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Abstract
We study the occurrence of symmetry breaking, at zero and finite temperatures, in the J1–J3
antiferromagnetic Heisenberg model on the square lattice using Schwinger boson mean field
theory. For spin- 1

2 the ground state always breaks the SU(2) symmetry with a continuous
quasi-critical transition at J3/J1 ∼ 0.38, from Néel to spiral long range order, although local
spin fluctuation considerations suggest an intermediate disordered regime around
0.35 . J3/J1 . 0.5, in qualitative agreement with recent numerical results. At low
temperatures we find a Z2 broken symmetry region with short range spiral order characterized
by an Ising-like nematic order parameter that compares qualitatively well with classical Monte
Carlo results. At intermediate temperatures the phase diagram shows regions with collinear
short range orders: for J3/J1 < 1 Néel (π, π) correlations and for J3/J1 > 1 a novel phase
consisting of four decoupled third neighbour sublattices with Néel (π, π) correlations in each
one. We conclude that the effect of quantum and thermal fluctuations is to favour collinear
correlations even in the strongly frustrated regime.

(Some figures may appear in colour only in the online journal)

1. Introduction

The study of unconventional phases represents a central topic
in strongly correlated electron systems. In frustrated quantum
antiferromagnets (AFs) the interest is mainly focused on the
possible stabilization of two-dimensional (2D) quantum spin
liquids [1–3] that preserve all the microscopic symmetries
of the Hamiltonian. In fact, in recent years, there has
been great interest in the classification of different types
of quantum spin liquids based on the projective symmetry
group [4–6]. However, the concrete detection of such spin
liquids in realistic quantum spin models seems to be still
a delicate issue [3, 7–10]. The source of this classification
is the mean field wavefunctions based on the bosonic and
fermionic representations for the spin operator, originally
used in the context of large N theories [11, 12]. The
bosonic representation (Schwinger bosons) has the advantage
of describing magnetically ordered states [13–15]—which

are known in several cases—while quantum spin liquid
states can be described by both bosonic and fermionic
representations [9, 10, 15].

Another route in the search for unconventional phases
due to magnetic frustration has been the study of finite
temperature transitions involving the rupture of non-trivial
discrete degrees of freedom. This kind of transition has been
extensively investigated in the context of the frustrated J1–J2
Heisenberg model [2, 16, 17]. Here, the magnetic phase
breaks the discrete lattice rotation symmetry from Z4 to Z2
with an associated Ising variable that gives a measure of the
(0, π) and (π, 0) magnetic correlations [18], while rotational
symmetry is unbroken, as dictated by the Mermin–Wagner
theorem [19]. Several analytical [18, 20] and numerical [21]
studies on the J1–J2 model have confirmed the occurrence of
a finite temperature transition to a Z2 broken symmetry phase
that belongs to the Ising universality class. Less explored,
however, has been the occurrence of such a transition in the
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J1–J3 model where, in contrast to the original case, the spin
correlations are of spiral type [15, 22, 23]. Classically, for
J3/J1 > 1/4, there are two degenerate incommensurate spiral
ground states, Q = (Q,Q) and (Q,−Q), that are connected
by a global rotation followed by a reflexion about y. Then, the
global symmetry of the classical ground state is O(3) × Z2.
Classical Monte Carlo calculations [24] predict that a Z2
broken symmetry phase described by an Ising nematic order
parameter (see below) survives within the finite temperatures
range (see the inset of figure 6), the transition also being
of the Ising universality class. On the other hand, at zero
temperature, numerical studies for S = 1

2 predict the existence
of an intermediate disordered regime in the range 0.4 .
J3/J1 . 0.8 with, probably, short range order (SRO) plaquette
and spiral regimes between long range order (LRO) Néel and
spiral phases [25–27], while for the special case J3/J1 ' 0.5
there is evidence of a homogeneous spin liquid state [28].

In order to complement the classical Monte Carlo results
and to make contact with the zero temperature quantum
regime, it is important to investigate the interplay between
quantum and thermal fluctuations at low temperatures within
a reliable theory. In this sense, it has been shown that the
Schwinger boson mean field (SBMF) approach based on the
two singlet bond operator scheme [20, 29–31] works very well
for several frustrated models. In particular, for a triangular
AF, we have recently shown that the zero temperature
energy spectrum [32] and the low temperature thermodynamic
properties [33] predicted by numerical methods are correctly
reproduced. In addition, this mean field scheme provides a
qualitatively good description of the finite temperature Ising
transition in the J1–J2 model [20].

Motivated by these results, in this paper we investigate
the occurrence of both the zero temperature SU(2) broken
symmetry ground state and the finite temperature Z2 broken
symmetry transition in the frustrated J1–J3 Heisenberg
model, using the Schwinger boson mean field theory. For
the zero temperature quantum phase diagram (figure 2)
we show that the two singlet scheme of the SBMF takes
correctly into account the effect of frustration J3/J1 within
the collinear phases leading to qualitative and quantitative
differences with respect to previous calculations based
on a one singlet scheme [15]. Although for S = 1

2 the
SU(2) symmetry is always broken with a continuous
quasi-critical transition at J3/J1 ∼ 0.38, from Néel to
spiral long range order (figure 3), local spin fluctuation
considerations allow us to estimate a disordered regime
0.35 . J3/J1 . 0.5 between the Néel and spiral states in
qualitative agreement with recent numerical results [27].
As soon as the temperature increases the finite temperature
phase diagram (figure 6) shows a Z2 broken symmetry
phase characterized by finite Ising nematic order with the
rotational invariance restored. The behaviour of the critical
temperature Tc with frustration, signalled by the vanishing
of the nematic order parameter, compares quite well with
classical Monte Carlo predictions [24]. As the temperature
is further increased two different temperature effects—before
reaching the paramagnetic phase—are observed: for J3/J1 <

1 short range Néel (π, π) correlations are favoured while

for J3/J1 > 1 there is an intermediate novel phase—we
have named it (π, π)4—characterized by four decoupled third
neighbour sublattices with AF short range correlations in each
one.

2. The Schwinger boson approach within the two
singlet scheme

The AF Heisenberg model on a square lattice with first J1 and
third J3 neighbour interaction is defined as

Ĥ = J1

∑
〈ij〉

Ŝi · Ŝj + J3

∑
〈ik〉

Ŝi · Ŝk, (1)

where 〈ij〉 and 〈ik〉 denote first and third neighbours,
respectively, on the square lattice. In using the Schwinger
boson representation for the spin operators [12],

Ŝi =
1
2 b†

i Eσbi, (2)

with b†
i = (b

†
i↑; b

†
i↓) a spinor composed of the bosonic spin- 1

2

operators b†
i↑ and b†

i↓ and Eσ = (σ x, σ y, σ z) the Pauli matrices,
the condition of 2S bosons per site

b†
i↑bi↑ + b†

i↓bi↓ = 2S (3)

must be satisfied in order to guarantee a physical Hilbert
space. After replacing (2) in the spin–spin interaction terms
of (1) they can be written in the following two singlet bond
operator scheme:

Ŝi · Ŝj =: B̂
†
ijB̂ij : −Â†

ijÂij, (4)

with i and j representing either first or third neighbour sites,
and the singlet bond operators Âij and B̂ij are defined as

Â†
ij =

1
2

∑
σ

σb†
iσb†

jσ̄ , B̂†
ij =

1
2

∑
σ

b†
iσbjσ . (5)

We call them singlets because they are rotationally invariant
under SU(2) transformations of the spinor b†

i = (b
†
i↑; b

†
i↓).

The biquadratic terms of (4) are related to the spin operators
as

Â†
ijÂij =

1
4
(Ŝi − Ŝj)

2
−

S

2

: B̂†
ijB̂ij :=

1
4
(Ŝi + Ŝj)

2
−

S

2
.

(6)

Then, after a mean field decoupling of the above expressions,
the mean values of the operators Â†

ij and B̂†
ij can be im-

mediately associated to antiferromagnetic and ferromagnetic
correlations between sites i and j, respectively. Using the
identity : B̂†

ijB̂ij : +Â†
ijÂij = S2 it is possible to write down

the spin interaction (4) in terms of either singlet operator,
B̂ij or Âij, and study independently pure ferromagnetic or
antiferromagnetic phases, respectively [11]. For frustrated
systems, where quantum disordered phases are expected,
there are two schemes of calculation: one takes advantage
of the above identity and uses only Âij operators [15] while
the other one keeps both the B̂ij and Âij operators [29]. In
principle, both schemes are equivalent, but at the mean field

2
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level the two singlet bond scheme has been shown to be
significantly more accurate in describing the magnetically
ordered regions of several frustrated models [29, 30, 32, 33].
More recently, this scheme has been used to explore the
possible existence of completely symmetric [5, 9] and weakly
symmetric—chiral—spin liquid states [6] within the context
of the projective symmetry group. Therefore, the two singlet
scheme seems to be a more proper and versatile framework to
investigate ordered and spin liquid phases in a unified way.

2.1. The mean field decoupling

Performing the standard procedure [29], the spin–spin
interaction (4) is replaced in the Hamiltonian (1) along with
the introduction of a Lagrange multiplier λ so as to fulfil
on average the constraint (3). After a mean field decoupling,
with Aij = 〈Âij〉 = 〈Â

†
ij〉 and Bij = 〈B̂ij〉 = 〈B̂

†
ij〉, and Fourier

transforming the Schwinger bosons to k-space the quadratic
mean field Hamiltonian results,

ĤMF =
∑

k

[(γ B
k + λ)(b

†
k↑bk↑ + b†

−k↓b−k↓)

+ i γ A
k b†

k↑b
†
−k↓ − iγ A

k bk↑b−k↓]

− EMF − 2SλNs, (7)

where

EMF =
Ns

2

∑
δ

Jδ[B
2
δ − A2

δ ]

and

γ B
k =

1
2

∑
δ

JδBδ cos k · δ, γ A
k =

1
2

∑
δ

JδAδ sin k · δ,

with the sums going over all the vectors δ connecting
the first and the third neighbours, Ns is the number of
sites and real mean field parameters satisfying the relations
Bδ = B−δ and Aδ = −A−δ have been assumed. The mean
field Hamiltonian (7) can be diagonalized by applying a
Bogoliubov transformation

bk↑ = ukαk↑ − vkα
†
−k↓

bk↓ = ukαk↓ + vkα
†
−k↑,

(8)

with uk = [
1
2 (1 +

(γ B
k +λ)

ωk
)]

1
2 and vk = i sig(γ A

k )[
1
2 (−1 +

(γ B
k +λ)

ωk
)]

1
2 the Bogoliubov coefficients, resulting in

ĤMF =
∑

k

ωk

[
α

†
k↑αk↑ + α

†
−k↓α−k↓

]
+ EMF (9)

with the same free spinon dispersion relation for the up and
down flavours

ωk =

√
(γ B

k + λ)
2 − (γ A

k )
2. (10)

The mean field free energy is given by

F = EMF + T
∑
kσ

ln
(
1− e−βωkσ

)
, (11)

and the self-consistent equations for the mean field parameters
Aδ , Bδ and λ yield

Aδ =
1

2Ns

∑
k

γA
k

ωk
(1+ 2nk) sin k · δ, (12a)

Bδ =
1

2Ns

∑
k

γ B
k + λ

ωk
(1+ 2nk) cos k · δ, (12b)

S+
1
2
=

1
2Ns

∑
k

γ B
k + λ

ωk
(1+ 2nk) , (12c)

with nk = (eβωk − 1)−1 the bosonic occupation number.
The rotationally invariant nature of the SBMFT allows the
study of magnetically disordered phases at finite temperatures
in agreement with the Mermin–Wagner theorem [19]. This
is manifested in the temperature dependent gapped spinon
dispersion ωk, once the self-consistent equations (12) are
solved, preventing the appearance of infrared divergences
in the theory. Nonetheless, as the temperature decreases the
magnetic structure factor, S(k) =

∑
Reik·R

〈Ŝ0 · ŜR〉, develops
a maximum at Q = 2kmin, with kmin the minimum of the
dispersion relation ωk [12]. For T → 0, the leading order of
this maximum is related to the squared magnetization and

ωkmin as S(Q) = 1
2Ns

(γ B
kmin
+λ)2

ω2
kmin

=
Ns
2 m2. In section 2.2 it is

shown how the rupture of the SU(2) symmetry is described
in the zero temperature limit.

2.2. The treatment of SU(2) broken symmetry in a spiral
ground state

The occurrence of the SU(2) broken symmetry ground state
at T = 0 is related to the condensation of the Schwinger
bosons [13, 14]. To clarify this point it is instructive to focus
on the ground state wavefunction of a finite size Ns system.
Even with semiclassical mean field solutions the ground state
is magnetically disordered with a finite size gap dispersion
that behaves as ω

±
Q
2
∼

1
Ns

. The positiveness of ωk for all k
guarantees the diagonalization of (7), implying a zero spinon
occupation number in the magnetic ground state. Using the
requirement that αkσ |gs〉 = 0, it can be easily shown that the
ground state is a singlet with the following Jastrow form:

|gs〉 = e

∑
k

fkb†
k↑b†
−k↓
|0〉b, (13)

where fk = −vk/uk and |0〉b is the vacuum of Schwinger
bosons b. In the thermodynamic limit ω

±
Q
2
→ 0 and

f
±

Q
2
→ 1, meaning that the ground state develops an infinite

accumulation of spin up and down bosons at k = ±Q
2 . Then,

the ground state can be split as

|gs〉 = |φc〉|gs
′
〉,

where |φc〉 represents the condensed part, and

|gs′〉 = e

∑
k6=±Q/2

fkb†
k↑b†
−k↓
|0〉b

is the non-condensed, or normal, part of the ground state [14].
Given that the starting point (13) is a singlet, the appearance

3
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Figure 1. The mean field parameter structure corresponding to
Néel (π, π) and spiral (Q,Q) correlations for the J1–J3 model. Only
the non-vanishing parameters are indicated in each case.

of the condensate must be related to the rupture of the
SU(2) symmetry. Physically, this can be thought of by
considering the hypothetical process of switching on a
modulated magnetic field h with pitch Q, then taking the
thermodynamic limit Ns → ∞, and finally taking the limit
h→ 0 [13, 12]. For instance, a coherent state

|φc〉 = e

√
Nsm

2

(
b†

Q
2 ↑
+b†

−
Q
2 ↑
+ib†

Q
2 ↓
−ib†

−
Q
2 ↓

)
|0〉b (14)

thus selected gives a quantum spiral state with magnetization
m and spiral pitch Q lying in the x–z plane. In fact, the mean
value of the spin operator in this state yields

〈gs|Ŝx
i |gs〉 = m sin(Q · ri); 〈gs|Ŝy

i |gs〉 = 0;

〈gs|Ŝz
i |gs〉 = m cos(Q · ri);

while the local magnetization m and the condensate of bosons
are related by

〈φc|bk↑|φc〉 =

(
Nsm

2

) 1
2

(δk,Q
2
+ δk,−Q

2
)

〈φc|bk↓|φc〉 = i
(

Nsm

2

) 1
2

(δk,−Q
2
− δk,Q

2
),

(15)

which in real space implies a mean value of the spinors of the
form

(
〈φc|bi↑|φc〉

〈φc|bi↓|φc〉

)
=
√

2m

cos
Q · ri

2

sin
Q · ri

2

 .
Replacing these values in (5) one obtains the semiclassical
expressions for the mean field parameters

Aδ = 〈φc|Â
†
δ |φc〉 = m sin

Q · δ

2
,

Bδ = 〈φc|B̂
†
δ |φc〉 = m cos

Q · δ

2

(16)

Figure 2. The magnetic phase diagram for the J1–J3 model
predicted by the SBMF. Solid lines represent continuous or second
order transitions. Thin lines denote disorder lines between different
SRO regimes. The hatched area is a metastable Néel region and the
dotted line indicates the S = 1/2 case. The dashed horizontal line
corresponds to the SBMF prediction within the one singlet
decoupling for the Néel phase (see text).

which are consistent with the real nature of the mean field
parameters assumed above. This procedure can be performed
for a quantum spiral state with magnetization lying in the
y–z plane. In this case the same semiclassical forms (16) are
recovered but with 〈φc|Â

†
δ |φc〉 imaginary pure. It is interesting

to note that both mean field solutions are related by a global
gauge transformation biσ → eiθbiσ with θ = −π/4. On the
other hand, complex values of the mean field parameters
Aδ and Bδ can be related to the existence of non-coplanar
magnetic or chiral spin liquid states which will be not studied
in this work. For a detailed study of the complex solutions
see [6].

Using (16), the semiclassical magnetic structures are
related to the mean field parameters in the following way (see
figure 1): (a) for Néel Q = (π, π) order, A1x = A1y = A1 6= 0
and B1x = B1y = B1 = 0, while A3x = A3y = A3 = 0 and
B3x = B3y = B3 6= 0; (b) for spiral Q = (Q,Q) order, A1x =

A1y = A1 6= 0, B1x = B1y = B1 6= 0, A3x = A3y = A3 6= 0
and B3x = B3y = B3 6= 0. We have found that this parameter
structure is the same for the LRO and SRO cases, regardless
of the quantum or thermal nature of the fluctuations. It
is worth stressing that for a Néel phase frustration J3 is
taken into account through the parameter B3, whereas for the
one operator scheme of decoupling there is no mean field
parameter sensitive to frustration since A3 = 0 (its physical
consequence is clearly reflected in the local magnetization, see
figure 3).

To study SU(2) broken symmetry states, the self-
consistent equations (12) must be re-calculated taking into
account explicitly the condensate (14) in the thermodynamic
limit. The new set of self-consistent equations results as

Aδ = m sin
Q · δ

2
+

∫
k

γ A
k

ωk
sin k · δ dk (17a)

4
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Bδ = m cos
Q · δ

2
+

∫
k

γ B
k + λ

ωk
cos k · δ dk (17b)

S+
1
2
= m+

∫
k

γ B
k + λ

ωk
dk. (17c)

In addition to the parameters Aδ , Bδ , and λ, the magnetization
m enters as a new self-consistent parameter. From a
comparison with (12) it follows that the condensate
components of (17) correspond to the separate treatment of
the singular modes k = ±Q

2 of the dispersion relation ωk
whereas the sums of (12) are transformed into integrals, as
usually presented in the literature [13]. On the other hand, the
magnon excitations of the quantum spiral state are obtained by
computing the dynamical magnetic structure factor [11, 12].
Here, the spectrum of the S†

k excitations is composed of
a pair-spinon continuum with the lowest energy process
consisting of destroying one Schwinger boson b

±
Q
2 ↓

from

the condensate and creating another one b†
k±Q

2 ↑
in the normal

fluid part [32]. Given that ω
±

Q
2
= 0, the energy cost of such a

spin-1 excitation with momentum k is ωk±Q
2

.

The dispersion relation of the spin-1 excitation in the
large S limit results as

ωk±Q
2
= S

√
[Jk − JQ][Jk±Q − JQ], (18)

where (16) has been replaced in the shifted spinon dispersion
ωk±Q

2
, λ = −SJQ and Jk =

∑
δJδe

ik·δ . The two possible

dispersion relations, ωk+Q
2

and ωk−Q
2

, do not coincide with

the semiclassical linear spin wave (LSW) expression

ωLSW
k = S

√
[Jk − JQ][(Jk+Q + Jk+Q)/2− JQ]. (19)

In fact, to recover the conventional spin wave result singlet
and triplet mean field parameters must be introduced [14].
Nonetheless both (18) and (19) have the same zero energy star
modes k = (0, 0), (±Q,±Q), (±Q,∓Q) [14]. For a given
spiral order (Q,Q) one expects only three zero Goldstone
modes related to the complete rupture of the SO(3) symmetry,
whereas the spurious zero modes (±Q,∓Q) reflect the
lattice symmetry in the spectrum. For example, the spiral
(Q,Q) is related to the spirals (Q,−Q) and (−Q,Q) by a
global rotation combined with a reflexion about y and x,
respectively [24]. In the quantum S = 1

2 case, however, after
the iterative procedure, the SBMF dispersion recovers the
correct Goldstone mode structure at k = (0, 0), (±Q,±Q) for
spiral antiferromagnets, whereas in the spin wave theory the
removal of the spurious zero modes requires one to go beyond
the harmonic approximation [34]. Regarding the functional
form of the physical dispersion one could take the minimum
of {ωk+Q

2
, ωk−Q

2
} as the lowest energy excitation for each k.

Nonetheless, we have recently shown that for the 120◦ Néel
order of a spin- 1

2 triangular antiferromagnet it is possible
to recover the correct dispersion relation—found with series
expansions [35] and LSW plus 1

S corrections [36]—by a
proper reconstruction based on the shifted spinon dispersion
parts of ωk±Q

2
that concentrate the greater spectral weight

of the dynamical structure factor [32]. It is worth stressing

that at the mean field level the two spinons building up the
magnon-like excitation are free but, after corrections to the
SBMF, one expects low energy tightly bound pairs of spinons
merging from the continuum [33].

3. Results

3.1. Zero temperature quantum phase diagram

To obtain the zero temperature quantum phase diagram of the
J1–J3 model for arbitrary S we have computed numerically
the self-consistent equations (17) as follows. Using (16), a
classical structure—A0

δ , B0
δ . m0

= S, and Q0—is replaced in
the spinon dispersion relation (10), in order to get the value of
λ0 that makes the spinon dispersion gapless, (γ B0

±Q0/2
+λ0)2 =

|γ A0

±Q0/2
|
2. From (17c) one obtains m0 and then A0

δ ,B0
δ ,Q0, λ0

and m0 are plugged into (17a) and (17b) to obtain the new
parameters A1

δ ,B1
δ . Noting that the new minimum kmin of ωk

is related to the new spiral pitch as Q(1)
= 2kmin, the iteration

is continued until the process converges. Depending on the
quantum fluctuation strength, which can be measured by the
value of S, there are solutions with Néel and spiral correlations
but with m = 0. We have called these solutions short range
order (SRO) (π, π) and SRO (Q,Q), respectively.

Figure 2 shows the phase diagram predicted by the SBMF
for all spin and several frustration values.

Long range order regimes. For S = ∞ one recovers the
classical continuous transitions at J3/J1 = 0.25 between LRO
Néel and LRO spiral phases [22]. As S is decreased there is an
enhancement of the stability of the Néel phase accompanied
by a similar reduction of the stability of the spiral phase.
This behaviour was predicted some time ago using symmetry
arguments [23]. At the transition line of this regime (solid
line) the magnetic wavevector changes continuously from
(π, π) to incommensurate spiral orders as the frustration is
increased. For spin values S & 1

2 there is a metastable Néel
region characterized by a reentrance shown in the hatched area
of figure 2. This behaviour is characteristic of the non-trivial
interplay between frustration and quantum fluctuations taken
into account by the two singlet operator scheme. In particular,
it has already been found with the same approximation in
related models like the J1–J2 or J2 = 2J3 line of the J1–J2–J3
model on the square [20, 37, 29] and the honeycomb [38, 39]
lattice. If the one singlet operator scheme is applied the solid
line delimiting the LRO Néel phase should be replaced by
the dashed horizontal line of figure 2, missing completely the
effect of frustration for the Néel phase [15, 41]. The reason
for this artefact has already been discussed in section 2.2. For
spin values S . 0.5, the continuous transition turns out to be
a second order transition between LRO and SRO states.

Short range order regimes. The study of the phase diagram
for the non-physical case S < 1

2 is interesting as one can
get an insight into the possible quantum effects beyond the
mean field approximation for the physical case (S = 1

2 ). In
these regimes successive SRO transitions take place across the
disorder lines [40] (thin lines), (π, π) ↔ (Q,Q) ↔ (π2 ,

π
2 ),

5
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as the frustration is varied. Here, the mean field solutions
can be related to the large N limit solutions, κ = 2S

N , where
spinons are exactly free only for κ = 0. Inclusion of finite N
fluctuations may change the nature of the ground state and
the excitations drastically. In this sense, effective gauge field
theories predict that a commensurate SRO ground state is
unstable towards a valence bond solid order with confined
spinons while in the incommensurate SRO case a Z2 spin
liquid state with deconfined spinons is stabilized [15]. This
physical picture, of course, is beyond the scope of the mean
field approximation whose main weakness resides in the
relaxation of the local constraint. For the regime S→ 0 we
have found that the two thin lines, separating SRO (π, π) and
(π2 ,

π
2 ) states, converge into one line (not shown in figure 2)

at about J3/J1 ∼ 1. For J3/J1 < 1 (J3/J1 > 1) only A1x =

A1y = A1 6= 0 (A3x = A3y = A3 6= 0) survives, respectively.
These states that only form singlet bonds Aδ along the links of
largest Jδ coincide with a family of solutions coined greedy
bosons, found within the context of the large N theory for
κ→ 0 [42]. Furthermore, this kind of solution is in agreement
with the upper bounds for the mean field parameters, |Aij| ≤

2S+ 1
2 and |Bij| ≤ S, recently pointed out in [6]. On the other

hand, one can notice the ample room for stability of the SRO
(π, π) phase. In fact, the extended line transition between
LRO spirals and SRO Néel (π, π) phases, about 0.4 .
J3/J1 . 0.65, implies a tendency of quantum fluctuations to
form commensurate magnetic correlations which in turn will
favour valence bond solid states [15]. Based on our previous
work [30], we can safely estimate that Gaussian fluctuations
will increase the stability of the SRO (π, π) and SRO (Q,Q),
pushing the LRO (π, π) and (Q,Q) phases towards higher
values of S, and thus opening an intermediate disordered
window with probably a valence bond solid or Z2 spin liquid
character.

Spin S = 1
2 case. These results are particularly interesting due

to the further comparison with the available numerical studies.
In figure 3 the local magnetization versus the frustration
is plotted for S = 1

2 . There is a continuous transition from
Néel to spiral phases that turns out to be quasi-critical
at (J3/J1)c ∼ 0.38 with quite a small local magnetization
m ∼ 0.015. In the same figure 3 the dashed line shows the
prediction of the one singlet operator Âij scheme. Although
the transition occurs at the same point, the approximation
fails to describe the frustration effects for the Néel phase
as discussed above for the 1

S phase diagram (figure 2).
The inset of figure 3 shows the continuous variation of the
magnetic wavevector Q with frustration (solid line) where a
strong quantum renormalization with respect to the classical
value [22] (dotted line) is observed. For spiral phases, both
schemes of decoupling, one and two singlet operators, predict
the same value of Q (solid line). Regarding the numerical
studies for S = 1

2 , they predict the existence of an intermediate
disordered regime in the range 0.4 . J3/J1 . 0.8 with,
probably, SRO plaquette and SRO spiral regimes between
LRO Néel and LRO spiral phases [25–27], while for the
special case J3/J1 ' 0.5 there is evidence of a homogeneous
spin liquid state [28]. From our previous work [30], we
again estimate that corrections to the mean field will open

Figure 3. The local magnetization m as a function of the frustration
for the case S = 1

2 . The solid line is for the two singlet operator
scheme and the dashed line is for the one singlet operator scheme.
In both schemes the transition point occurs at the value
(J3/J1)c ∼ 0.38. Inset: the Q value, in units of π , of the magnetic
wavevector (Q,Q) versus the frustration.

a disordered window with SRO (π, π) correlations around
the critical value (J3/J1)c ∼ 0.38. By noting that the mean
field on site spin fluctuations 〈Ŝ2

i 〉 =
3
8 2S(2S + 2) do not

coincide with the expected value S(S + 1), one can choose
S in order to adjust the correct local spin fluctuations [6].
This procedure gives a spin value S∗ = 1

2 (
√

3 − 1) ∼ 0.366
that, from inspection of figure 2 at 1

S∗ ∼ 2.73, implies an
SRO Néel region within the range 0.35 . J3/J1 . 0.5.
Since these states have a tendency to form valence bond
solid states [15] we conclude that reasonable agreement with
numerical results [27] will be found. However, to recover
the homogeneous spin liquid state found at J3/J1 = 0.5 one
should improve the calculation, for example, implementing
the local constraint exactly. Recent variational Monte Carlo
studies based on the SBMF ansatz [9] predict a Z2 spin liquid
state in the disordered regime of the J1–J2 model, even in the
absence of spiral SRO [15]. Therefore, in agreement with [28],
we also expect the probable realization of a Z2 spin liquid in
the disordered region of the J1–J3 model. Recently, similar
features have been found using the same approximation for
the phase diagram of the J1–J2 model on the honeycomb
lattice [43].

3.2. Finite temperature phase diagram

The finite temperature phase diagram is obtained by solving
the self-consistent equations (12) with the mean field
parameters Aδ , Bδ , and λ. Here, in agreement with the
Mermin–Wagner theorem, the magnetization m always gives
zero. This rotationally invariant solution corresponds to the
renormalized classical regime with an exponential decay of
the spin–spin correlation functions [44]. In particular, we are
mainly interested in the SRO spiral phases since at finite

6
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Figure 4. The mean field and nematic order parameters versus the temperature for several frustration values. (a) J3/J1 = 0.3,
(b) J3/J1 = 0.6, (c) J3/J1 = 1 and (d) J3/J1 = 1.8.

temperature they break the discrete Z2 symmetry relating the
(Q,Q) and (Q,−Q) phases. In fact, classical Monte Carlo
results [24] predict a Z2 broken symmetry phase that belongs
to the Ising universality class characterized by the nematic
order parameter

σ = 〈Ŝ1 · Ŝ3 − Ŝ2 · Ŝ4〉, (20)

where the numbers denote the sites of a single square
plaquette ordered in the cyclic form (1, 2, 3, 4) [24]. Besides
giving a measure of spiral correlations—it vanishes for Néel
correlations—it is easy to see that the order parameter σ
assumes opposite signs for (Q,Q) and (Q,−Q) correlations.
To compute σ within the SBMF theory it is sufficient to resort
to (4), whence σ is written in terms of second neighbour
correlations as

σ = B2
13 − A2

13 − B2
24 + A2

24. (21)

Although the mean field parameters are the As and Bs to first
and third neighbours, it is possible to calculate B13, B24, A13
and A24 by solving first the self-consistent equation (12) and
then computing (12a) and (12b) with the vector δ connecting
second neighbours (1, 1) and (1,−1). On the other hand,
by plugging in the semiclassical expressions (16) the order
parameter results as

σ = −2S2 sin Qx · sin Qy,

where the sign difference between (Q,Q) and (Q,−Q) states
is evident, as expected.

Depending on the frustration value we have found
different regimes as the temperature is increased from
the zero temperature ground states. Figure 4(a) shows the
temperature dependence of the non-zero parameters A1 and B3

corresponding to a Néel phase at J3/J1 = 0.3. The parameters
decrease monotonically, giving rise to an SRO Néel phase
until T ∼ 0.45. Beyond this temperature the SBMF gives a
perfect paramagnet with all the mean field parameters equal
to zero. Starting from a spiral ground state, two different
temperature behaviours are observed. On one hand, for 0.38<
J3/J1 < 1, the phase with SRO spiral phase undergoes a
transition to SRO Néel phase as the temperature increases,
since fluctuations above a collinear SRO can minimize
the free energy more efficiently. This behaviour, already
observed in related models [45], is shown in figure 4(b)
for J3/J1 = 0.6. Here, the spiral correlations signalled by
σ 6= 0 persist until T ∼ 0.3, while for higher temperatures
SRO Néel correlations are stabilized—A1,B3 6= 0—until the
value T ∼ 0.45 is reached. On the other hand, for J3/J1 > 1,
before reaching the paramagnetic phase there is again an
intermediate collinear phase that we have named (π, π)4
because it is composed of four decoupled third neighbour
sublattices with SRO Néel correlations in each one (see
figure 5). In this way the free energy can be more efficiently
minimized since thermal fluctuations above such a decoupled
collinear AF SRO between third neighbours optimize both the
internal energy and the entropy. This is shown in figure 4(d)
for J3/J1 = 1.8 where only the AF mean field parameter
A3 survives along with a weaker ferromagnetic correlation
between fifth neighbours B5 (not shown in the figure), and
so forth, within the range 0.7 < T < 0.8. Figure 4(c) shows
the special case J3/J1 = 1 where there is a direct transition
from an SRO spiral phase to a perfect paramagnet at around
T = 0.45.

The jumps of A1 and A3 found at this temperature
(figure 4) are due to the difficulty in solving numerically

7
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Figure 5. Schematic magnetic structure corresponding to the
(π, π)4 phase composed of four decoupled third neighbour
sublattices with Néel correlations in each one.

the constraint equation around T = 0.45. Actually, on
approaching from high temperatures, it can be shown
analytically that in certain limits A1 and A3 go continuously
to zero [20]. In this regime all mean field parameters are zero
and the constraint (12c) implies

ωk = λ = T ln
(

1+
1
S

)
. (22)

Then, assuming that in the limit J1 � J3 the first mean field
parameter that switches on is A1 with its semiclassical form,
equation (12a) yields

1
J1
=

1
2N

∑
k

(sin2kx + sin ky sin kx)

ωk
(1+ 2nk). (23)

Replacing (22) and carrying on the two-dimensional integral
of (23) one obtains the critical temperature

T∗1 =
J1

2

( 1
2 + S)

ln(1+ 1
S )
.

For S = 1
2 this temperature, T∗1 ' 0.45, coincides with the

horizontal boundary between the paramagnetic phase and the
SRO Néel phase (J3/J1 < 1) of the finite temperature phase
diagram (figure 6) found numerically. A similar procedure can
be carried out for A3 in the limit J3 � J1, giving the critical
temperature

T∗3 ∼
J3

2

( 1
2 + S)

ln(1+ 1
S )
.

Again, for S = 1
2 , this gives a linear behaviour T∗3 ∼ 0.45J3

that agrees with the boundary between the paramagnetic
regime and the (π, π)4 regime of the finite temperature phase
diagram (figure 6). On the other hand, the boundary of the
Z2 broken symmetry regime has been numerically identified
with the temperature Tc where the nematic order parameter σ
goes to zero. The inset of figure 6 shows the qualitative good
agreement for the critical temperature Tc of the Z2 broken
symmetry phase, as a function of the frustration, predicted by
classical Monte Carlo and SBMF theory. Given that the SBMF

Figure 6. The finite temperature phase diagram for the S = 1
2 case

of the J1–J3 model. Inset: the critical temperature Tc for the Z2
broken symmetry phase versus the frustration predicted by classical
Monte Carlo [24] (dots) and SBMF (solid line).

recovers the classical result in the large S limit, the slight shift
to the right of Tc with respect to classical MC results can be
interpreted as the quantum effect for the S = 1

2 case. Actually,
we expect an even more marked shift once corrections above
the SBMF are computed.

4. Concluding remarks

We have investigated the rupture of the discrete and
continuous symmetries in the frustrated J1–J3 Heisenberg
model using Schwinger boson mean field theory. We have
studied in detail both the SU(2) broken symmetry which has
been explicitly related to the condensate part of the ground
state wavefunction and the Z2 broken symmetry related to
the rupture of the discrete degeneracy of the (Q,Q) and
(Q,−Q) phases. By comparing with already existent results,
we have shown that the two singlet bond operator scheme
of the SBMF gives reliable results for the zero temperature
quantum phase diagram. In particular, this scheme describes
correctly the expected effects of frustration in the collinear
phase [23] that are not captured by the one singlet scheme
used in the literature [15]. For S = 1

2 , local spin fluctuation
considerations allow us to infer a disordered regime 0.35 .
J3/J1 . 0.5 that qualitatively agrees with recent numerical
results [27]. Regarding the finite temperature regime, we
have found a Z2 broken symmetry phase characterized by
the nematic order parameter σ with the rotational invariance
restored. The behaviour of the critical temperature Tc versus
the frustration agrees qualitatively well with classical Monte
Carlo results [24]. Based on these classical MC results, the
possible realization of a Z2 spin liquid with nematic order
in the limit T → 0 between the Néel and spiral phases
has been suggested [24]. It should be noticed, however,
that in principle there is no connection between the Z2
global symmetry of the Ising-like nematic order parameter
σ and the Z2 gauge theory of the spin liquid phase. In
the context of the low energy effective field theory the Z2
gauge symmetry corresponds to the Z2 gauge invariance of

8
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some spinor fields, analogous to the Schwinger boson spinors,
that results from a particular parametrization of the spiral
order [7, 46]. In the present microscopic SBMF the studied
quantum and finite temperature solutions are of the same
nature, with a finite Ising-like nematic order; consequently,
it is important to remark that, if the Z2 spin liquid exists,
its non-trivial properties will appear, for instance, by solving
the hard core local constraint exactly. Nonetheless, at present,
its implementation within the variational Monte Carlo shows
severe limitations allowing the study of system sizes up to 6×
6 [9, 10, 47]. Another interesting result is the general tendency
of thermal fluctuations to stabilize collinear correlations.
In particular, we have found transitions from spiral SRO
to collinear Néel SRO before reaching the paramagnetic
phase: for J3/J1 < 1 short range Néel (π, π) correlations are
favoured while for J3/J1 > 1 there is an intermediate phase
(π, π)4 characterized by four decoupled third neighbour
sublattices with SRO Néel correlations in each one. Classical
Monte Carlo is required for the study of the (π, π)4 phase.

We have shown that the Schwinger boson mean field
theory is a simple and versatile tool that, once adequately
implemented, is able to recover the main features of
frustrated Heisenberg models such as static, dynamic and
finite temperature properties. It would be interesting to
extend the study to doped frustrated antiferromagnets within
the context of the t − J model [48], where it is known
that spiral fluctuations change the hole spectral functions
drastically [49]. Furthermore, the two singlet bond operator
scheme used in this work can be properly extended to the
study of anisotropic frustrated models. In particular, for the
XXZ model on the triangular lattice we have found [50] that
the SBMF recovers the dispersion relation predicted by the
spin wave plus 1/S corrections [36].
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