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Abstract We propose a model based on a DBI action for the unification of dark
matter and dark energy. This is supported by the results of the study of its background
behavior at early and late times, and reinforced by the analysis of the evolution of
perturbations. We also perform a Bayesian analysis to set observational constraints on
the parameters of the model using type Ia SN, CMB shift and BAO data. Finally, to
complete the study we investigate its kinematics aspects, such as the effective equation
of state parameter, acceleration parameter and transition redshift. Particularizing those
parameters for the best fit one appreciates that an effective phantom is preferred.

Keywords Dark energy · Dark matter · Cosmological perturbations · Geometrical
constraints · DBI Lagrangians

1 Introduction

Unified models of the two main components of the universe, dark energy and dark
matter, represent an interesting option for explaining the substantial evidence of the
current acceleration of the universe. On the one hand no observational direct evidence
of either of them is available, so it might well be the case that they do simply not exist
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and there is a bolder explanation for the effects we attribute to them (perhaps extra
dimensions are the answer). On the other hand, if one believes these two entities really
fill our universe (in a huge joint proportion as compared to the other components) it
remains to discover what their nature is. In a way, finding out that they happen to be
manifestations of the same fluid would at least simplify the problem in the sense one
should have to care about the fundamentals of a single fluid. At worst, if investigations
along these lines were able to refute this idea that the two components are just one, we
would at least be able to face the future in the confidence that dark energy and dark
matter can be treated separately.

Following the tradition of trying to find an interconnection between the world of
Particle Physics and Cosmology, it is customary to try and view unified dark energy
models as scalar field scenarios. One possibility is to explore the evolutions contained
in a given scalar field model, this is actually the approach of this paper. We con-
sider a scalar field setup and by fixing some of its degrees of freedom we obtain an
expansionary cosmology which mimics a dark matter dominated background at early
times and a dark energy dominated one at the late stages of its history. On the other
hand, a popular procedure to find a scalar fields based motivation for a given evolution
is to start from a given equation of state and then “reconstruct” the corresponding
Lagrangian (by specifying its kinetic term and potential). This widely followed app-
roach has its caveats, however, because in general the scalar field model one ends up
with is in fact a richer scenario, and contains other evolutions than the original seed.
Leaving aside these remarks, the route of scalar fields toward unified dark energy
scenarios may offer interesting possibilities and our efforts in this paper go in this
direction.

It has been suggested that acceleration in cosmological settings might be the man-
ifestation of non-perturbative features of of some string theory versions [1]. This idea
has gathered quite a lot of attention as it could provide an explanation to early time
acceleration, that is, inflation, (see [2–22] and references therein for regular papers
and [23] for a review). According to this description, the inflation could be a mode
accounting for the position of a D-brane with three spatial dimensions rambling (radi-
ally) in a ten-dimensional space-time with a warped metric. This interpretation seems
to have the virtue, among others, that it would allow inflation to proceed with much
steeper potentials than in the standard weakly coupled slow roll inflation model.

So, a somewhat natural question to ask is this one: could a DBI model be respon-
sible for the acceleration we observe at present? Moreover, given the similarity of the
DBI Lagrangian to that of the most popular unified dark energy model, the Chaplygin
gas, could it also offer a satisfactory and perhaps even more suitable alternative for
the unification of dark matter and dark energy? The investigations we report in this
paper show that is indeed the case . We construct a purely kinetic DBI model for the
joint description of the two main components of the universe with the bonus that the
effective dark energy component displays a late-time phantom behavior even though
the model does not include at all a scalar field with the wrong sign in the kinetic energy.

Any conclusions about the capability of our model to represent a solid alternative to
other dark energy scenarios must ideally be reached from both the theoretical and the
observational perspectives. To that end first we carry out the computation and interpre-
tation of the linear gauge invariant perturbations of the model. After that, we perform
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a thorough analysis of this novel unified dark sector scenario using geometric means:
specifically we use the SNIa, the BAO, and the CMB shift test. These combination of
tests allows to take into account the early, mid and late time behavior of our model,
which is expected to have its own features as compared to models in which dark energy
and dark matter are different components. Our analysis is performed in the Bayesian
spirit and it allows us to identify the best fit and errors, and to complete the information
obtained with a computation of the evidences on different ranges of the parameters
and constraints on kinematical quantities of interest.

2 The model

Our scenario is that of a four-dimensional spatially flat FRW spacetime filled with a
non-canonical scalar field of DBI type. Using the customary perfect fluid interpretation
we set

ρ = γ − 1

f
+ V (φ), (1)

p = γ − 1

γ f
− V (φ), (2)

with

γ = 1
√

1 − f (φ)φ̇2
, (3)

where, in principle, f and V are arbitrary functions. Usage of the symbol γ was orig-
inally motivated by its analogy to the Lorentz factor of Special Relativity, given that√

f (φ)φ̇ is interpreted as the proper velocity of the brane [9].
Assuming for the above fluid a barotropic equation of state of the form p = (�−1)ρ,

we get

� = − 2Ḣ

3H2 = γ φ̇2

ρ
, (4)

and the conservation equation reads

ρ̇ + 3H�ρ = 0. (5)

In this paper we explore the case in which both f = f0 and V = V0 are constants.
The goal is to obtain a purely kinetic model as in other unified dark sector models
[24–28], so that the field φ depends solely on the scale factor; and as a consequence
the same holds for the effective pressure and energy density. To that end we insert

ρ = γ − 1

f0
+ V0, (6)
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into the conservation Eq. (5) and obtain

γ̇ + 3 f0 Hγ φ̇2 = 0. (7)

Upon replacement of the derivative γ ,

γ̇ = f0γ
3φ̇φ̈. (8)

and using Eqs. (3, 7) we arrive at1

φ̈

φ̇
+ 3H + γ̇

γ
= 0, (9)

which has the following first integral:

φ̇ = c

γ

(a0

a

)3
. (10)

Thus, it is possible to write

γ 2 = 1 + c2 f0

(a0

a

)6
. (11)

with c an arbitrary integration constant and a0 the value of the scale factor today,
which we fix as a0 = 1.

On the one hand we have accomplished our goal of obtaining a DBI model which is
purely kinetic throughout the evolution. On the other hand, the behavior of the model
obtained is quite appealing. Using (11) it can be seen that at very late times γ � 1, i.e.
in the regime a � a0, one has ρ ∼ V0, whereas at early epochs, i.e. for a � a0, one
has γ � a−3 instead, which in turn gives ρ ∼ 1/a3. Thus, synthesizing, the solution
found interpolates between a dust and a de Sitter model, with the piece V0 acting as
a cosmological constant and no trace left of the genuinely DBI degree of freedom
f0. Of course, for a positive f0V0 it is easy to see H > 0, so the evolution is indeed
expansionary.

This new model represents an alternative description for the unification of dark
matter and dark energy, and as popular models of this sort, it can be linked to a
non-canonical scalar field model obtained from the following Lagrangian [29]

L(X) = − 1

f0

(√
1 − f0 X − 1

)
− V0. (12)

with X = φ̇2.

1 The γ f0φ̇0 solution branch has been discarded as it either leads to the non-dynamical (unphysical) γ = 1
case or the pathological γ = 0 case.
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The background evolution of our unified model happens to mimick that induced by
the joint contribution of a conventional Chaplygin gas (Cg) and a cosmological con-
stant (cc). This would require a cosmological constant of the form V0 − 1/ f0 which
seems to mix in a too fine tuned way the parameters V0 and f0. Let us stress that
one of the key points here is that such background behavior is realized with a single
fluid, and therefore represent a novelty by itself, which is enabled precisely because of
the non-canonicality of the DBI framework. The pressure as a function of the energy
density for this unified fluid is

p = 1

f0

(
1 − 1

ρ f0 − V0 f0 + 1

)
− V0 (13)

and we will make use of this expression in the next section.
However, if one wants to stick to a reinterpretation of the model in a two compo-

nents fashion by separating the cosmological constant term (V0) plus a fluid with an
energy density ρx , it turns out that the equation of state of the extra component is

px = ρx

1 + f0ρx
. (14)

Thus, the natural splitting hinted by the asymptotic behavior does not leave us with a
Cg plus a cc, but rather with a different picture in which the parameters V0 and f0 do
not appear simultaneously in the equations of the state of the two fluids.

Nevertheless, one must keep in mind the possibility out of the scope of this paper
that the universe is made of two fluids, the DBI one plus cosmic dust, which ulti-
mately should be confronted with the model we present here. This possibility has
been recently explored from an asymptotic behavior perspective in [30].

3 Linear perturbations

In the synchronous gauge the line element is given by:

ds2 = a2(τ )[−dτ 2 + (δi j + hi j )dxi dx j ], (15)

where the comoving coordinates are related to the proper time t and position r by
dτ = dt/a, dx = dr/a, and hi j is the metric perturbation. We choose not to use the
longitudinal gauge, which was used in [31] for Lagrangians of this sort, because it
is only applicable to the analysis of scalar perturbations; whereas the synchronous
gauge, which is the one we work with, allows for a more general treatment. The scalar
mode of hi j is described by the two fields h(k, τ ) and η(k, τ ) in the Fourier space:

hi j (x, τ ) =
∫

d3kei k·x
[

k̂i k̂ j h +
(

k̂i k̂ j − 1

3
δi j

)
6η

]
, (16)
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with k = k k̂. The Einstein equations to linear order2 in k-space, expressed in terms
of h and η, are given by the following four equations [33]:

k2η − 1

2

a′

a
h′ = 4πGa2δT 0

0 , (17)

k2η′ = 4πGa2(ρ + p)θ, (18)

h′′ + 2
a′

a
h′ − 2k2η = −8πGa2δT i

i , (19)

h′′ + 6η′′ + 2
a′

a
(h′ + 6η′) − 2k2η = −24πGa2(ρ + p)σ. (20)

Here, the quantities θ and σ are defined as (ρ+ p)θ = ik jδT 0
j , (ρ+ p)σ = −(ki k j −

δi j/3)�i
j and �i

j = T i
j − δi

j T
k
k /3 denotes the traceless component of the tensor T i

j .

In addition, θ is the divergence of the fluid’s velocity θ = ik jv j and ′ means d/dτ .
Let us consider a fluid moving with a small coordinate velocity vi = dxi/dτ , then,

vi can be treated as a perturbation of the same order as the energy density, pressure and
metric perturbations. Hence, to linear order in the perturbations, the energy-momen-
tum tensor, with vanishing anisotropic shear perturbation �i

j , is given by

T 0
0 = −(ρ + δρ), (21)

T 0
i = (ρ + p)vi = −T i

0 , (22)

T i
j = (p + δp)δi

j . (23)

For a fluid with equation of state p = wρ, the perturbed part of energy-momentum
conservation equations T µν

;µ = 0 in the k-space leads to the equations

δ′ = −(1 + w)

(
θ + h′

2

)
− 3H

(
δp

δρ
− w

)
δ, (24)

θ ′ = −H(1 − 3w)θ − w′

1 + w
θ + δp/δρ

1 + w
k2δ, (25)

where δ = δρ/ρ and H = a′/a = aH = ȧ. Assuming strictly adiabatic contributions
to the perturbations, the speed of sound for the fluid is

c2
s = δp

δρ
= ṗ

ρ̇
= 1

γ 2 = a6

c2 f0 + a6 , (26)

and the time variation of w is

w′ = −3H(1 + w)(c2
s − w). (27)

2 It has been pointed out that linear perturbations may not be sufficient to treat unified dark sector models
and a method to do so has been proposed in [32].
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Hence, inserting these last two equations in (24) and (25), they become

δ′ = −(1 + w)

(
θ + h′

2

)
− 3H(c2

s − w)δ, (28)

θ ′ = −H(1 − 3c2
s )θ + c2

s

1 + w
k2δ. (29)

Besides, using Eqs. (17, 19, 21) and (23) we arrive at

h′′ + Hh′ + 3H2(1 + 3c2
s )δ = 0. (30)

At early time, when the overall fluid has w ≈ 0, the effective fluid perturbations
evolve similar to those of ordinary dust with θ̇ = θ = 0, a ∼ t2/3 and from Eqs. (24,
30) we obtain

δ′′ + Hδ′ − 3

2
H2δ = 0 (31)

and δ = c1t−1 + c2t2/3, where c1 and c2 are arbitrary integration constants. In this
dust dominated era the perturbation grows as δ ≈ a showing an initial unstable phase,
compatible with the observation that the primordial universe would have tiny pertur-
bations which seeded the formation of structures in the universe. Conclusions about
the clustering capabilities of other cosmic settings with DBI fluids have been studied
in [34].

At late times, we are interested to find the evolution of the linear scalar perturba-
tions for any mode k. To this end we write the second order differential equation for
the density perturbation δ, see [35]

δ′′ + [1 + 6(c2
s − w)]Hδ′ +

[
9(c2

s − w)2H2

+ 3(c2′
s − w′)H + 3(c2

s − w)(H′ + H2) + c2
s k2

− 3

2
(1 + 3c2

s )(1 + w)H2δ = −3c2
s (1 + w)Hθ

]
. (32)

Taking into account that in the late time regime the scale factor behaves as a ∝ e

√
V0
3 t

we can calculate H

H = a′/a = ȧ ∝ a. (33)

Considering the expression of γ given by the Eq. (11) one obtains the late-time expan-
sion in terms of 1/a for ρ, p, w, c2

s , w
′ and H. In this way, replacing these expansions
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in Eqs. (29, 32) and keeping only the most significant terms one gets

δ′′+13Hδ′+
[
9(c2

s −w)2H2+2(c2
s −w)H2+c2

s k2
]
δ=−3c2

s (1 + w)Hθ (34)

θ ′ = 2Hθ + V0k2a6

c2 δ. (35)

From Eqs. (34) and (35) the evolution of the perturbation becomes mode depen-
dent with the k2/H2 term, and for low energy modes their solutions can be obtained
assuming a power law dependence of the perturbations with the scale factor, δ ∝ an

and θ ∝ as . In this case the approximate solutions are given by

θ ≈ θ0a2 (36)

δ ≈ δ1

a4 + δ2

a10 + θ1

a5
, (37)

where θ0, δ1 and δ2 are integration constants while θ1 is a function of θ0, c and V0.
This shows that the coupling to θ in Eq. (32) can be neglected for all scales we are
interested on. Also we find that the energy density perturbation decreases for large
cosmological times for modes satisfying the condition k2/H2 � 1. For high energy
modes, k2/H2 � 1, Eq. (34) is like the equation of motion of a dissipative mechan-
ical system. This resemblance emerges using the analogy with the classical potential
problem

d

dτ

[
δ′2

2
+ V(δ)

]
= −13Hδ′2, (38)

where

V(δ) = k2δ2

2
, (39)

As for any mode k the potential V has a minimum at δ = 0, the function inside
the square bracket in Eq. (38) is a Liapunov function and the perturbation decreases
asymptotically reaching δ = 0 in the limit t → ∞.

4 Observational constraints

In this section we will set constraints on the parameters of the model from a Bayesian
perspective. Our analysis will use geometrical tests: the SN type Ia luminosity test,
the CMB shift test [36,37], and the BAO test [38]. As these two last tests involve
early universe quantities (the sound horizon at decoupling and dragging epochs), one
must consider a slightly more general setup and include radiation, which must to be
conserved independently from the DBI fluid. This way, the Friedmann equation turns
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out to be

3H2 = f −1
0

(√

1 + c2 f0

(a0

a

)6 − 1

)

+ V0 + ρr0

(a0

a

)4
. (40)

In terms of the fractional energy densities and the redshift we have

H2

H2
0

=
√


2
f + 
2

c(1 + z)6 + 
� + 
r (1 + z)4,

where


 f = 1

3H2
0 f0

, (41)


� = f0V0 − 1

3H2
0 f0

, (42)


r = ρr0

3H2
0

, (43)

The latter are subject to the normalization condition

√

2

f + 
2
c + 
� + 
r = 1. (44)

In addition, the CMB and BAO tests require that we identify a combination of param-
eters which behaves effectively as 
m in the high energy regime. In our case this
mimicry is played by 
c.

As this paper is a first approach to this model, we are setting constraints only on

c and 
 f . In contrast, we fix a prior for 
b, taking the WMAP 5-year best fit,

b = 0.0432. Using the tests mentioned before in the framework of Bayesian statis-
tics, one should minimize the corresponding χ2 function in order to obtain 
c and

 f , see Appendix A.

We have used two different compilations for SNIa data: ESSENCE [39,40], which
combines the first results of the survey [41] with the results of Riess et al. detected
by HST [42] and UNION [43], a vast sample which brings together 414 SN from 13
independent datasets: recent samples (SLS, ESSENCE), old datasets and distant super-
novae from HST. In the case of the UNION sample, the best values obtained are 
c =
0.256+0.012

−0.010,
 f = 0.160+0.171
−0.160 and for the ESSENCE sample 
c = 0.257+0.013

−0.011 and


 f = 0.202+0.177
−0.202 with the corresponding 68.30% uncertainties. The lines in the upper

sides of the plots in Fig. 1 represent the locations on the parameter space which corre-
spond to Chaplygin gas cases and the points in each of the lines indicate the case with
the lowest χ2 value. From visual inspection one can infer that the Chaplygin gas is
rejected by our model. In contrast, LCDM (the 
 f = 0 locations) is not significantly
excluded, as for a certain range of 
m , LCDM cases lie in the 68.30% likelihood
credible interval. All in all our model provides better fits.
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Fig. 1 Credible intervals from the combination of SN + CMB + BAO observations for two different SN
compilation samples. a Union, b essence
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Fig. 2 3D representation of Bayesian evidences for our unified dark energy DBI model from the combi-
nation of SN + CMB + BAO observations for two different SN compilation samples. a Union, b essence

With the aim of compensating for the arbitrariness in the choice of priors, we
explore different priors on 
c and 
 f . In the case of 
c we have the guidance of all
the literature of constraints on dark energy constraints which more or less suggests
preferred regions. To take advantage of this we explore four priors of different lengths,
all centered at the value 
c = 0.25. In contrast, to illustrate the effect of changing
the prior on 
 f , which is a new parameter on which we have no previous clues, we
divide the physically allowed region 
 f ∈ [0.00, 1.0] into four equal intervals. From
Fig. 2 and Table 1 one can conclude that among the priors considered, the region

 f ∈ [0.00, 0.25],
c ∈ [0.24, 0.26] gives the best constraints for the parameters.

5 Model kinematics

As this is a new model it is worth examining it from different perspectives, the kine-
matic one being a specially relevant one. We investigate the redshift dependence of the
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Table 1 Bayesian evidences for our unified dark energy DBI model from the combination of
SN + CMB + BAO observations for two different SN compilation samples

Prior on 
 f Prior on 
c


c ∈ [0.24, 0.26] 
c ∈ [0.23, 0.27] 
c ∈ [0.26, 0.28] 
c ∈ [0.25, 0.29]
(a) Union


 f ∈ [0.00, 0.25] 4.534 × 10−71 2.655 × 10−71 7.797 × 10−72 2.258 × 10−71


 f ∈ [0.25, 0.50] 2.060 × 10−72 5.970 × 10−72 1.242 × 10−71 7.289 × 10−72


 f ∈ [0.50, 0.75] 4.312 × 10−81 1.667 × 10−76 3.760 × 10−74 4.681 × 10−74


 f ∈ [0.75, 1.00] 5.250 × 10−100 6.557 × 10−90 8.821 × 10−83 2.975 × 10−79

(b) Essence

 f ∈ [0.00, 0.25] 2.052 × 10−45 1.194 × 10−45 3.359 × 10−46 1.003 × 10−45


 f ∈ [0.25, 0.50] 1.750 × 10−46 4.628 × 10−46 9.751 × 10−46 5.798 × 10−46


 f ∈ [0.50, 0.75] 3.435 × 10−54 6.867 × 10−50 9.742 × 10−48 1.058 × 10−47


 f ∈ [0.75, 1.00] 8.433 × 10−72 4.257 × 10−62 2.501 × 10−55 4.115 × 10−52

effective equation of state parameter, w(z), and derived quantities such as the accel-
eration parameter, q(z), or the transition redshift, zt . In order to obtain the behavior
of w(z), we use the expression that relates it with the Friedman equation [44,45]

w(z) =
2
3

d ln H
dz (1 + z) − 1

1 −
(

H0
H

)2

c(1 + z)3

. (45)

In our model it takes the form

w(z) =
(

r (1 + z)4 − 3
�

) √

c

2(1 + z)6 + 
 f
2 − 3
 f

2

3
√


c
2(1+z)6 + 
 f

2
(

r (1+z)4 − 
c(1+z)3 + 
� +

√

c

2(1 + z)6 + 
 f
2
) .

(46)

Analyzing the dependence of the equation of state parameter with the redshift we

can see that the current observational data in the context of our model restricts it to be

smaller than −1, w(z) ≤ −1 with dw
dz

∣
∣
∣
z=0

> 0 for the current time. More precisely,

we obtain w(z = 0) = −1.052+0.052
−0.081,

dw
dz

∣
∣
∣
z=0

= 0.081+0.081
−0.140 with the UNION sample

and w(z = 0) = −1.074+0.074
−0.078,

dw
dz

∣
∣
∣
z=0

= 0.074+0.074
−0.199 with the ESSENCE sample,

with the uncertainties corresponding to the 68.30% interval of confidence.
In addition, we study the acceleration parameter, q(z) which for instance can be

expressed as

q(z) = 3

2

(

1 − 
c (1 + z)3

(H/H0)2

)

w(z) + 1

2
. (47)
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Fig. 3 Variation of the equation of state parameter with the redshift for two different SN compilations.
a Union, b essence
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Fig. 4 Variation of the acceleration parameter with the redshift for two different SN compilations. a Union,
b essence

Figures 3 and 4 depict the shape of the equation of state and acceleration parame-
ters with their corresponding 68.30% and 95.45% errors. From the analysis of the
acceleration parameter we gather that there is a strong evidence of the transition from
a deceleration to an acceleration stage. For a better insight on this matter, we have
inferred the redshift at which the transition happens in different ways.

Since we have an expression for q(z),

q(z) =
(1 + z)

(

4
r (1 + z)3 + 3
2
c (1+z)5

√

2

f +
2
c (1+z)6

)

2
(

1 −
√


2
c + 
2

f − 
r + 
r (1 + z)4 +
√


2
f + 
2

c(1 + z)6
) − 1 (48)

we can compute q(zt ) = 0 to obtain the transition redshift, zt . For the ESSENCE
compilation of SNIa we have zt = 0.766+0.041

−0.047, and for the UNION sample zt =
0.778+0.036

−0.048.
In [46] another approach to obtain it was proposed. It involves expanding the accel-

eration parameter, q(z), into two terms:

q(z) = q0 + z
dq

dz

∣
∣
∣
∣
z=0

. (49)
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Under this definition, we get with the UNION sample zt = 0.649+0.096
−0.079 and with

the ESSENCE sample zt = 0.650+0.139
−0.078. These results are in good agreement with the

results obtained in [46–48].
Yet another parametrization was considered in [49,50]:

q(z) = q0 + q1
z

1 + z
, (50)

where q0 = q(z = 0) is the value of the deceleration parameter at present and q1
is the parameter that contains the correction in the distant past (q(z) = q0 + q1 for
z � 0). With this parametrization we get that the value of the transition redshift for
ESSENCE is zt = 0.674+0.092

−0.062 and for UNION zt = 0.697+0.088
−0.085.

As the value of zt obtained directly by the explicit Eq. (48) is bigger that the
approximate one, we infer that the approximations are not good enough for account-
ing accurately for the tendency of our DBI fluid to induce a phantom stage. The result
obtained by our procedure tells us that the acceleration-deceleration transition happens
before than the other definitions allow to estimate.

6 Conclusions

This paper offers a new alternative to the popular models which attempt at a unifica-
tion of the dark matter and dark energy components of the Universe. This new model
stems from a purely kinetic DBI action, and therefore suggest that these non-canonical
actions, which have been resorted to as a way to model the early acceleration in the
Universe, can also serve the same purpose for the late time acceleration. The transition
from a H2 ∼ a−3 regime to a de Sitter phase is realized with a single fluid, so this is a
novel scenario and demands a perturbational analysis of its own. We can summarize
the results as follows. At early times the divergence of the velocity perturbation is
negligible, whereas the energy density perturbation is a growing one, thus signaling
the initial unstable phase required for the onset of structures. At late times the velocity
and energy density perturbations decouple, and the latter becomes negligible as the
Universe becomes dominated by vacuum energy.

The observational analysis suggests our model presents some attractive features
which extend its value beyond the theoretical perspective. To begin with current con-
straints show our model is by far better suited to the observations than the most popular
unified dark sector model: the Chaplygin gas [24,25]. Our results also indicate a modest
preference of our model as compared to the LCDM one. Perhaps the most remarkable
outcome of this observational analysis is that the best fit corresponds to a phantom
behaviour, i.e. the effective equation of state parameter weff lies at present below the
−1 line. It must be remember that this behaviour is achieved without actually having
to resort to a genuine phantom component, so we do not have to be concerned with
the associated instabilities.

This study, which has been carried out from different relevant angles and the results
achieved, convinces us that our model represents a worthy model for the unification
of the dark sector, reinforces the theoretical interests of DBI models by extending
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the range of interest to the late Universe, and suggests the interest of exploring gen-
eralizations of this model, probably by relaxing the assumption of a purely kinetic
Lagrangian, as perhaps further degrees of freedom would allow an even better suit-
ability to astronomical observations.
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Appendix A: Statistics and data analysis

In the context of a given physical model which depends on some parameters, besides
fixing the “most likely” values of the parameters to yield a series of available obser-
vational data, one should measure the degree of confidence in the fact that these data
were generated by these parameters in an estimated interval.

A.1 Parameter estimation

The likelihood function, L(d|θ,M), is defined as the unnormalized probability density
of measuring the data d = {d1, . . . , dn} given the model M and taking its parameters
the values θ = {θ1, . . . , θν} [51].

Despite our aim to keep the discussion in this section as general as possible, when
we analyze particular datasets we will assume, as usual, that the measurements are
normally distributed around their true value, so that

L(d|θ ,M) ∝ e−χ2(θ )/2. (A1)

The probability density function p(θ |d,M) of the parameters to have values θ for
the data, d, under the assumption that the true model is M is provided by Bayes’
theorem [51]

p(θ |d,M) = L(d|θ ,M)π(θ ,M)
∫ L(d|θ ,M)π(θ ,M)dθ

, (A2)

where p(θ |d,M) and π(θ ,M) are the posterior and prior probability density func-
tions (pdf) respectively [51–55]. The prior pdf encodes all previous knowledge about
the parameters before the observational data have been collected. It can be regarded
as a subjective procedure, but its use is compulsory in the Bayesian framework, which
is the approach used in theoretical frameworks where only one particular realization
of the measurement is available.

Parameter estimation in the Bayesian framework is based on maximizing the pos-
terior pdf p(θ |d,M), whereas in a “strict” frequentist approach one just maximizes
L(d|θ ,M). When one uses flat priors in the Bayesian approach then the same conclu-
sions are drawn from both approaches and then the difference turns to be conceptual
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only [52,53, R. Trotta, Private Communication]. If the measured observables are inde-
pendent from each other and Gaussian distributed around their true value, d(θ), with
a covariance matrix, C , given by the experimental errors, maximizing L is equivalent
to minimizing the chi-square function

χ2(θ) ≡
(

dobs − d(θ)
)

C−1
(

dobs − d(θ)
)T

(A3)

and for uncorrelated data Ci j = δi jσ
2
i ,

χ2(θ) ≡
n∑

i=1

(
dobs − d(θ)

σ obs
i

)2

. (A4)

The second step toward constraining parameters satisfactorily is to construct cred-
ible intervals [52] which measure the degree of confidence that a certain data was
generated by parameters belonging to the estimated interval.

In the Bayesian approach, the credible intervals are drawn around the maximum
likelihood point, which gives the best fit parameters. After obtaining it by the minimi-
zation of the χ2(θ), the boundaries of the region containing 100n% of likelihood are
determined as the values of the parameters for which χ2 has increased by a certain
quantity

χ2 − χ2
min = �ν,n (A5)

with

n = 1 −
∫ ∞
� ν,n

2

t
ν
2 −1e−t dt

∫ ∞
0 t

ν
2 −1e−tdt

= 1 −
�

(
ν
2 ,

�ν,k
2

)

�
(

ν
2

) (A6)

where �
(

ν
2 ,

�ν,k
2

)
is the incomplete � function [56,57].

The 1σ and 2σ errors of the parameter θi are given by the 68.30% and 95.45%
credible interval contours, respectively. The upper limit is the maximum value of the
contour and the lower one the minimum one.

A.2 Bayesian evidence

In Bayes’ approach the evidence is an employed tool which informs about how well
the parameters of the model fit the data, after doing an averaging over all the parameter
values that were theoretically plausible before the measurement ever took place [57].

Then the Bayes’ evidence is calculated as the average likelihood of the model over
its prior parameter space,

E(M) =
∫

π(θ ,M)L(d|θ ,M)dθ , (A7)
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where π(θ ,M) is the model’s prior on the set of parameters normalized to unity (i.e.
(
∫

π(θ,M)dθ = 1.) The most common choice is the top hat prior, π(θ,M) = 1/V
with V = ∏ν

α=1

(
θα,max − θα,min

)
. In that case one rewrites Bayes evidence as

E(M) = 1

V

∫

V

L (θ) dθ . (A8)

One important and unavoidable inconvenience of the use of the evidence is its
dependence on the prior ranges chosen for parameters. In this way we have computed
the evidence corresponding to different prior ranges from comparison in order to find
the most suitable one for our model, see Table 1.

Once we arrived at this point, a remark is required. The usual situation in cosmol-
ogy is that one has more than one set of statistically independent observational data,
{d(1)}, . . . , {d(m)} in order to constrain the parameters θ ; in that case, one can resort
to the joint probability density function

p(θ |d(1) ∩ · · · ∩ d(m),M) = p(θ |d(1),M) × · · · × p(θ |d(m),M). (A9)

With the latest rule one can generalize conveniently the whole discussion above to the
situation with more than one dataset.

Appendix B: Error propagation in derived quantities

In our results, the parameters have not symmetric errors. Then we can not use the
standard error propagation formula and we have to perform a modification in order to
account for these non-gaussianities, [58]. In our case, the constraints on the parameters
are given in the form, θi

+δθi,u
−δθi,d

, where δθi,u and δθi,d are positive quantities.
The estimated error in a quantity depending on them, f (θ), will be given by an

upper limit

� fu =
√√
√
√

n∑

i=1

(max (� fiu,−� fil))
2 (B1)

and a lower one

� fl =
√√
√
√

n∑

i=1

(min (� fiu,−� fil))
2, (B2)

where

� fiu = f (. . . θ(i−1), θi + �θiu, θ(i+1), . . .) − f (θ) (B3)

� fil = f (. . . θ(i−1), θi − �θil , θ(i+1), . . .) − f (θ). (B4)
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This error estimation is based on finite differences, however it can be refined if the
errors are enough small, i.e. �θi,u = δθi,u and �θi,l = δθi,l . In that case one can write

� fu � δ fu =
√√
√
√

n∑

i=1

(
max

(
∂ f

∂θi
δθiu,− ∂ f

∂θi
δθil

))2

(B5)

and

� fl � δ fl =
√√
√
√

n∑

i=1

(
min

(
∂ f

∂θi
δθiu,− ∂ f

∂θi
δθil

))2

. (B6)

In Gaussian situations, where �θi,u = �θi,l = �θi , one gets the standard error
propagation formula and � fu = � fl .

Appendix C: Observational tests

C.1 CMB test

The peaks and troughs of acoustic oscillations are sensitive to the distance to the
decoupling epoch. Therefore CMB provides a measure of the ratio of angular diame-
ter distances to the decoupling epoch divided by the sound horizon size at this time,
DA(z∗)/rs(r∗). Since we have assumed a flat universe, instead of DA(z), we can use
the comoving distance

Dc(z) = c

z∫

0

dz′

H(z′)
. (C1)

We can determine the ratio Dc(z∗)/r(z∗) by the “acoustic scale”, lA,

lA(z∗) ≡ π Dc(z∗)
rs(z∗)

. (C2)

In this case, we use the fitting function of z∗ proposed in [59]

z∗ = 1048

[
1 + 0.00124

(

bh2

)−0.738
] [

1 + g1

(

ch2

)g2
]

(C3)

with

g1 = 0.0783
(

bh2

)−0.238

1 + 39.5
(

bh2

)0.763 (C4)

g2 = 0.560

1 + 21.1
(

bh2

)1.81 . (C5)
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and the comoving sound horizon given by

rs(z) = c√
3

1/(1+z)∫

0

da

a2 H(a)
√

1 + 3
b
4
γ

a
(C6)

with 
γ =2.469 · 10−5h−2, c=2.9979 · 105 (for TC M B =2.725K ) and h =0.72 [37].
CMB also gives a measure of the “shift parameter”, R(z), which is related to Dc

by [60]

R(z∗) ≡
√


c H2
0 Dc(z∗). (C7)

Constructing a vector containing these quantities, v = (lA, R, z∗), and using the
maximum likelihood values of 5-year WMAP [37], vCMB = (302.10, 1.710, 1090.04)

one can compute the corresponding χ2,

χ2
CMB = (vi − vCMB

i )(C−1)CMB
i j (v j − vCMB

j )T (C8)

where
(
C−1

)C M B
is the inverse covariant matrix of the data.

This derivation of WMAP distance priors restricts the models to test because it
requires that we assume an certain cosmological scenario [37].

C.2 BAO test

There is a dependence between the peak position of the Baryon Acoustic Oscillations
(BAO) and the ratio of DV (z) to the sound horizon size at drag epoch, rs

(
zdrag

)
, at

which the baryons were liberated from photons. DV (z) is a effective distance measure
related to the comoving distance

DV (z) ≡
[

D2
c (z)

cz

H(z)

]1/3

. (C9)

In order to calculate the drag epoch, we use the formula put forward in [61]

zdrag = 1291
(

ch2

)0.251

1 + 0.659
(

ch2

)0.828

[
1 + b1

(

bh2

)b2
]

(C10)

where

b1 = 0.313
(

ch2

)−0.419
[

1 + 0.607
(

ch2

)0.674
]

(C11)
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and

b2 = 0.238
(

ch2

)0.223
. (C12)

Now, taking into account the Gaussian priors at z = 0.2 and 0.35 from BAO data
appearing in [38], we calculate

χ2
BAO = (vi − vBAO

i )(C−1)BAO
i j (v j − vBAO

j )T (C13)

with v =
{

rs (zdrag)

DV (0.2)
,

rs (zdrag)

DV (0.35)

}
and vBAO = (0.1980, 0.1904).

C.3 Type Ia Supernovae

The reduced observational data usually reports values of the distance modulus

µth(zi ) = 5 log10 (dL (z; θ)) + µ0 (C14)

with the dimensionless luminosity distance.

dL (z; θ) = (1 + z)

z∫

0

H0dz

H (z; H0, θ)
. (C15)

Then the χ2 function to minimize takes the form

χ2
SN(µ0, θ) =

∑

j=1

(µth(z j ;µ0, θ) − µobs(z j ))
2

σ 2
µ, j

, (C16)

where σµ, j are the measurement variances. But there is a nuisance parameter, µ0,
which makes the computation of χ2 more intensive as this parameter is marginalized
over. Often is used an alternative to marginalize it which consists in maximizing the
likelihood by minimizing χ2 with respect to µ0 [62]. Then one can rewrite the χ2 as

χ2
SN(θ) = c1 − 2c2µ0 + c3µ

2
0 (C17)
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being

c1 =
∑

j=1

(
µobs(z j ) − 5 log10 dL

(
z j ; θ

))2

σ 2
µ, j

(C18)

c2 =
∑

j=1

µobs(z j ) − 5 log10 dL
(
z j ; θ

)

σ 2
µ, j

(C19)

c3 =
∑

j=1

1

σ 2
µ, j

. (C20)

The minimization over µ0 gives µ0 = c2/c3. So the χ2 function takes the form

χ̃2
SN(θ) = c1 − c2

2

c3
. (C21)

The difference with respect to marginalization over µ0 is negligible in our results
[45].
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