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1. Introduction

Nonlinear interactions leading to nonclassical effects of light play an essential role to

entangle light or matter waves modes as, for instance, via spontaneous parametric

down-conversion processes, multiwave mixing phenomena, or very intense laser–

vacuum interactions.1–5 There are mainly three phenomena that demonstrate the

nonclassical character of light, that is, squeezing, photon antibunching, and sub-

Poissonian photon statistics.6–8

Methods of nonlinear optics are mostly used to generate nonclassical light. An-

other possibility for generating the nonclassical state of light was proposed by

Wodkiewicz et al. some time ago.9 They find that the suitable superpositions of

the vacuum and the one-photon or two-photon state may reduce the quantum
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fluctuations below the vacuum level. In fact, these superposition states can ex-

hibit interesting nonclassical properties such as squeezing, higher-order squeezing,

and sub-Poissonian photon statistics.10 The emerging nonclassical properties are

interpreted as due to the interference of the coherent states in phase space.11 In

particular, two-mode squeezed states, as nonclassical states of the two-mode light

field, have also been much studied.12 These squeezed states of light have been

attractive for numerous applications since they have reduced quantum noise com-

pared to that of coherent states.13 One of the commonly used methods to generate

squeezed light is optical parametric conversion and so far, a variety of methods have

been proposed and demonstrated for the generation of squeezed states of light via

this technique. Moreover, in Jaynes–Cummings models (JCM)14 having three levels

interacting with two modes of cavity fields, some nonclassical field states are also

discovered in the system dynamics, even when the fields are assumed to be initially

in two-mode coherent states.15

A light field where the variance of the number of photons is less than its mean is

said to be sub-Poissonian or amplitude-squeezed. In this context, it is important to

note that most of the studies of squeezing are based on the Heisenberg uncertainty

relation, which is regarded as the standard limitation on measurements of quan-

tum fluctuations. The Heisenberg uncertainty relation is formulated in terms of the

variances of the system observables. These quantities are usually considered to be

the most natural measures of the fundamental uncertainty associated with quantum

fluctuations. The variances, containing only second-order statistical moments, how-

ever, are not an appropriate measure of the uncertainty in certain circumstances.16

For example, if the variance, as the uncertainty measure for non-Gaussian states

of the radiation field is used, one deliberately neglects higher-order statistical mo-

ments.17 Similar problems with using the Heisenberg uncertainty relation have been

pointed out and discussed in the past.18–20

An alternative definition of squeezing for the previously generalized JCM, based

on Shannon information entropy theory, which overcomes the disadvantages of the

definition based on the Heisenberg uncertainty relation was examined in the context

of a two-level atom in the JCM as well as in resonance fluorescence.16 More recently,

the emerging concepts such as the purity, the entropy squeezing, and the variance

squeezing were used to study statistical properties of a two-photon cavity mode in

the presence of degenerate parametric amplifier.21

In the present paper, attention is concentrated on a class of two-mode non-

classical states associated to the dynamics of the field statistics and described via

two-mode coherent states in two-photon processes. Specifically, the quantum noise

associated with the second-order variance as well as the second-order Heisenberg

variance and information entropy squeezing of these states, taken from the general-

ized nonlinear JCM previously developed by the author,7,8,22 will be investigated.

It will be shown that the previously uninvestigated squeezing phenomenon in this

generalized nonlinear model can be partially generated for a wide range of model

parameters, such as spin-field coupling constants, detuning parameters, mean pho-
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ton numbers, etc. in both resonant and off-resonant states and in very short time

intervals, on the picosecond time scale.

This paper is organized as follows. Section 2 briefly describes the two-level spin

cyclic model used in the computations along with its interaction with a bimodal

cavity field as well as the emerging quadrature squeezing and information entropy

squeezing phenomena. In Sec. 3, the purity of the spin system, normal squeezing,

and entropy and variance squeezing are discussed for two-model Hamiltonians in

both resonant and off-resonant states of the two-level system with the cavity. Fi-

nally, Sec. 4 concludes the paper with a brief summary.

2. Theoretical Background

2.1. Cyclic XY spin model

In previous papers,7,8,22–25 the XY n-spin cyclic model, as described by Lieb,

Schultz, and Mattis26 via the Hamiltonian

Hγ(n
†, n) =

∑

k

Ξk n
†
k , nk −

1

2

∑

k

Ξk , (1)

was investigated by means of a functional integral representation involving

nonorthogonal Grassmann (anticommuting) coherent states integration variables.

In Eq. (1) n†, n are fermionic operators and the Ξk are the associated eigenvalues,

given by

Ξ2
k = 1− (1− γ2) sin2 k , (2)

where γ is a parameter characterizing the degree of anisotropy in the xy-plane and

where

k = 2πp/n , p = −1/2n, . . . , 0, 1, . . . , 1/2n− 1 . (3)

Use of the completeness relation of the n-site Grassmann states, invoking antiperi-

odic boundary conditions, performing an analytic continuation to Euclidean times,

and the subsequent substitution ∆τ/~ → β (≡ 1/KBT ) in the functional integral,

allowed the imaginary time partition function of this model to be obtained as a

configuration expansion through the trace formula for fermions. In this scenario,

the energy of the model emerges as23

Ξ(n;β; γ) = −1/2
∑

k

Ξk − ∂

∂β
ln

(

1 +

n
∑

m=1

S(m)

)

, (4)

where the mth configuration in the expansion becomes

S(m) =
∑

α1>α2>···>αm=1

m
∏

j=1

exp(−βΞαj
) . (5)

Discussion of the sign of Ξk in Eq. (2) as well as the possibility of the existence

of null eigenvalues are discussed in Refs. 24 and 25. In this paper, only positive
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values of Ξk will be considered. This corresponds to a particle-hole picture for the

n-particles, where the ground state has no elementary fermions and the elementary

fermion excitations both above and below the Fermi surface have positive energies.26

2.2. Interaction with a quantized cavity field

The complete interaction picture Hamiltonian of a two-level system embedded in

a two-mode cavity field and involving two-photon transitions can be written as

V(t) = λV1(t) + µV2(t), where the parameters λ and µ with λ, µ = 0, 1, and λ 6= µ

serve to define two different interacting Hamiltonians in the two-photon process

involving diagonal and off-diagonal quadratic contributions of bosonic operators.

Thus, invoking the rotating wave approximation27 and after standard manipula-

tions, the generalized nonlinear JCM Hamiltonians can be written as7,8

V1(t) = ~

2
∑

j=1

gj(σ+a
2
je

i∆jt + a†2j σ−e
−i∆jt) , (6)

for λ = 1, µ = 0, and

V2(t) = ~g(σ+a1a2e
i∆t + σ−a

†
1a

†
2e

−i∆t) , (7)

for λ = 0, µ = 1. The zero-point energy of the bosonic field was omitted and a

constant term, given by 1/2(ωa + ωb), where ωa and ωb are the energies of the

ground |a〉 and excited states |b〉, respectively, were ignored. σ±, σz are the spin

flip operators characterizing the effective two-level system, and a†j , aj are bosonic

creation and annihilation operators of cavity modes. In Eq. (6), gj is the spin-field

coupling constant for the mode j, and in Eq. (7), the coupling constant is given by

g =
√
g1g2. ∆j and ∆ are detuning parameters given by

∆j ≡ ∆j(n;β; γ) =
∑

k

Ξk + Ξ(n;β; γ)− 2νj(〈mj〉;β), (8)

and

∆ =
2
∑

k=1

Ξk + Ξ(n;β; γ)− (ν1(〈m1〉;β) + ν2(〈m2〉;β)), (9)

for the interaction picture Hamiltonians (6) and (7) respectively. It is assumed that

the field is in a thermal photon state in which νj(〈mj〉;β) is the photon frequency

for the mode j, which can be expressed in terms of the mean photon number 〈mj〉
in the two-mode cavity field through standard relations.7,8,27

Time evolution of the variance of the two-mode field quadrature operator emerg-

ing from the model Hamiltonians in Eqs. (6) and (7) was previously discussed in

the context of correlated two-mode SU(1, 1) coherent states.7,28

It will be assumed that initially, the field modes are in coherent states |α1α2〉
and the spin system is in the excited state |b〉, i.e., the spin system and the field are
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initially in a disentangled state while the time-dependent wavefunction evolves as

|ψ(t)〉 =
∞
∑

n1=0

∞
∑

n2=0

cn1n2
(0)U(t)|b;n1n2〉 , (10)

with the coefficients cn1n2
(0) given via density matrix elements at t = 0 in terms

of the Poisson distribution

ρnini
(0) =

〈ni〉ni e−〈ni〉

ni!
, (11)

and where the spin system and the field are in an entangled state mediated by

the unitary operator U(t). Analytical expressions for the time-dependent density

matrix for the case λ = 1, µ = 0 were given in previous papers using Dyson

perturbative expansion for the time evolution operator.7,8,22 The same standard

procedure applied to the case λ = 0, µ = 1 leading to

ρbbn1n2
(t) = |〈b; n1n2|ψ(t)〉|2

= ρn1n1
(0)ρn2n2

(0)
∣

∣1 + g2(n1 + 1)(n2 + 1)φ2(t)
∣

∣

2
, (12)

ρaan1n2
(t) = |〈a; n1n2|ψ(t)〉|2

= ρn1−1n1−1(0)ρn2−1n2−1(0)
∣

∣g
√
n1n2 φ

∗
1(t) + g3

√

n3
1n

3
2 φ

∗
3(t)

∣

∣

2
, (13)

and to

ρbbn1n2
(t) = ρn1n1

(0)ρn2n2
(0) cos2

[
√

(n1 + 1) (n2 + 1) gt
]

, (14)

ρaan1n2
(t) = ρn1−1n1−1(0)ρn2−1n2−1(0) sin

2
[√
n1n2 gt

]

, (15)

for the diagonal matrix elements of ρn1n2
(t) in the basis of spin states for the off-

resonant (∆ 6= 0) and resonant (∆ = 0) states, respectively. It is observed that

the trace of ρn1n2
(t) over the ground |a〉 and excited |b〉 states of the spin system

gives the photon distribution in the two-mode cavity. The time-dependent scalar

functions φk(t) (k = 1, 2, 3) required in Eqs. (12) and (13) are given by7,8

φ1(t) =
1− ei∆t

∆
,

φ2(t) =
ei∆t − 1− it∆

∆2
,

φ3(t) =
2(ei∆t − 1)− it∆(1 + ei∆t)

∆3
.

The associated off-diagonal elements of the density matrix in the space of the spin

states are computed from

ρabn1n2
(t) = 〈a; n1n2|ψ(t)〉〈ψ(t)|b; n1n2〉

= ei∆φn1n2

√

ρaan1n2
(t)ρbbn1n2

(t) , (16)
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with ρabn1n2
(t) = ρba∗n1n2

(t) and where ∆φn1n2
is a phase determined by the real

and imaginary parts of the time-dependent expansion coefficients emerging from

Eq. (10).

Various nonclassical effects in the JCM can be generated by choosing different

initial states of the field. For example, when the cavity field is initially in a coherent

state of photons, one finds that the level occupation probability of the system can

display collapse and revivals of the Rabi oscillations in a field that is not in a pure

number state.7,8,22,24,25

2.3. Quadrature operators, variances, and squeezing

The field quadrature operators are defined as

X
(i)
1 (t) =

1

2
(ai(t) + a†i (t)) , (17)

X
(i)
2 (t) =

1

2i
(ai(t)− a†i (t)) , (18)

and their variances satisfy the uncertainty relation

〈(∆X(i)
1 )2〉〈(∆X(i)

2 )2〉 ≥ 1

16
, (19)

which in turn means that if the equality holds at the zero-point, then each quadra-

ture carries one-fourth of the quantum of the zero-point noise. In principle, the

uncertainty relation in Eq. (19) allows the reduction of noise in one quadrature

below the zero-point level with the amplification of noise in the other quadrature

above the zero-point level. In other words, noise can be reduced below the zero-

point level only by squeezing noise from one quadrature phase into the other. Thus,

by definition, squeezing is said to exist whenever 〈(∆X(i)
j )2〉 < (1/4) (i, j = 1, 2).

In order to characterize the influence of intrinsic decoherence on the squeezing, it

was found it to be convenient to characterize the squeezing through the use of the

modified7 Mandel’s Q parameter,29 given by

Qij = 1− 4〈(∆X(i)
j )2〉 , (20)

where 0 < Qij ≤ 1 for squeezing. The required expectation values of the normally

ordered operators involved in Eq. (20) can be computed via density operator traces

techniques as given elsewhere.7

2.4. Entropy squeezing

For a two-level system, characterized by the Pauli operators σx, σy, and σz, the

Heisenberg uncertainty relation is given by

∆σi∆σj ≥ |〈σk〉|εijk , (21)
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where ∆σ = [〈σ2〉 − 〈σ〉2]1/2, with the commutation relations σ × σ = 2iσ. Fluctu-

ations in the component σi of the spin system (or the atomic dipole) are said to be

squeezed if σi satisfies the condition

V (σi) = ∆σi − |〈σj〉|1/2 < 0 , i 6= j . (22)

However, as claimed by Mao-Fa Fang et al.16 the value of 〈σi〉 is highly dependent

on the spin (or atomic) states used to perform the average, and may be zero for

some states, in which case the uncertainty relation (21) is trivially satisfied (as

∆σi ≥ 0) and fails to provide any useful information. For example, for some states

one can have 〈σi〉 = 0, and therefore is not possible to obtain any information on

squeezing from the inequality (21). Actually, these states may be considered to be

maximally squeezed states of the spin system from the entropy point of view.

As an altenative to the Heisenberg uncertainty relation, several authors have

studied quantum uncertainty by using quantum entropy theory, and obtained an

entropic uncertainty relation for position and momentum which can overcome the

limitations of the Heisenberg uncertainty relation. Moreover, the entropic uncer-

tainty relation can be generalized to the case of two Hermitian operators in a

K-dimensional Hilbert space and an optimal entropic uncertainty relation for sets

of K + 1 complementary observables with nondegenerate eigenvalues in an even

K-dimensional Hilbert space has been investigated.19,20

By defining

δH(σi) ≡ exp[H(σi)] , (23)

where H(σi) is the Shannon information entropy, fluctuations in the component

σi (i ≡ x, y, or z) of the spin system are said to be “squeezed in entropy” if the

information entropy H(σi) of σi satisfies the condition

E(σi) = δH(σi) − 2

[δH(σk)]1/2
< 0 , i 6= k . (24)

In Sec. 3, the normal and entropy squeezing, based on the Heisenberg (variance)

and on the entropic uncertainty relations, will be discussed through numerical simu-

lations. It should be addressed that while the moment (variance) Heisenberg uncer-

tainty relation is expressed as the product of the variances of two noncommutating

observables A and B, the entropic uncertainty relation is given by the sum of their

Shannon entropies.16,21

3. Results and Discussion

Squeezing phenomenon is one of the most interesting phenomena in the field of

quantum optics. It reflects the nonclassical behavior for the quantum systems. In

this section, numerical simultations of the normal, and the variance and entropy

squeezing for the spin model system interacting with a two-mode cavity field in

both resonant and off-resonant states will be discussed. The computations were

conducted in the anisotropic limit γ = 1 assuming that the field is initially in a
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coherent state and the spin system is in the excited state. In order to substantiate

these results, we first examine the time evolution of purity of the whole system.

3.1. Purity of the spin system

The quantum state purity may be used as a good tool to give information about the

entanglement of the components of the system (spin plus field). For this reason, this

subsection will be devoted to discuss the purity of the system under consideration.

The purity of the field can be determined from the quantity Trρ2(t). A necessary

and sufficient condition for the ensemble to be described in terms of a pure state is

that Trρ2(t) = 1, in this case clearly a state vector description of each individual

system of the ensemble is possible. For the case Trρ2(t) < 1, the field will be in

a statistical mixture state. However, for a two-level system, a maximally mixed

ensemble corresponds to Trρ2(t) = 1/2.21,30 Thus, it follows from Eqs. (12)–(16)

that

1/2 ≤ Trρ2(t) = 1− 2 det ρ(t) ≤ 1 . (25)

which provides the upper bound det ρ(t) ≤ 1/4. The analysis and discussion of the

purity can be handled through Eq. (25). Thus, in Fig. 1, Trρ2(t) is plotted against t

in the picosecond time scale, assuming that the field is prepared in a coherent state

and the spin system is in the excited state. This figure displays the time evolution

of the purity for a bimodal cavity field interacting with an effective two-level spin

system for both interaction picture Hamiltonians (6) (solid curve) and (7) (dashed

curve) in off-resonant [Fig. 1(a)] and resonant [Fig. 1(b)] states, respectively. We

observe that the purity in general satisfies the inequalities 0.93 < Trρ2(t) < 0.99 in

Fig. 1(a) and 0.50 < Trρ2(t) < 0.99 in Fig. 1(b). The system approaches the pure
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t (picoseconds)
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0.95
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T
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(a)
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0.7

0.8

0.9

1

T
r

(t
)

(b)

Fig. 1. Time evolution of purity measured by Trρ2(t). The initial coherent state of the field
is given by a Poisson distribution. (a) Solid curve: λ = 1, µ = 0; 〈n1〉 = 10, 〈n2〉 = 2; ∆1 =
−22 cm−1, ∆2 = −293 cm−1; g1 = 0.3 cm−1, g2 = 0.15 cm−1; dashed curve: λ = 0, µ = 1;
〈n1〉 = 36, 〈n2〉 = 20; ∆ = 56 cm−1; g = 0.015 cm−1. (b) Solid curve: λ = 1, µ = 0; 〈n1〉 =

〈n2〉 = 30; ∆1 = ∆2 = 0; g1 = 0.027 cm−1, g2 = 0.017 cm−1; dashed curve: λ = 0, µ − 1;
〈n1〉 = 〈n2〉 = 20; ∆ = 0; g = 0.05 cm−1.
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state showing weak entanglement in Fig. 1(a) over the whole time scale considered.

In the meantime, the maximum value of the purity becomes nearly 0.99. This means

that the interaction between the field and the spin system is almost disentangled

(at those times where the maximum value of Trρ2(t) = 0.99). When ∆1 = ∆2 = 0

[solid curve in Fig. 1(b)] and ∆ = 0 [dashed curve in Fig. 1(b)] associated to

the Hamiltonians (6) and (7), respectively, the behavior of the purity is strongly

affected. In this case, the extrema (maxima and minima) of the purity function

are decreased as compared to those observed in Fig. 1(a) but no fluctuations or

interferences between patterns are detected. This means that the field becomes

in a mixture state in Fig. 1(b), but without reaching its maximal, and therefore

leads to a large enough entanglement for times longer than 75 ps. Also, it can

be observed that the maximum value of the purity function in this case occurs

at the onset of the interaction, and remains well above 0.9 for t < 75 ps. Here,

it would be interesting to point out that although the maximum vale of Trρ2(t)

does not reach the value one (pure state showing disentanglement), it is greater for

the Hamiltonian (6) involving diagonal bosonic operators than for the Hamiltonian

(7) where off-diagonal bosonic operators are involved. However, in contrast to the

results shown in Fig. 1(a), in both cases, the interaction between the spin system

and the field remains maximally correlated or entangled and, as a result of this

interaction, the whole system never returns to the pure state. Thus, it is concluded

that the diagonal and off-diagonal boson operators in the Hamiltonians (6) and (7),

respectively, would affect the interaction between the field mode and spin system.

3.2. Normal squeezing

Squeezed light has less noise in one of the field quadratures than the vacuum level

and an excess of noise in the other quadrature such that the Heisenberg uncertainty

principle is satisfied. To discuss the phenomenon of squeezing, we use Eq. (20).

The time evolution of the second-order quadrature variance 〈(∆X(2)
1 )2〉 was com-

puted for various cases of interest and plotted in Fig. 2. We do notice that the

time evolution does bring about noise reduction in this quadrature for both model

Hamiltonians but with different degrees of squeezing. Thus, Fig. 2(a) shows a rea-

sonable amount of squeezing, which is only lost at intervals around the maxima

(solid curve). Squeezing can be observed for all t on the whole time scale consid-

ered when the Hamiltonian of Eq. (7) is used in the computation (dashed curve).

When the value of the coupling constants is increased from 28 cm−1 in Fig. 2(a) to

61 cm−1 in Fig. 2(b), the squeezing is clearly observed for all t. We also notice that

the Hamiltonian (6) [solid curves in Figs. 2(a) and 2(b)] generally gives an overall

decrease in the level of noise as compared to the Hamiltonian (7), i.e., the reduction

of noise is higher than that observed for the case λ = 0, µ = 1. However, at certain

intervals of time, the state associated to the Hamiltonian (6), becomes more clas-

sical as a result of the interaction with the two-photon JCM. This is particularly

evident in Fig. 2(a) in the short time regime (below 12 ps), a result perhaps a little
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Fig. 2. Time evolution of the normal second-order quadrature squeezing with the initial coherent
state of the field given by a Poisson distribution. (a) Solid curve:: λ = 1, µ = 0; 〈n1〉 = 4,
〈n2〉 = 10; ∆1 = 41 cm−1, ∆2 = 51 cm−1; g1 = g2 = 28 cm−1; dashed curve: λ = 0, µ = 1;
〈n1〉 = 4, 〈n2〉 = 10; ∆ = 46 cm−1; g = 28 cm−1; (b) same as (a) but with g1 = g2 = 61 cm−1,
g = 61 cm−1.

surprising, since the form of the interaction would seem to preserve the correlations.

The maximum magnitude of squeezing recovered in this nondegenerate state of the

field is about 55% when the interaction picutre Hamiltonian of Eq. (6) is used (solid

curve) while use of the Hamiltonian of Eq. (7) (dashed curve) leads to the same

pattern of squeezing, about 20%, as that observed in Fig. 2(a). Thus, in off-resonant

states, it is apparent that the value of the coupling constants plays an important

role in determining the behavior of the second-order squeezing derived from the

Hamiltonian of Eq. (6). Finally, computation of fourth-order squeezing, as given by

Hong and Mandel31 shows that the present model seems to give no evidence of such

squeezing, at least in off-resonant states, for both interaction picture Hamiltonians

(6) and (7), even for moderately large coupling constants and detuning parameters.

3.3. Variance and entropy squeezing

It is well-known that the entropy and variance squeezing are built up on the concept

of the uncertainty relations in order to discuss the quantum fluctuations. The argu-

ment was to use the entropic uncertainty relations for two-level systems rather than

the Heisenberg uncertainty relations used in the computations of normal squeez-

ing. This has been discussed previously by a number of authors.16,21 Frames (a)

and (b) in Fig. 3 display the time evolution of the variance squeezing factor V (σi)

(i = x, y) of both quadratures for the Hamiltonians (6) and (7), respectively, when

the spin system is initially in the excited state. In Fig. 3(a) it is observed, accord-

ing to Eq. (22), that squeezing mostly occurs in the second quadrature (σy) for

times longer than 30 ps (dashed curve) when the Hamiltonian (6) is used. At very

short times, the slow oscillations in the first quadrature σx below 30 ps only pro-

duce a small amount of squeezing (solid curve). However, use of Hamiltonian (7)

in Fig. 3(b) shows that squeezing is present several times in the first quadrature at
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Fig. 3. Time evolution of the based Heisenberg unceertainty relation variance squeezing factor
V (σi), with the initial coherent state of the field given by a Poisson distribution. (a) λ = 1, µ = 0;
〈n1〉 = 10, 〈n2〉 = 2; ∆1 = −22 cm−1, ∆2 = −293 cm−1; g1 = 0.3 cm−1, g2 = 0.15 cm−1.
Solid curve: V (σx); dashed curve: V (σy); (b) λ = 0, µ = 1; 〈n1〉 = 36, 〈n2〉 = 20; ∆ = 56 cm−1;
g = 0.015 cm−1. Solid curve: V (σx); dashed curve: V (σy).

regular intervals of time (solid curve) with the amplitudes approaching to the limit

given by Eq. (22) in the long time regime. It is also observed that the amplitudes in

the second quadrature (dashed curve) are more pronounced compared with those

occurring in the first quadrature with the consequence that the squeezing tends

to collapse as time goes on. Thus, Fig. 3 shows that although both V (σx) and

V (σy) display squeezing effects in the two-level system, the variance squeezing fac-

tor provided by them is quite different. In particular, at the times scale t ∼ 3kπ ps

(k = 1, 2, 3, . . .) in Fig. 3(a), the second quadrature V (σy) exhibits larger variance

squeezing for k > 3, while the first quadrature variance exhibits this behavior for

k < 3. By contrast, both quadrature factors V (σx) and V (σy) in Fig. 3(b) show

large fluctuations over the whole time scale, with a narrower separation between the

peaks than that observed in Fig. 3(a). The resultant structure shows that squeezing

can be significant for the first quadrature V (σx), while the reduction in noise is lost

for the second quadrature V (σy) in the long time regime.

Figure 4 displays the time evolution of the entropy squeezing for various values

of the coupling constant g in the Hamiltonian (7) in off-resonant [Fig. 4(a)] and res-

onant states [Figs. 4(b)–4(d)]. In Fig. 4(a), the squeezing occurs again several times

in the first quadrature of the entropy squeezing E(σx) (solid curve). The minima of

this regular pattern remains constant over the whole time scale, and accounts for

the 20% of the total squeezing. Thus, this is the optimal entropy squeezing factor

in this particular case, i.e., the spin system has achieved a pure state at the times

characterized by those minima. This entropy squeezing is practically absent from

the second quadratureE(σy) (dashed curve), except at short times (less than 40 ps).

Figure 4(b) presents the entropy squeezing factor computed in the resonant state

using the Hamiltonian (7) again. It is noted that there is an increase in the entropy

squeezing amount in the second quadrature E(σy) (dashed curve) as compared to
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Fig. 4. Time evolution of the based Shannon information entropy squeezing factor E(σi), with
the initial coherent state of the field given by a Poisson distribution. (a) Same as Fig. 3(b). Solid
curve: E(σx); dashed curve: E(σy); (b) λ = 0, µ = 1; 〈n1〉 = 〈n2〉 = 20; ∆ = 0; g = 5 cm−1. Solid
curve: E(σx); dashed curve: E(σy); (c) same as (b) but with g = 15 cm−1; (d) same as (b) but
with g = 0.05 cm−1.

that observed in Fig. 4(a), while no entropy squeezing is detected in the first quadra-

ture E(σx) (solid curve), in contrast to the result shown in Fig. 4(a). A comparison

of the entropy squeezing factors in Figs. 4(b)–4(d) shows that with a decreasing of

the coupling constant the quantum fluctuations are gradually suppressed and the

peaks tend to separate. In fact, the “entropies” of any probabilistic distribution are

well known to eliminate effectively the distance between peaks in the multipeak

distributions. This is clearly seen in the transition from patterns in Figs. 4(b) and

4(d) to that in Fig. 4(c). At the same time, the growing coupling constant is accom-

panied by a substantial reduction in the entropy squeezing amount for the second

quadrature E(σy), with the result that no entropy squeezing is predicted for both

quadratures above of 100 ps in the pattern of Fig. 4(c), where the coupling constant

is larger than that in Figs. 4(b) and 4(d). The pattern of interferences with strong

overlapping observed in Fig. 4(c) is consistent with an entangled state. Finally, with

a coupling constant as small as 0.05 cm−1 in Fig. 4(d), there is no entropy squeezing
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for the first quadrature E(σx) while the second quadrature E(σy) remains squeezed

only below 80 ps, with the optimal entropy squeezing at around 28 ps. Again, this

result stems from the fact that the spin system has achieved a pure state at this

time, i.e., this state is just an eigenstate of the spin operator σy , displaying very

weak entanglement, as predicted by the numerical simulation in Fig. 1(b), dashed

curve.

4. Conclusion

The squeezing phenomenon derived from the interaction between a two-level spin

system with a bimodal cavity field in a two-photon process was tackled. Two model

interaction picture Hamiltonian involving quadratic terms in the field bosonic op-

erators were separately analyzed and numerically discussed for a wide range of

spin-field coupling constants, detuning parameters, and initial mean photon num-

bers. Numerical simulations for the time evolution of Trρ2(t) show that the system

approaches the pure state with a very weak entanglement in off-resonant states for

both Hamiltonians (6) and (7). In resonant states, it was found that the behavior of

the purity is strongly affected, in this case with no detection of fluctuations or inter-

ferences between patterns. The field becomes in a mixture state and therefore leads

to a large enough entanglement for times longer than 75 ps. Thus, the interaction

between the spin system and the field remains maximally correlated or entangled

in this case, and, as a result of this interaction, the whole system never returns to

the pure state observed at the onset of the interaction. For very long times, the

two-level system approaches to a maximally mixed ensemble which corresponds to

Trρ2(t) = 1/2.

Numerical calculations for normal second-order squeezing show a small amount

of squeezing in resonant states, nevertheless, the pattern of interferences observed

is consistent with an entangled state. In off-resonant states, there is a reasonable

amount of squeezing for both Hamiltonians (6) and (7). However, no evidence was

found of fourth-order squeezing in the present model.

In the present study, strong enhancement of quantum fluctuations in the vari-

ance squeezing based on the Heisenberg uncertainty relation as well as in en-

tropy squeezing based on Shannon entropies which can be attributed to the com-

plex interplay of quantum fluctuations and nonlinearities inherent to the model

was detected. However, it was found that for the complex correlated quantum

fluctuations associated with certain parameter region of the two-level spin sys-

tem, the Shannon entropies could yield a more appropriate global description of

squeezing than the entropy squeezing based on the Heisenberg uncertainty rela-

tion. Further investigation of the squeezing phenomenon in the present generalized

nonlinear two-level spin model to elucidate the well known shortcomings of the

variance measures of the Heisenberg uncertainties is underway and will be pub-

lished elsewhere.
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17. V. Bužek, C. H. Keitel and P. L. Knight, Phys Rev. A 51, 2575 (1995).
18. K. Wodkiewicz and J. H. Eberly, J. Opt. Soc. Am. B 2, 248 (1985).
19. J. Sánchez-Ruiz, Phys. Lett. A 201, 125 (1995).
20. J. Sánchez-Ruiz, Phys. Lett. A 244, 189 (1998).
21. M. Sebawe Abdalla, E. M. Khalil and A. S. F. Obada, Ann. Phys. 322, 2554 (2007).
22. H. Grinberg, Int. J. Quantum Chem. 108, 210 (2008).
23. H. Grinberg, Phys. Lett. A 311, 133 (2003).
24. H. Grinberg, Phys. Lett. A 344, 170 (2005).
25. H. Grinberg, Phys. Lett. A 350, 428 (2006).
26. E. Lieb, T. Schultz and D. Mattis, Ann. Phys. 16, 407 (1961).
27. S. M. Barnett and P. M. Radmore, Methods in Theoretical Quantum Optics (Oxford

Science Publications, Oxford University Press Inc., New York, 1997).
28. C. C. Gerry and R. E. Welch, J. Opt. Soc. Am. B 9, 290 (1992).
29. L. Mandel, Phys. Rev. Lett. 47, 709 (1981).
30. More generally, 1/d ≤ Trρ2 ≤ 1 where d is the dimension of the Hilbert space at-

tributed to the system it describes. See G. Jaeger, Quantum Information. An Overview

(Springer, New York, 2007).

31. The 2Nth-order squeezing factor is given by Qij = 1− 2N/(N − 1)!! < (∆X
(i)
j )N >,

where 0 ≤ Qij ≤ 1 for squeezing. See C. K. Hong and L. Mandel, Phys. Rev. Lett.
54, 323 (1985).


	Introduction
	Theoretical Background
	Cyclic XY spin model
	Interaction with a quantized cavity field
	Quadrature operators, variances, and squeezing
	Entropy squeezing

	Results and Discussion
	Purity of the spin system
	Normal squeezing
	Variance and entropy squeezing

	Conclusion

