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ABSTRACT

A model is presented for generation of fast solar wind in coronal holes, relying on heating that is dominated by
turbulent dissipation of MHD fluctuations transported upward in the solar atmosphere. Scale-separated transport
equations include large-scale fields, transverse Alfvénic fluctuations, and a small compressive dissipation due to
parallel shears near the transition region. The model accounts for proton temperature, density, wind speed, and
fluctuation amplitude as observed in remote sensing and in situ satellite data.
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1. INTRODUCTION

An open question in solar and heliospheric physics is to
identify the physical processes responsible for heating the
corona and accelerating the fast solar wind streams emanating
from coronal holes. This requires that a fraction of the energy
available in photospheric motions be transported through the
chromospheric transition region, and dissipated in the corona.
The measured speeds of fast solar wind streams require spatially
extended heating (Withbroe & Noyes 1977; Holzer & Leer 1980;
Withbroe 1988). The physical mechanisms for this transport and
dissipation have remained elusive. Some models have resorted
to use of a parametrically defined heat deposition (a “heat
function”) that decays exponentially with height, or anomalous
heat conduction that redistributes energy along field lines
(Habbal et al. 1995; McKenzie et al. 1995; Banaszkiewicz et al.
1998). One-dimensional (1D) models of this kind, extending
from the chromosphere to 1 AU (Hansteen et al. 1994, 1997),
have helped in understanding the regulation of the solar wind
mass flux and can reproduce fast solar wind streams originating
in cool electron coronal holes.

Here we present a model that demonstrates solar wind
acceleration due to heating by a quasi-incompressible turbulent
cascade triggered by coronal stratification (Matthaeus et al.
1999), and supplemented by compressive heating near the base.
This model accounts for most presently available coronal and
interplanetary observations.

The idea that broadband plasma fluctuations might heat the
extended corona and accelerate the solar wind has long been
discussed (Coleman 1968; Belcher & Davis 1971; Hollweg
1986; Hollweg & Johnson 1988; Velli 1993). However, the
mechanisms of transfer of fluctuation energy to small scales—
and, in particular, the role of Alfvénic turbulence (as ob-
served in the solar wind) and cascade processes (e.g., phase
mixing, ponderomotive driving, shocks, etc.)—have not been
described self-consistently. Two recent papers shed light on
these relationships (Suzuki & Inutsuka 2005; Cranmer et al.
2007).

Suzuki & Inutsuka (2005) incorporate 1D compressive non-
linear interactions driven by Alfvén waves and leading to shock
heating. This model produces good agreement with solar wind
speed profiles. As low-frequency Alfvén waves propagate up-
ward, their wave pressure compresses the plasma. Unable to
refract or mode–mode couple into a perpendicular wavenumber
cascade, these waves must dissipate in 1D shock fronts. This
model provides a valuable demonstration that MHD fluctua-
tions can act as a conduit to transport energy to the requisite
altitudes. However, the restriction to 1D cascade is at odds with
the well-established propensity for an incompressible MHD cas-
cade to proceed mainly through wavevectors perpendicular to
a strong mean magnetic field (Robinson & Rusbridge 1971;
Shebalin et al. 1983; Oughton et al. 1994; Bieber et al. 1996;
Cho et al. 2002). Furthermore, the corona exhibits a clear trans-
verse structuring, and the initial fluctuations must have per-
pendicular correlation lengths not much larger than a super-
granulation scale (15,000 km).

Another recent model (Cranmer & van Ballegooijen 2005;
Cranmer et al. 2007) incorporates a low-frequency cascade
model (Verdini et al. 2006); however, the treatment of prop-
agation and dissipation differs significantly from the present ap-
proach. Their scheme treats nonlinear effects as a perturbation,
and it is unclear if it converges for strong turbulent heating.
Here we employ a strong turbulence closure. We also do not
rely on electron heat conduction to boost radial energy trans-
port. Instead, we compute an internal energy associated with the
protons only. This approach supports comparisons with results
employing improved representation of turbulence, such as shell
models (Verdini et al. 2009a, 2009b) and (potentially) full MHD
simulation.

We find here that reflection of Alfvénic turbulence alone
does not lead to a full corona/solar wind stationary state—
a compressible contribution is required. This is supported
by recent observations from Hinode (Langangen et al. 2008;
DePontieu et al. 2009). When we include a small component
of compressive heating near the coronal base, fast solar wind
streams are then accounted for.
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2. MODEL DESCRIPTION AND EQUATIONS

We employ a 1D large-scale steady-state MHD model in an
expanding flux tube (cf. Leer et al. 1982; Verdini et al. 2006),
comprising equations of mass continuity, radial momentum
conservation, and pressure (internal energy),

d

dr
[ρUA] = 0, (1)

ρU
dU

dr
= − ∇P ′ − ρ

GMsun

r2
+ Rr , (2)

U
dp

dr
= − γp∇·U + (γ − 1)Q(r). (3)

Here r is the radial coordinate, A(r) is the flux tube cross-
sectional area, p(r) = 2nkBT is the thermal pressure, U =
U (r)r̂ is the large-scale radial flow (wind) velocity, G is the
gravitational constant, and Msun is the solar mass. Rr is the radial
component of the (vector) divergence of the MHD Reynolds
stress R = 〈δb · ∇δb/4π − ρδu · ∇δu〉, where δu, δb are the
fluctuations and the full magnetic field is B = r̂Br (r) + δb, and
r̂ · δb = 0 = r̂ · δu.

The total (thermal plus magnetic) pressure is

P ′ = 2nkBT +
δb2

8π
. (4)

We specify an area expansion factor A(r). Then Br (r) is
determined by magnetic flux conservation, Br (r)A(r) = const,
which is constrained by 1 AU observations.

Q(r) is the heating per unit volume, related to the heat func-
tion (per unit mass) H = Q/ρ. It involves an incompressible
part Hi , associated with turbulence, modeled here in Kármán–
Taylor fashion (e.g., de Kármán & Howarth 1938; Matthaeus
et al. 2004). There is also a small compressive part Hc = Qc/ρ,
so that H = Hi +Hc. Turbulence influences the large-scale flow
through Qi, wave pressure, and the Reynolds stress Rr , and is
modeled using only a few free parameters.

The dominant contributor to the turbulent heating, the low-
frequency quasi-incompressible turbulence, is evolved using a
transport equation and one-point closure that depends upon the
cross helicity. The nonlinear phenomenological model (Dmitruk
et al. 2001) involves the Elsässer variables z± = δu∓δb/

√
4πρ,

their associated energies E± = Z±/4 = 〈|z±|2〉/4, (〈· · ·〉
indicates an ensemble average), and a common similarity
(correlation) scale λ. The dimensionless cross helicity σc =
(Z2

+ − Z2
−)/(Z2

+ + Z2
−) measures any excess inward or outward

propagating-type fluctuations. The incompressible turbulent
heating model (Hossain et al. 1995) is

Hi(r) = Qi(r)

ρ
≡ 1

2

Z−Z2
+ + Z+Z

2
−

λ
. (5)

See also Dobrowolny et al. (1980), Grappin et al. (1983), and
Matthaeus et al. (2004).

We include spatial transport (Verdini & Velli 2007) in a non-
uniform wind with speed U (r)r̂ . The fluctuations are assumed to
be Reduced MHD-like (i.e., perpendicular fluctuations, parallel
gradients much weaker than transverse ones) and represented by
“typical amplitudes” of a given frequency z±(ω), defined such
that Z2

± = ∫
Ω

(
z2
±/ω

)
dω:

[U ± Va]
dz±
dr

+ iωz± = R±
1 z± + R±

2 z∓ − |Z∓|
2λ

z±. (6)

The WKB (Equation (7)) and reflection (Equation (8)) terms are
related to large-scale gradients by

R±
1 = − 1

2
[U ∓ Va]

(
d log Va

dr
+

d log A

dr

)
, (7)

R±
2 = 1

2
[U ∓ Va]

d log Va

dr
. (8)

Here Va = Var
= Br/

√
4πρ. For simplicity the lengthscale λ is

associated with the expansion, using λ(r) = λ

√

A(r). The 

subscript indicates evaluation at the coronal base, here taken to
be at the top of the transition region.

The smaller, compressive contribution to the heating (Hc)
is assumed to be confined near the coronal base where it
rapidly dissipates through shocks. This is motivated by recent
observations (Langangen et al. 2008; DePontieu et al. 2009)
of fluctuations with parallel (vertical) variance that pervade the
entire corona near the transition region. Here we model this
effect directly as a heat function, and assume that it contributes
≈1% of the total (height-integrated) heat function.

Having in hand the complete set of Equations (1)–(3), and (6),
along with constitutive relations (4), (5), (7), and (8), and the
small compressive heat function Hc, we are in position to solve
a relatively complete and self-consistent solar wind model with
turbulence. The stationary solutions for the large-scale fields
and turbulence parameters are obtained via a numerical iteration
procedure in which T
 = 4 × 105 K and n
 = 5 × 108 cm−3

are held constant. To begin, we impose trial radial profiles for
T and n, and then solve Equations (6) with a fixed amplitude
of the velocity fluctuation at the base, say δu
 = 30 km s−1.
From this temporary solution we compute the Reynolds stress,
the ponderomotive force, and the heating function that appear in
Equations (1)–(3). Next, those equations are solved for T and U,
which provides updated values for Va , U, and their derivatives.
These updated profiles are used in re-solving Equations (6), and
so on.

After few iterations, there are small relative differences
(�10−5) in each of the large-scale and fluctuation fields.
We control convergence through the relative variation of the
positions of the sonic and Alfvénic critical points, assuming
convergence when Δrs/rs , Δra/ra < 10−4. For each frequency
ω, we solve subject to imposed conditions on δu
, Hc(r),
the maximal (over)expansion fmax = max[A(r)/r2], and the
correlation length scale λ
. We use, as in Kopp & Holzer (1976),
f (r) = A(r)/r2, with

f (r) = fmax exp[(r − rf )/σ ] + f1

exp[(r − rf )/σ ] + f1
, (9)

f1 = 1 − fmax exp[(R
 − rf )/σ ], keeping fixed the location
and width of the super-radial expansion, rf = 1.31 R
 and
σ = 0.51 R
, respectively.

3. RESULTS

A typical solution is shown in Figure 1 (solid black line),
where we plot several quantities (U, T, n, σc, Z2) as a function
of distance, obtained with the chosen parameters: δu
 =
30 km s−1, ω = 0 Hz, λ
 = 0.015 R
, fmax = 12.5, and
Hc = 1%H . The speed U, temperature T, and density n
are generally in good agreement with the observations in the
heliosphere, although the terminal speed is about 100 km s−1

higher and T peaks too far from the coronal base compared
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Figure 1. Wind speed, temperature, density, turbulence level, and normalized cross helicity as a function of distance for the representative solution (solid line) with
δu
 = 30 km s−1, ω = 0 Hz, λ
 = 0.015 R
, fmax = 12.5, and Hc = 1%H . The other lines denote solutions for which one of the parameters has been varied;
specifically, δu
 = 20 km s−1, λ
 = 0.05 R
, fmax = 10, and Hc ≈ 5%H , in blue dotted, red dashed, green dashed-dotted, violet long-dashed lines, respectively.
Empty squares in the top-right panel mark the position of rs and ra (rs < ra). The other symbols represent observational constraints for the fast solar wind taken from
McComas et al. (2000) for U, n at 1 AU; Grall et al. (1996) for U inside 1 AU; Breech et al. (2005) for σc and proton temperature beyond 1 AU; Cranmer (2009) for
proton temperature inside 1 AU; Banerjee et al. (1998) and Fisher & Guhathakurta (1995) for n inside 1 AU; and Bavassano et al. (2000) for the turbulence level.

(A color version of this figure is available in the online journal.)

Figure 2. (a) Total (thick line), compressive (thin line) and incompressible
(dashed line) heating function (dissipated energy per unit mass) as a function of
heliocentric distance in units of ≈3 × 1010 cm2 s−3 for the reference solution.
(b) Total heating function for the solutions obtained varying the parameters as
described in the caption of Figure 1 (same line and color coding). Empty squares
mark the location of rs for each solution.

(A color version of this figure is available in the online journal.)

to the observed proton temperature. The latter is obtained by
subtracting from the observed line width w⊥ the contribution
of the turbulent fluctuation δu, according to the relation7

2kBT /mp = w2
⊥ − (δu)2/2 (e.g., Tu et al. 1998). The profiles of

the fluctuation energy E+ + E− = Z2/2 and normalized cross
helicity σc trend nicely toward the in situ data beyond 1 AU.
The turbulent dissipation Hi (Figure 2(a), dashed line) accounts
for the spatially extended heating that accelerates the wind from
below the sonic critical point. The compressive heating is small,
about 1% of the total heating per unit mass. Its form is arbitrarily
chosen to be a Gaussian (Figure 2(a), thin solid line), centered at
1.3 R
 with width ≈0.25 R
, in order to confine its contribution
well below rs.

7 Only the reference case is used to compute the corrected proton temperature
in Figure 1. Other cases give similar values except the δu
 = 20 km s−1 and
Hc = 5%H cases, yielding much higher corrected temperatures.

The solutions change as parameters are varied, but not all
the parameters have the same impact. For example, for a
steep spectrum of low-frequency waves (ω � 10−5 Hz, slope
� −1.1), use of only zero-frequency fluctuations is a very good
approximation. For flatter spectra, the high-frequency part of the
spectrum remains principally outward propagating [z+(ω)], thus
limiting the total turbulent dissipation. This affects the turbulent
energy Z2, which becomes larger beyond ra ≈ 13 R
, and also
σc, which stays closer to unity. U, T, and ρ are almost unchanged
(U and T are slightly reduced). Below, we consider only ω = 0
fluctuations.

The position of the sonic critical point depends upon momen-
tum and heat addition (Leer et al. 1982). Given that we specify
A
 and ρ
, the mass flux is determined by U
, which is found
by requiring that the solution becomes supersonic on passing
through rs. It follows that deposition of heat before rs increases
T (rs) and typically U
, and thus also the mass flux. Deposition
of heat beyond rs does not alter T (rs), and so the mass flux is un-
changed; however U increases and ρ decreases beyond rs, with
respect to a reference solution. Generally speaking, the maxi-
mum of Z2 is below ra (it coincides with ra in the undamped
case), the turbulent heating peaks near rs, and the momentum
added by the wave pressure has a maximum inside rs.

Two ways of controlling the heat and momentum deposition
(i.e., adjusting the importance of nonlinear terms relative to
reflection/WKB (linear) terms in Equations (6)) are through
variations of δu
 and λ(r). Decreasing the basal fluctuation
amplitude (δu
 = 20 km s−1, in Figure 1) decreases the
turbulent heating and acceleration. In addition, heat deposition
peaks well below rs (Figure 2(b)), yielding a slow, overdense,
cool wind, with a deficit of turbulent energy. It is clear that Hc
shapes the solution only below 1.5 R
 while differences arise
from a different shape of Hi. The asymptotic Z2 and σc do not
vary much since beyond ra reflection is negligible and the ratio
Z−/Z+ is then controlled by turbulent dissipation and λ(r).

Modification of λ(r) leaves unchanged the position of the
critical points; i.e., it only slightly alters the turbulent heating
close to the coronal base, where reflection controls the ratio
Z−/Z+. A larger basal correlation scale (λ
 = 0.05 R
 in
Figure 1) affects the solution mainly beyond rs, yielding a hotter
and faster wind, but with the density almost unchanged. The
fluctuations have features similar to the undamped solutions,
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resulting in excess turbulent energy (that peaks closer to ra) and
more inward propagating waves (a smaller σc). Nonetheless, the
increased turbulent energy—driven by reflection and the WKB
term—broadens the turbulent heating while keeping fixed its
maximum (Figure 2(b)).

Adjusting the expansion A(r) also changes the correlation
scale through λ(r) = λ


√
A(r). A(r) controls the reflec-

tion term directly and through the Alfvén speed gradients
(Equations (7) and (8)). Decreasing the maximum super-radial
expansion, to fmax = 10, while keeping fixed its location at
rf ≈ 1.3 R
 < rs (Figure 1) has two consequences. First, it
decreases the correlation scale for r � rf , causing a reduction
of turbulent energy and heating. Second, it increases the density
scale height around rf , hence reducing reflection and the amount
of turbulent dissipation there. The result is much smaller turbu-
lent heating that peaks again at rs (Figure 2(b)) yielding a slower,
cooler, and denser wind, even as close as rs, which retains good
asymptotic Z2 and σc.

Finally, let us examine the role of compressive heating,
recalling that H (r) = Hc + Hi . If the compressive heating
is increased to Hc ≈ 5%H (Figure 1, violet dashed), the
temperature maximum moves closer to the coronal base, but
the resulting wind is slower, denser, and cooler. An increased
Hc also alters the incompressible heating—the height-integrated
heating is almost unchanged, but heat deposition occurs at lower
r due to increased reflection at r < rs (Figure 2(b), compare the
smaller σc in Figure 1). Beyond the peak of H the fluctuation
energy remains small, reducing the extended turbulent heating.

On the other hand, decreasing Hc enhances the incompress-
ible heating; then H has a minimum near the maximum of Va,
just inside rs, and also peaks outside rs. This causes convergence
problems. In early iterations, heat deposition is mainly outside
rs, yielding a very fast, underdense, and hot wind, with strong
density gradient (and hence reflection) at r > rs . This leads to
runaway iterations in which the sonic point moves to larger r
with a temperature minimum inside rs. When the temperature
minimum becomes very low the sonic critical point is reached
with dT/dr < 0. Then steep gradients occur close to the coronal
base, heat deposition occurs close to rs, and the solution again
resembles the initial solution, producing the ensuing runaway.
To obtain a solution, the key features of Hc are that it is local-
ized well below rs, and is at least ∼0.7% of the total heating
(for other parameters at reasonable levels). We found that the
results do not depend strongly on the form of the compressive
heat function provided that this heating is localized and not too
large (exponential, Gaussian, etc. all work).

4. DISCUSSION

The above model shows that turbulence near the coronal base,
originating through chromospheric transmission of fluctuations,
can heat the plasma in an expanding coronal hole flux tube and
produce a fast solar wind that matches a number of observational
constraints. The turbulence is mainly of the low-frequency
Alfvénic type. A small amount of compressive heating between
the transition region and the sonic point appears to be needed
to match the observations. This additional heating may be
due to type II spicules that supply broadband low-frequency
vertical fluctuations at transition region heights, thus launching
compressive MHD modes near the coronal base (DePontieu
et al. 2009).

Most of the fluctuation energy is in low-frequency turbulence,
and this sustains a strong anisotropic MHD cascade through
reflections from local density gradients. This type of anisotropic

cascade is favored in MHD turbulence in the presence of a strong
DC magnetic field (Robinson & Rusbridge 1971; Shebalin et al.
1983; Oughton et al. 1994). Heat conduction does not enter the
present model at all, since it mainly affects electron internal
energy, which evolves independently in this approximation.
Similar assumptions work well in understanding observations
of solar wind turbulence (Breech et al. 2009; Cranmer et al.
2009). In these ways, the present model differs from other recent
models that incorporate turbulent heating (Suzuki & Inutsuka
2005; Cranmer et al. 2007). In particular, we believe that this
model demonstrates, possibly for the first time, that a model
(almost) free of ad hoc heat functions, artificial equations of
state, and ad hoc assumptions about heat conduction can indeed
heat the corona and accelerate the solar wind.

We plan further study of the required small amount of com-
pressible heating, attributed here to spicule-driven magnetosonic
activity. Another useful extension would be to include separate
electron and proton internal energy budgets, which will enable
additional observational constraints, and will permit study of
the role of kinetic dissipation processes (Breech et al. 2009;
Cranmer et al. 2009).
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