponding phase diagrams are displayed in
Fig. 2a–c. In order to correct for short-range correlations, we
applied the method detailed in Section 2.1.1. The ratio between
the interchange energies for the binary subsystems were found

to be
Wð2Þ

CuAlð ÞBW
Wð1Þ

CuAlð ÞBW ¼ 0:69, and
Wð2Þ

AlNið ÞBW
Wð1Þ

AlNið ÞBW ¼ 0:54. The corresponding cor-
Fig. 3. Thermal evolution of the lro parameters (Eqs. (2a-c)) for (a) Cu – 26.26 at.% Al – 5
not shown since they are zero in all the range of temperatures.
rective factors are, according to [7], vCuAl � 0:59 and vAlNi � 0:68.
After correcting with Eq. (8), we obtained the values:

W ð1Þ
CuAl ¼1247kB; W ð2Þ

CuAl ¼864kB; W ð1Þ
NiAl ¼3929kB; W ð2Þ

NiAl ¼2110kB:

ð13Þ

The interchange energies obtained for the Cu-Al binary subsys-
tem are in reasonable agreement with those obtained by other
authors within the framework of the BW model [8]. For Ni-Al,
the interchange energies obtained here are higher than previous
estimations [4–6].

A remarkable feature in Fig. 2a and b is that, as the Ni content is
reduced, the lines corresponding to TA2$B2 and TB2$L21 coalesce into
a single A2M L21 transition (dotted lines). The TA2$L21 transition
lines have been calculated by numerical minimization of the free
energy, Eq. (1). The existence of a single transition for low Ni
contents is consistent with experimental and theoretical results
.05 at.% Ni, and (b) Cu – 27.16 at.% Al – 2.73 at.% Ni. The parameters yi, Eq. (2-b), are



Fig. 4. Two consecutive {1 0 0} planes of the bcc lattice for an alloy Cu – 26.26 at.%
Al – 5.05 at.% Ni at (a) T = 1000 K; (b) T = 850 K; (c) T = 700 K. Red spheres represent
Cu atoms, light gray spheres represent Al, and black diamonds represent Ni. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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in the binary Cu-Al system [23–26] and also in ternary Cu-Al-X
alloys with low content of the third element (X = Zn, Mn, Be)
[27–31].

3.2. Monte Carlo simulations

3.2.1. Canonical ensemble
Direct use of the BW energies (13) in MC simulations leads to

simulated critical temperatures that do not agree with the experi-
mental values. However, these energies can be used as a starting
point, and then optimized to achieve the best possible fit [11].
The optimization was done by varying the interchange energies
in the following way: keeping the energies for Cu-Ni pairs equal
to zero, the remaining four energies were varied by trial-and-
error until a minimum in the summation of the squared difference
between calculated and measured critical temperatures was
reached. In order to reduce the computation time, only the two
extreme compositions for each of the three lines shown in Fig. 2
were used in the optimization. Following this procedure, we have
found that the best fit to the experimental critical temperatures
is obtained using the energies:

W ð1Þ
CuAl¼1350kB; W ð2Þ

CuAl¼1000kB; W ð1Þ
NiAl¼3650kB; W ð2Þ

NiAl¼2100kB:

ð14Þ

The critical order-disorder temperatures obtained from the MC
simulations are represented in Fig. 2. The simulations also show
that the double ordering process join into a single reaction at
low Ni contents (� 2.5 at.%). This single transition is represented
by diamonds in Fig. 2a and b. Although the agreement between cal-
culated and experimental critical temperatures is far from perfect,
the general trend is well reproduced. It should be noted, besides,
the considerable scatter in the experimental data.

In Fig. 3a and b we show the thermal evolution of the lro param-
eters defined in Eqs. (2) for alloys with compositions Cu – 26.26 at.
% Al – 5.05 at.% Ni and Cu – 27.16 at.% Al – 2.73 at.% Ni. These com-
positions have been chosen since they are the ones with higher and
lower Ni content among the alloys studied in [4]. The parameters
yi, Eq. (2-b), are not represented in Fig. 3 because they are identi-
cally zero in all the range of temperatures. The A2? B2 transition
is characterized by a re-arrangement of Ni atoms towards sublat-
tices I and II (xNi > 0, see Eq. (2-a)), and, simultaneously, the occu-
pation of sublattices III and IV by Al atoms (xAl < 0). On the other
hand, in the B2 structure the Cu atoms remain almost uniformly
distributed among the four sublattices (xCu � 0). Thus, we can see
that in this system the atomic ordering in nearest neighbours is
driven by the formation of Ni-Al pairs. This mechanism contrasts
with the alloys Cu-Al-Zn and Cu-Al-Mn, in which the ordering to
B2 is driven by a rearrangement of Cu and Al pairs as nearest

neighbours [12,28,29]. This is due to a higher value of W ð1Þ
NiAl with

respect to W ð1Þ
CuAl. Finally, during the second ordering reaction, a

redistribution of Cu and Al pairs in sublattices III and IV occurs.
These calculated ordering mechanisms agree with the mechanisms
proposed by Nakata et al. [1].

It should be noted, however, that according to our simulations
the passage from the disordered A2 configuration to the B2 struc-
ture occurs by a nucleation mechanism: a B2 region, with compo-
sition close to NiAl, forms in a disordered matrix. The matrix
results impoverished in Ni and Al. At a lower temperature, this
matrix further reorders in next-nearest neighbours. The process
is represented in Fig. 4a–c, where snapshots of the equilibrium
configuration of the alloy Cu – 26.26 at.% Al – 5.05 at.% Ni at three
temperatures are shown. Fig. 4 represents two consecutive {1 0 0}
planes of the bcc lattice. Fig. 4a shows the equilibrium configura-
tion after 1 � 106 MC steps at T = 1000 K, i.e., above the uppermost
ordering reaction (see Fig. 3a); there is no long range ordered
structure. After equilibration at T = 850 K (Fig. 4b), a region with
composition close to NiAl and with B2 order was formed in a dis-
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ordered matrix; this temperature corresponds to a point between
the first and second ordering reactions in Fig. 3a. Finally, at
T = 700 K, also the matrix partially orders; this is appreciable in
the lower part of Fig. 4c. The structure of the matrix is ordered in
first and second neighbours, and with composition close to Cu3Al.

According to the analysis of Fig. 4, as the temperature dimin-
ishes, the two consecutive ordering reactions predicted by the
MC method should be regarded as the passage from a homoge-
neous A2 configuration to a B2 + A2 region, and then to a B2 + L21

two-phase field. This seems to be in contradiction with the analysis
of Refs. [2,33], where a homogeneous distribution of the atomic
species is found. On the other hand, it is worth to note that the
existence of two phase fields has been reported both for the binary
alloy with compositions around Cu3Al [23,26], as well as for tern-
ary Cu-Al-Ni with higher Ni contents (�10–15 at.%) [5,32]. Addi-
tional calculations in the grand canonical ensemble are presented
below.

Further verification of the validity of the present model can be
obtained by comparing the predicted site occupation probabilities
with experimental results. Pérez-Landazábal et al. [2] studied the
atomic distribution at room temperature on a sample Cu –
27.4 at.% Al – 3.6 at.% Ni by means of neutron powder diffraction
measurements. It was found that in the L21 structure the Al atoms
tend to fulfill one of the sublattices (say sublattice IV in Fig. 1), with
Table 1
Site occupation probabilities in Cu – 27.4 at.% Al – 3.6 at.% Ni at room temperature.

Experimental [2] MC, present work

Sublattice Cu Al Ni Cu Al Ni

I, II 0.90(2) 0 0.10(2) 0.93 0 0.07
III 0.86(2) 0.14(2) 0 0.90 0.10 0
IV 0.04(2) 0.96(2) 0 0.01 0.99 0

Table 2
Site occupation probabilities in Cu – 30.1 at.% Al – 3.6 at.% Ni at 473 K.

Experimental [33] MC, present work

Sublattice Cu Al Ni Cu Al Ni

I, II 0.853 0.075 0.072 0.886 0.042 0.072
III 0.895 0.105 0 0.874 0.126 0
IV 0.051 0.949 0 0.007 0.993 0

Fig. 5. Part of the isothermal section of the phase diagram at T = 1000 K.
all the Ni atoms placed as first neighbours (sublattices I and II), and
the Cu atoms occupying the remaining sites I, II and III. The excess
Al tend to place in sublattice III. These authors obtained the site
occupancies listed in Table 1, where they are compared with the
average equilibrium values at T = 300 K obtained with theMC tech-
nique. The agreement between experimental and calculated results
is satisfactory. In a recent paper [33], Nakata et al. determined,
using powder X-ray analysis, the site occupation of an alloy Cu –
30.1 at.% Al – 3.6 at.% Ni at 473 K. Their results are compared with
our MC results in Table 2. It should be noted, however, that the
results of the MC simulations correspond to averaging over the
matrix and the B2 precipitates (Fig. 4).

Another test of the validity of our model is obtained by compar-
ing their predictions with experimental order-disorder tempera-
tures not included in the fitting, i.e., with data from compositions
outside the fitting composition range. In particular, Chen and Liu
[34] studied by experimental methods an alloy Cu – 27.76 at.% Al
Fig. 6. Details of the isothermal sections of the phase diagram at T = 1000, 850, 775,
and 700 K. The small black points represent the compositions of interest.
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– 13.47 at.% Ni; they found that the critical TA2$B2 temperature is in
the interval between 1248 and 1273 K. MC simulations using the
energies (14) give TA2$B2 ¼ 1222:5� 2:5K , in good agreement. It
should be noted that this composition is far away from the compo-
sitions used in the fitting; this result further support the ability of
the model presented here for extrapolation of critical
temperatures.

All the previous results have been obtained using a direct
atomic interchange mechanism. For comparison purposes, simula-
tions with a vacancy-mediated mechanism were also imple-
mented. Only the alloy with composition Cu – 26.26 at.% Al –
5.05 at.% Ni was studied by this method. Preliminary results indi-
cate that the thermal evolution of the lro parameters is quite sim-
ilar to that obtained with the direct interchange mechanism; also,
snapshots of the atomic distribution at 1000, 850, and 700 K looks
very similar to those shown in Fig. 4.
3.2.2. Semi-grand canonical ensemble
In order to obtain a more detailed picture of the ordering pro-

cesses, simulations in the semi-grand canonical ensemble at sev-
eral temperatures were performed. These calculations were
restricted to the region of the phase diagram around the concentra-
tions of interest. Fig. 5 shows a part of the ternary section at
1000 K.

The remarkable feature is the existence of a wide two-phase
region. The coexisting phases have compositions close to stoichio-
metric NiAl and Cu3Al. Whereas the compositions around NiAl
have B2 ordering, those near Cu3Al are disordered at 1000 K. In
Fig. 6, details of the isothermal sections at T = 1000, 850, 775 and
700 K around the compositions of interest are presented. The com-
positions experimentally investigated in [2] are represented by
small black dots. The dot labeled (a) corresponds to the same com-
position as in Figs. 3a and 4, and (b) corresponds to the composi-
tion of Fig. 3b. At T = 1000 K all the alloys of interest are in a
homogeneous disordered A2 configuration. As the temperature
decreases, the region of stability of this homogeneous phase
decreases, and at T = 850 K, some of the alloys of interest enter in
the A2 + B2 two-phase field. When the temperature is reduced fur-
ther, the disordered matrix orders to a L21 configuration. Although
not appreciable in the Figures, at T = 775 K a narrow coexistence
gap separates de A2 and L21 stability regions. At T = 700 K, the
alloys are in a L21 + B2 two-phase field. This picture is consistent
with the calculations performed in the canonical ensemble, in par-
ticular with the results shown in Figs. 3 and 4.
4. Conclusions

In this work we presented two different theoretical methods for
the study of order-disorder phenomena in Cu-Al-Ni. The first, sim-
pler approach, is based in the analytical formulae obtained in the
framework of the Bragg-Williams theory for ternary bcc alloys.
By applying this method, a first approximation to the interchange
energies in nearest and next-nearest neighbours was obtained (Eq.
(13)). A second, more elaborated approach, consisted in the numer-
ical simulation of the ordering processes by means of Monte Carlo
simulations in the canonical and semi-grand canonical ensembles.
The interchange energies used in this model were obtained by
slight modification of the BW estimates (Eq. (14)). Within both
methods, a satisfactory agreement with the experimental order-
disorder temperatures was obtained.

It was found that the formation of a B2 structure is driven by
the ordering of Ni-Al pairs, since their energetic interactions are
stronger than those corresponding to Cu-Al or Cu-Ni pairs. This
makes that the Cu-Al-Ni system behave differently to other Cu-
Al-X bcc alloys previously studied, for which the interchange ener-
gies of Cu-Al pairs dominate. In particular, this explain why Cu-Al-
Ni displays a double ordering process even for very low contents of
Ni. Our calculations predict that the A2M B2 and B2M L21 transi-
tions join into a single A2M L21 transition at Ni contents lower
than those experimentally investigated.

The average site occupation probabilities obtained by means of
MC simulations satisfactorily agree with the experimental values
reported in Ref. [2] for a sample Cu – 27.4 at.% Al – 3.6 at.% Ni at
room temperature, and with those from [33] for Cu – 30.1 at.% Al
– 3.6 at.% Ni at 473 K.

From the calculations in the semi-grand canonical ensemble it
is concluded that, according to the model, the first ordering reac-
tion as the temperature decreases corresponds to the nucleation
of B2 particles with composition close to NiAl in a disordered
matrix; the second reaction originates from the ordering of the
matrix to a L21 structure. The prediction of inhomogeneous B2
ordering seems to be in contradiction with experimental studies
in this range of compositions [2,33], but is consistent with reports
of an A2 + B2 two phase field at higher Ni contents [5,32].

Finally, it is worth to remark some of the limitations of the
model developed here, and to comment on some possible improve-
ments. First, the present model restrict the atomic interactions to
only nearest and next-nearest neighbours pairwise energies:
whereas it is known that these are the dominant contributions to
the internal energy in bcc and fcc transition metal alloys (see Ref.
[11], page 517), the model can be improved by including more dis-
tant pairs and multiplet (triplet, tetrahedra) interactions. Secondly,
it has been assumed that the interchange energies are indepen-
dents on composition and temperature; however, it is known that
the lattice parameter in this family of alloys varies with composi-
tion [32]. It would be then expected a possible composition depen-
dence of the interchange energies. Besides, since inhomogeneous
microstructures are predicted at low temperatures, it is possible
that size mismatch effects play a significant role. Another restric-
tion of the model is that it was assumed that the Cu-Ni interactions
are negligible; this is a reasonable simplifying assumption as a first
approximation to the problem, but not necessarily correct. Further
refinement of the model can be made by removing some of this
restrictions; however, this will require the availability of more
detailed experimental data. In particular, the experimental charac-
terization of the atomic distribution in the B2 intermediate phase
would be very interesting. Another possible method to gain under-
standing on the detailed nature of the ordering reactions would be
based on the use of density functional theory (DFT) calculations.
Combining DFT techniques with an appropriate inversion scheme
[35,36], a set of effective pair (cluster) interactions can be
obtained; the advantage of this method is that there is no need
of fitting to experimental data.
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