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We present a stochastic dynamical model for the transmission of dengue that takes into account seasonal
and spatial dynamics of the vector Aedes aegypti. It describes disease dynamics triggered by the arrival of
infected people in a city. We show that the probability of an epidemic outbreak depends on seasonal var-
iation in temperature and on the availability of breeding sites. We also show that the arrival date of an

infected human in a susceptible population dramatically affects the distribution of the final size of epi-
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climatic variations.

demics and that early outbreaks have a low probability. However, early outbreaks are likely to produce
large epidemics because they have a longer time to evolve before the winter extinction of vectors. Our
model could be used to estimate the risk and final size of epidemic outbreaks in regions with seasonal

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Arboviruses is a shortened name given to arthropod-borne
viruses from various families which are transmitted by arthropods.
Some Arboviruses are able to cause re-emergent diseases such as
St. Louis Encephalitis, Chikungunya, Dengue, Ross River disease,
West Nile, Yellow Fever, Equine Encephalitis, etc. [1]. Arthropods
are able to transmit the virus upon biting the host, allowing the
virus to enter the host’s bloodstream. The virus replicates in the
vector but usually does not harm it. In the mosquito-borne dis-
eases, the virus establishes a persistent infection in the mosquito
salivary glands and there is sufficient virus in the saliva to infect
another host during feeding. Each arbovirus usually grows only
in a limited number of mosquito species. The work presented in
this article is focused on mosquito-borne diseases (mainly dengue
fever) transmitted by Aedes aegypti. This is one of the most efficient
mosquito vectors for arboviruses, because it is highly anthropo-
philic, thrives in close proximity to humans and often lives indoors.

Dengue is spread only by adult females, which require blood to
complete oogenesis. During the blood meal the female ingests den-
gue viruses from an infectious human. The viruses develop within
the mosquito and are re-injected in later blood meals into the
blood stream of susceptible humans. Dengue is an acute febrile vir-
al disease (with four serotypes of flaviviruses DEN1, DEN2, DEN3
and DEN4) which presents headaches, bone, joint and muscular
pains, rash and leukopenia as symptoms. Dengue epidemics were
reported throughout the 19th and 20th centuries in the Americas,
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southern Europe, northern Africa, the eastern Mediterranean, Asia,
Australia and on various islands in the Indian Ocean, Central Pacific
and Caribbean [2].

The history of dengue in Argentina began as early as in 1916
when an epidemic affected the cities of Concordia and Parana. In
1947 the Pan American Health Organization (PHO) led a continen-
tal mosquito eradication program and by 1967 the mosquito was
considered to be eradicated in Argentina. The mosquito was de-
tected again in 1986 and since 1997 several epidemic outbreaks
took place in the northwestern and northeastern regions of the
country. A brief history of dengue epidemics in Argentina is found
in Appendix A.

Nowadays A. aegypti is a permanent inhabitant of the city of
Buenos Aires [3-5]. Every summer there is a potential risk of den-
gue virus transmission because of the arrival of viremic people
from Bolivia, Paraguay, Brazil and other endemic countries. How-
ever, no autochthonous cases of the disease have been detected
until present [5], but in the last years some clinical studies con-
firmed dengue infection in people arriving from neighboring ende-
mic countries [6]. Therefore, the development of mathematical
models which permit the estimation of the probability of an epi-
demic outbreak and its final size has become a matter of sanitary
necessity.

The first model of dengue was performed by Newton and Reiter
in 1992 [7]. They developed a deterministic model in which the
populations of hosts and vectors were divided into subpopulations
representing disease status and the flow between subpopulations
was described by differential equations. Several deterministic
models have been developed taking into account different possible
aspects of the disease: constant human population and variable
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vector population [8], variable human population size [9], vertical
and mechanical transmission in the vector population [10], season-
ally varying parameters and presence of two simultaneous dengue
serotypes [11], age structure in the human population [12] and
presence of two serotypes of dengue at separated intervals of time
[13]. In addition, in 2006 Tran and Raffy proposed a spatial and
temporal dynamical model based on diffusion equations using re-
mote-sensing data [14].

There are also other approaches. Focks et al. developed a sto-
chastic model that describes the daily dynamics of dengue virus
transmission in an urban environment based on the simulation
of a human population growing in response to country- and age-
specific birth and death rates [15]. Santos et al. developed a period-
ically forced two-dimensional cellular automata model that de-
scribes complex features of the disease taking into account
external seasonality (rainfall) and human and mosquito mobility
[16].

Our proposal in this article is the third in a series of minimalist
stochastic models. The first describes the seasonal dynamics of A.
aegypti populations in a homogeneous environment [17]. The sec-
ond one describes the A. aegypti dispersal driven by the availability
of oviposition sites in an urban environment [18]. This new model
takes into account the seasonal and spatial dynamics of the vectors
and describes the disease dynamics triggered by the arrival of vire-
mic people in a city.

Our main goal is the development of a mathematical tool that
allows the study of different epidemic scenarios in an urban envi-
ronment, the estimation of the epidemic risk and the study of the
growth and final size of an epidemic outbreak due to the spatial
dynamics of the vector. A particular aim of the work is the estima-
tion of dengue epidemic risk in the city of Buenos Aires, Argentina.

Populations of hosts (Humans) and vectors (A. aegypti) were di-
vided into subpopulations representing disease status: susceptible
(S), exposed (E) and infectious (I) for adult female vectors, and sus-
ceptible (S), exposed (E), infectious (I) and removed (R) for the hu-
man population. The population of adult male mosquitoes is not
taken into account explicitly and we consider that, on average,
one half of the emerging adults are females [19]. Three kinds of fe-
males were considered: adult females in their first gonotrophic cy-
cle (A1 females), females in subsequent gonotrophic cycles (A2
females) and flyers (F), which are the adult females that have al-
ready finished their gonotrophic cycles and fly in order to deposit
their eggs.

The following sections will describe the populations and
events of the stochastic transmission model (Section 2), the
mathematical description of the stochastic model (Section 3),
the parameters, initial values and boundary conditions (Section
4), results and discussion (Section 5), the transcription of the
dengue model into a yellow fever model, the choice of dengue
parameters as well as some minimal computations in the valida-
tion direction (Section 6), and finally, summary and conclusions
(Section 7).

2. Populations and events of the stochastic transmission model
2.1. Populations of the stochastic process

We consider a two-dimensional space as a mesh of squared
patches where the dynamics of the immature stages of the mosquito
and the evolution of the disease take place, and where only Flyers can
fly from one patch to the next according to a diffusion-like process.
We take into account that during the gonotrophic cycles the mos-
quito dispersal is negligible, and once the gonotrophic cycle ends
the female begins to fly, becoming a Flyer in search of oviposition
sites. A detailed explanation of the dispersal model has been already

presented [18]. In the present work, host movement was not taken
into account.

The patch coordinates are given by two indices, i and j, corre-
sponding to the row and column in the mesh. If X, is a subpopula-
tion in the stage k, then X, (i,j) is the X, subpopulation in the patch
of coordinates (i,j).

The transmission of only one serotype of virus was considered,
and mechanical transmission (i.e., without amplification of the
virus in the vector) was not taken into account. The populations
of both hosts (Humans) and vectors (A. aegypti) were divided into
subpopulations representing disease status: S.E.I for the vectors
and S.E.LR for the human population.

Ten different subpopulations for the mosquito were taken into
account: three immature subpopulations (eggs Ej, larvae L
and pupae P;j), and seven adult subpopulations (female adults
not having laid eggs A1, susceptible flyers Fsj, exposed flyers
Fegj), infectious flyers Fi;; and female adults having laid eggs
according to their disease status: susceptible A2sj, exposed
A2ej and infectious A2i ).

Al are always susceptible because we neglect the vertical
transmission of the virus. After a blood meal, A1;; become either
susceptible Fs;; or exposed Fe;;, depending on the disease status
of the host. If the host is infectious, Al;; become Fe;; but if the
host is not infectious, then A1l; become Fs.

The human population Nh;; was split into four different sub-
populations according to the disease status: susceptible humans
Hsij), exposed humans He;;, infectious humans Hi;;, and removed
humans Hr.

The evolution of all the 14 subpopulations is affected by 38 dif-
ferent possible events. Events occur at rates that depend on sub-
population values and some of them also on temperature, which
is a function of time since it changes over the course of the year
seasonally [17,18]. Hence, the dependence on temperature intro-
duces a time dependence in the event rates. A brief description
of the temperature model is presented in Appendix B.

2.2. Events related to immature stages

Pre-imaginal stages of domestic A. aegypti develop in artificial
containers of small volume such as buckets, jars, flasks, bottles
and flower vases [20]. The natural regulation of A. aegypti popula-
tions is due to intra-specific competition for food and other re-
sources in the larval stage. This regulation was incorporated into
the model as a density-dependent transition probability which
introduces the necessary non-linearities that prevent a Malthusian
growth of the population. This effect was incorporated as a nonlin-
ear correction to the temperature-dependent larval mortality.

Then, larval mortality can be written as:

@3(Lij) = miLj) + oLy * (L — 1) (1)
where the value of « can be further decomposed as
o = oo/BSiij) )

with o associated with the carrying capacity of one (standardized)
breeding site and BS;; being the density of breeding sites in the (i, j)
patch [17,18].

Table 1 summarizes the events and rates related to immature
stages of the mosquito during their first gonotrophic cycle. The
construction of the transition rates and the choice of model param-
eters related to the mosquito biology, such as mortality of eggs
(me), hatching rate (elr), mortality of larvae (ml), density-depen-
dent mortality of larvae (a), pupation rate (Ipr), mortality of pupae
(mp), pupae into adults development coefficient (par), and emer-
gence factor (ef), have been previously described in detail [17,18].
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Table 1

Event type, effects on the populations and transition rates for the developmental
model. The coefficients are me: mortality of eggs; elr: hatching rate; ml: mortality of
larvae; a: density-dependent mortality of larvae; Ipr: pupation rate; mp: mortality of
pupae; par: pupae into adults development coefficient; ef: emergence factor. The
values of the coefficients are available in Section 4.

Event Effect Transition rate
(1) Egg death Eij) — Eij —1 wy =me xE;j
(2) Egg hatching Eij — Eijy — 1 wy = elr «E,
Lijy = Lajy +1
(3) Larval death Lij —Lip—1  wy=mlxLgj + oLy * (Lij — 1)
(4) Pupation Lijy — Lij —1 wy = Ipr+ L)
Piij = Pij +1
(5) Pupal death Pijy — Pgj — 1 ws = (mp + par = (1 — (ef /2))) * Pi;

(6) Adult emergence Pj — P — 1
Algy — Algy +1

we = par « (ef /2) x P,

2.3. Local events related to the adult stage

As we have already explained in Section 1, A. aegypti females re-
quire blood to complete their gonotrophic cycles. In this process,
the female may ingest viruses with the blood meal from an infec-
tious human during its Viremic Period (VP). The viruses develop
within the mosquito during the Extrinsic Incubation Period (EIP)
and are then re-injected into the blood stream of a new susceptible
human in later blood meals. The virus in the exposed human devel-
ops during the Intrinsic Incubation Period (IIP) and then begins to
circulate in the blood stream, making the human infectious. The
flow from susceptible to exposed subpopulations (in the vector
and the host) depends not only on the contact between vector
and host but also on the transmission probabilities of the virus:
the transmission probability from host to vector (ahv) and the
transmission probability from vector to host (avh).

Local events related to the adult stage are shown in Tables 2-5.
Table 2 summarizes the events and rates related to adults during
their first gonotrophic cycle and related to oviposition by flyers
according to their disease status. Tables 3 and 4 summarize the
events and rates related to human contagion, A2 gonotrophic cy-
cles and A2e;j and Fe; that become infectious. Table 5 summa-
rizes the events and rates related to the death of A2 and F.

2.4. Events related to flyer dispersal

The development of A. aegypti requires resting sites, oviposition
sites, nectar and blood resources. Different levels of urbanization

Table 2

might be associated with differences in the availability of these re-
sources or the connectivity between patches with resources. Less
mosquito activity was observed in more urbanized areas with
higher density of apartments and/or human population density.
In contrast, more activity was observed in less urbanized areas
with higher house density and/or closer to industrial sites [21].

One open question about A. aegypti dispersal is the motivation
of the flight. In fact, some experimental results and observational
studies show that A. aegypti dispersal is driven by the availability
of oviposition sites [22-24]. According to these observations, we
considered that only Fj can fly from patch to patch in search of
oviposition sites. Flyer dispersal events correspond to event num-
bers n from 26 to 31. The implementation of flyer dispersal has
been described previously [18].

The general rate of the dispersal event is given by:

Wn = fi* Fij) 3)

where n is the event number (n = 26,27,...,31), 8 is the dispersal
coefficient and F; is the Flyer population which can be susceptible
Fsij, exposed Feg; or infectious Fi;.

The dispersal coefficient  can be written as

0 if the patches are disjoint
b= diff/dizj if the patches have at least a common point

(4)

where dj is the distance between the centers of the patches and diff
is a diffusion-like coefficient so that dispersal is compatible with a
diffusion-like process [18].

2.5. Events related to the human population

Table 6 summarizes the events and rates in which humans are
involved. Human contagion has been already described in Table 4
and the evolution of the disease in humans is described in Section
2.3. The human population was fluctuating but balanced, meaning
that the birth coefficient was considered equal to the mortality
coefficient (mh).

3. Mathematical description of the stochastic model

The evolution of the subpopulations is modelled by a state-
dependent Poisson process [25,26] where the probability of the
state:

Event type, effects on the subpopulations and transition rates for the developmental model. The coefficients are ma: mortality of adults; cycle1: gonotrophic cycle coefficient
(number of daily cycles) for adult females in stages A1; ahv: transmission probability from host to vector; ovr;: oviposition rate by flyers in the (i, j) patch; egn: average number

of eggs laid in an oviposition. The values of the coefficients are available in Section 4.

Event Effect

Transition rate

(7) Adults 1 death Algj — Algy —1
Al — Al —1
Feij) — Fegj +1
Al — Algy -1
Fsijy — Fsij +1

(8) I Gonotrophic cycle with virus exposure

(9) I Gonotrophic cycle without virus exposure

(10) Oviposition of susceptible flyers Eqj — Eqj +egn
Fsijy — Fsgj — 1

A2sij — A2 + 1

(11) Oviposition of exposed flyers Eij — Eqj) +egn
Fe(ijy — Feqj — 1
A2ej) — A2eg)) +1

(12) Oviposition of infected flyers Ej) — Eqj + egn
Figg — Figy — 1

A2ij) — A2igj + 1

w7 =ma x Al

wg = cyclel Al = (Hijj/Nhgj)) = ahv

wo = cyclel « Al * ((Nhgj) — Higj))/Nhgj)) + (1 — ahv) = (Hijj /Nhj))

Wig = 0Ur(ij) * FSij)

W11 = 0Urj) * Fegj)

Wiz = 0Urij * Fijjj)
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Event type, effects on the subpopulations and transition rates for the developmental model. The coefficients are cycle2: gonotrophic cycle coefficient (number of daily cycles) for
adult females in stages A2; ahv: transmission probability from host to vector. The values of the coefficients are available in Section 4.

Event

Effect

Transition rate

(13) I Gonotrophic cycle of susceptible

Adults 2 with virus exposure

(14) 1 Gonotrophic cycle of susceptible
Adults 2 without virus exposure

(15) I Gonotrophic cycle of exposed Adults 2

A2sij — A2 — 1
Feij) — Fegj +1
A2sj — Algy — 1
Fsijy — Fsjy + 1

AZe(i_j) — AZe(i_j) -1
Feijy — Fegj +1

wis = cycle2 « A2s;j) + (Hi(ij /Nhj)) * ahv

Wig = cycle2 « A2s;j) + (((Nhgj — Higj))/Nhgj)) + (1 — ahv)ast(Hijj /Nhj)))

wis = cycle2 « A2e;;)

Table 4

Event type, effects on the subpopulations and transition rates for the developmental model. The coefficients are cycle2: gonotrophic cycle coefficient (number of daily cycles) for
adult females in stages A2; ovr;;: oviposition rate by flyers in the (i,j) patch; avh: transmission probability from vector to host; EIP: extrinsic incubation period. The values of the

coefficients are available in Section 4.

Event

Effect

Transition rate

(16) Exposed adults 2 becoming infectious

(17) Exposed flyers becoming infectious

(18) I Gonotrophic cycle of infectious Adults 2

with human contagion

(19) I Gonotrophic cycle of infectious Adults 2

without human contagion

AZe(m — A2e(m -1
A2igj) — A2ijj +1
Feij — Feij —1
Figj) — Figj +1
A2igj) — A2ij — 1
Figj) — Figj +1
Hs(ijy — Hsgij — 1
He(ij) — Hegj + 1
A2igj) — A2ij — 1

Figj) — Figj +1

wig = (1/(EIP — (1/0vr;))+)A2€,,

wi7 = (1/(EIP — (1/0wr(;))+)Fe;

wig = cycle2 x A2i;;) = (Hs(ij /Nhj)) * avh

Wg = cycle2 x A2ij * ((Nh(ijy — Hsij)/Nhj) + (1 — avh) « (Hs;) /Nhj))

Table 5

Event type, effects on the subpopulations and transition rates for the developmental
model. The coefficients are ma: adult mortality. The values of the coefficients are

available in Section 4.

Event Effect Transition rate
(20) Susceptible flyer death Fs(ij — Fsgjy — 1 Wao = ma x Fsjj)
(21) Exposed flyer death Feij — Fejj — 1 W1 = ma x Fe;j
(22) Infectious flyer death Figj) — Figy — 1 Wy = ma x Figjj)
(23) Susceptible adult 2 death A2s(ij — A2sj — 1 W3 = ma = A2s;
(24) Exposed adult 2 death A2ej — A2eij — 1 W4 = ma x A2e;
(25) Infectious adult 2 death A2ij — A2y — 1 Was = ma x A2

(E,L,P,A1,A2s, A2e, A2i, Fs, Fe, Fi, Hs, He, Hi.Hr) ;)

evolves in time following a Kolmogorov forward equation that can
be constructed directly from the information collected in Tables 1-6

Table 6

and in Eq. (4). Fig. 1 shows the subpopulations of vector populations
and the events which affect these populations collected in Tables 1-
5 and Eq. (4). Fig. 2 shows the subpopulations of human populations
and the events which affect these populations collected in Tables 4
and 6.

3.1. Deterministic rates approximation for the density-dependent
Markov process

We consider X is an integer vector having as entries the popula-
tions under consideration, and e,,o = 1...x the events at which
the populations change by a fixed amount A, in a Poisson process
with density-dependent rates. Then, a theorem by Kurtz and
co-worker [25] allows us to rewrite the stochastic process as:

X(t) = X(0) + ; Aﬂ( /0 [ aMX(s))ds) (5)

Event type, effects on the subpopulations and transition rates for the developmental model. The coefficients are mh: human mortality coefficient; VP: human viremic period; mh:
human mortality coefficient; IIP: intrinsic incubation period. The values of the coefficients are available in Section 4.

Event

Effect Transition rate

32) Birth of susceptible humans
33) Death of susceptible humans

(
(
(34) Death of exposed humans
(

35) Transformation from exposed to viremic

(36) Death of Infectious humans

(37) Removal of infectious humans

(38) Death of removed humans

HS(i_j) — HS({_j) +1 W3y = mh % Nh(,'j)

Hsgj) — Hsij — 1 wss = mh * Hs;;)
He;) — Hegj) — 1 w34 = mh « He;;
He(,»_j) — He(m -1 W35 = (]/”P) * He(i_j)
Hijj — Higj +1
Hi(ij) — Hl’(,‘_j) -1 W3 = mh * Hl‘(,‘j)
Hijj — Higj —1
Hrj) — Hrgj +1

ws; = (1/VP) « Hig)

Hrjy — Hrg; —1 wsg = mh x Hr ;)
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Fig. 1. Populations and events of the stochastic model, wheren=1, 2, ..., 31 are the
event numbers collected in Tables 1-4, Eq. (4) and Table 5. Events 1, 3, 5, 7, 20, 21,
22,23, 24 and 25 correspond to vector death and events 26-31 correspond to adult
dispersal.

Fe(i.j)

O

—=> | Hs(ij) | =] He(ij) [=>| HiG,j) |=>| Hr())

33 \1, 34\1, 36\1, 38\
Fig. 2. Populations and events of the stochastic model, 18, 32, 33,...,38 are the

event numbers collected in Table 4 and in Table 6. Event 32 corresponds to human
birth and events 33, 34, 36 and 38 to human death.

where @, (X(s)) is the transition rate associated with the event «
and Y(x) is a random Poisson process of rate x.

The deterministic rates approximation to the stochastic process
represented by Eq. (5) consists in introducing deterministic
approximation for the arguments of the Poisson variables Y(x) in
Eq. (5) [27,28]. The reason for such a proposal is that the transition
rates change at a slower rate than the populations. The number of
each kind of event is then approximated by independent Poisson
processes with deterministic arguments satisfying a differential
equation.

The probability of n, events of type o having occurred after a
time dt is approximated by a Poisson distribution with parameter
/4. Hence, the probability of the population taking the value

X=Xo+Y A, (6)

o=1

at a time interval dt after being in the state X, is approximated by a
product of independent Poisson distributions of the form

Probability(n; ... 1, dt/Xo) = | [ Pa(%) .
a=1

and

le...nf(loc) = eXp(qu) r'lo(Y (8)

whenever X = X, + Y_5_;A,n, has no negative entries and

oo ai ng—=1 i
A o

Piy o) = eXD(=22) 3 Z =1 —exp(~4) Y ©)

i=ny i=0

if {n;} makes a component in X zero (see [27]).
Finally,

di,/dt = (0,(X)) (10

where the averages are taken self-consistently with the proposed
distribution (4,(0) = 0).

The use of the Poisson approximation represents a substantial
saving of computer time compared to direct (Monte Carlo) imple-
mentations of the stochastic process.

4. Parameters, initial values and boundary conditions
4.1. Parameters related to mosquito biology

The description of the development of the transition rates and
the choice of the model parameters related to mosquito biology
and dispersal such as mortality of eggs (me), hatching rate (elr),
mortality of larvae (ml), density-dependent mortality of larvae
(&), pupation rate (Ipr), mortality of pupae (mp), pupae into adults
development coefficient (par), emergence factor (ef), mortality of
adults (ma), gonotrophic cycle coefficients (cyclel, cycle2) for
adult females in stages A1 and A2, oviposition rate (ovr) by flyers
in the (i,j) patch, diffusion-like coefficient (diff) and the average
number of eggs laid in an oviposition (egn) have been previously
described in detail [17,18]. A brief description of these parameters
and their dependence on temperature is presented in Appendix B.

4.2. Parameters related to arbovirus diseases

Table 7 summarizes the parameter values for the model of den-
gue fever transmission [7]. No mortality due to the disease was
considered because only one serotype of dengue virus was sup-
posed to cause the epidemic outbreaks and the seroprevalence of
antibodies in the susceptible population was considered as 0%.
Therefore, the human population was considered fluctuating but
roughly constant during the outbreak period and the birth coeffi-
cient was considered equal to the mortality coefficient mh =
(1/75)years™!.

Table 7

Coefficients, symbols and values of the characteristic parameters of dengue disease.
The coefficients are VP: the human viremic period, EIP: the extrinsic incubation
period, IIP: the intrinsic incubation period, ahv: the transmission probability host to
vector and avh: transmission probability vector to host.

Coefficient Symbol value
Intrinsic incubation period 1P 5 days
Extrinsic incubation period EIP 10 days
Human viremic period VP 3 days
Transmission probability host to vector ahv 0.75
Transmission probability vector to host avh 0.75
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4.3. Initial values and boundary conditions

Studies performed in the city of Buenos Aires [5,29] have shown a
particular spatial distribution of the mosquito and suggest that the
extinction of adults and all aquatic forms of the mosquito are com-
mon in localized areas of the city, being the egg stage the only one
that can survive the winter period. According to these observations,
we chose as initial time July 1st, ran the model with different initial
egg population values and observed no significant differences in any
population numbers provided the mosquito survived until the fol-
lowing favorable season (spring-summer) [17,18]. These results
show a very strong regulatory capability of the environment. The
carrying capacity of the environment, reflected by the Breeding Site
parameter (BS), regulates the mosquito populations, which show lit-
tle to no memory of the population situation 1 year before. There-
fore, we used 10,000 eggs/ha as initial value for the mosquito
populations and considered 1 year as transient period.

Many quarters suitable for the mosquito development have a
population density lower than the population density of the city
(146.3 inhab./ha). Then, we considered as mean population density
100 inhab./ha according to the population densities of the quarters
with high mosquito abundance.

The spatial boundary condition takes into account that the
probability of the flyers F; flying away from the region under
study was considered equal to the probability of flying into that
region, which means a zero average derivative condition. This
assumes that the patch is just part of a larger region with the same
favorable conditions for the mosquitoes.

5. Results and discussion

5.1. Effect of the date of arrival of one exposed human in the final size
of the epidemics

Fig. 3 shows the frequency of the final size of epidemics as a func-
tion of the date of arrival of one exposed human in the susceptible

154

Frequency

°

human population. By final size of epidemics we understand the
total number of susceptible humans who were infected during the
epidemic outbreak. We performed the simulations using a grid with
13 x 13 patches and with a density of breeding sites of 200 BS/patch.
We started with 100 susceptible humans and 10,000 mosquito eggs
in every patch July 1st and we ran the simulations for 2 years. The
seasonal variation of temperature was calculated by using Eq. (16)
(see Appendix B). Only the second year of each simulation was ana-
lyzed since the first year was considered as transient (see Section
4.3). This procedure was repeated 100 times for 12 different dates
of arrival of one exposed human in the susceptible human popula-
tion in the central patch of the grid during the second year of the sim-
ulation. Histograms of the final size of epidemics were constructed
using a bin size of 1000.

Fig. 3 shows that no epidemic outbreaks take place during the
winter season and that the final size distribution is bimodal (i.e.,
either no or only a few individuals are infected or else a fairly large
proportion of the susceptible population is infected, such as in
standard Markovian SIR epidemic models) [26]. Fig. 3 also shows
that the date of arrival of the exposed human affects not only the
shape but also the center of the distribution.

In order to see more clearly the details of the histograms, Fig. 4
shows the histograms of non-zero final size of epidemics for four
different dates of arrival of the exposed human: November 1st,
December 1st, January 1st and February 1st. This is, the relative
frequency of an epidemic according to the size (binned) condi-
tioned to be a non-zero epidemic. The analysis of the probability
of no-development of an epidemic outbreak is discussed in Section
5.2.

Fig. 4 clearly shows that the date of arrival of the exposed human
dramatically affects the distribution of the final size of epidemics. If
the exposed human is incorporated into the susceptible population
on November 1st, the frequency of development of epidemic
outbreaks is low but instead the maximum final size is very high
reaching almost 62% of the initial susceptible population. That corre-
sponds to a scenario in which the probability of an epidemic

Fig. 3. Histograms of final size of epidemics vs. date of arrival of one exposed human in the susceptible population for simulations with 200 BS/patch and an initial population

of 100 susceptible humans/patch.
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patch, an initial population of 100 susceptible humans/patch and dates of arrival of the exposed human: November 1st, December 1st, January 1st and February 1st.

outbreak is low but in case of an outbreak the consequences are of
sanitary emergency. By comparing the four histograms it can be seen
that the later the date of arrival of the exposed human during the
summer season, the lower the centers of the final size distribution.
In order to understand the underlying processes that determine this
behavior, we compared the temporal dynamics of the infectious
population with the temporal dynamics of the mosquitoes (Fig. 5).
Fig. 5A shows the evolution of the infectious human population
under the conditions already described, initial human population
of 100 susceptible humans/patch and four different dates of arrival
of the exposed human: November 1st, December 1st, January 1st
and February 1st. The infectious human population profiles corre-
spond to typical results belonging to final sizes of the center of the

A 600

distributions. Fig. 5 B shows the temporal dynamics of the adult fe-
males per patch.

As it was already observed in Fig. 4, outbreaks starting with the
arrival of the exposed human in late spring (November 1st) will
have a lower chance to evolve, but those that eventually develop
are likely to produce large epidemic outbreaks (Fig. 5A) because
they have a longer time to evolve until the disappearance of the
adult vector population at the beginning of the winter season
(Fig. 5B). A later arrival of the exposed human (December 1st to
February 1st) produces outbreaks with lower populations of infec-
tious humans because in all the cases studied the end of the epi-
demics was not due to the depletion of the susceptible humans
but rather to the extinction of the mosquitoes by the end of fall
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Fig. 5. Temporal evolution of the Infectious human population and the adult female vector population per patch for simulations with 200 BS/patch and for four different dates
of arrival of the exposed human: November 1st, December 1st, January 1st and February 1st.
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and the beginning of winter. That means that the beginning of the
outbreak influences the dynamics of the disease and the final size
of the epidemic, being the end of the epidemic modulated by the
mosquito seasonal dynamics.

While Fig. 5A shows the temporal dynamics of the infectious
populations, Fig. 6 shows the spatio-temporal evolution of the
infectious human population during an outbreak for a grid of
13 x 13 patches, 200 BS/patch and an initial population of 100
susceptible humans per patch. The outbreak is originated by the
arrival of one exposed human on January 1st at the central patch
of the grid. Fig. 6 shows four pictures that represent four different
moments of the outbreak (considering January 1st as day = 0): the
early stages of the epidemic outbreak, characterized by the appear-
ance of the first secondary infectious humans in the central and
surrounding patches (day 25), the development of an epidemic fo-
cus in the center of the grid (day 60), the decrease in the infectious
population in the center of the patch because of recovery and the
spread of the disease in all directions resembling a cylindrical trav-
elling wave in a reacto-diffusion model (day 100) and finally the
last stages of the outbreak because of the extinction of the adult
female mosquito population by the end of fall and the beginning
of winter (day 125).

5.2. Effect of the density of breeding sites in the probability of no-
development of an epidemic outbreak

Having studied the effect of the date of arrival of the exposed
human, we studied the effect of the density of breeding sites. A
higher density of breeding sites corresponds to a higher population
of mosquitoes [17] and a possible higher probability of develop-
ment of an epidemic outbreak because of the higher availability
of vectors spreading the disease. In order to check this possibility,
we ran a new set of simulations with different densities of breed-
ing sites.

Fig. 7A shows the probability of no-development of an epidemic
outbreak (started from only one exposed/infected human) P(0) as a
function of the date of arrival of the exposed human in the suscep-

tible population for four different densities of breeding sites: 20,
50, 100 and 200 BS/patch, and Fig. 7 B shows the pupae per person
ratio for 20, 50, 100 and 200 BS/patch. The probability of no-devel-
opment of an epidemic outbreak (P(0)) was estimated by the fre-
quency of runs with zero final size of epidemic and the pupae
per person ratio (r) was estimated as the total pupal population
normalized by the total human population.

In Fig. 7 we related the probability of no-development of epi-
demic outbreaks to the pupae per person ratio because this ratio
has been used as an index of infestation and as an epidemiological
indicator of dengue transmission in tropical locations [30]. This in-
dex involves the pupal population because pupae are easy to be
counted and identified from other genera, pupal mortality is slight
and well-characterized and finally because the density of pupae is
highly correlated with the density of adults.

Fig. 7 shows that the pupae per person ratio grows with the
density of breeding sites but the probability of no-development
of an epidemic outbreak (P(0)) decreases with the density of
breeding sites, being almost in phase with the pupae per person ra-
tio. For each density of breeding sites the maximum pupae per per-
son ratio and the minimum P(0) are reached between January and
March (summer and the beginning of fall).

5.3. Caution regarding the notion of epidemic thresholds

The notion of epidemic threshold has been discussed repeatedly
in the literature. Its meaning is clear in terms of deterministic
equations, where the loss of stability of the equilibrium represent-
ing no infected people gives rise, by standard mechanisms of bifur-
cation theory, to a stable (endemic) equilibrium. The threshold
notion has been extended to stochastic processes using the limit
of large populations where the rates associated with the stochastic
process can be linearized [31,26], and the stochastic process can be
approximated by a branching process. While such method gives
rise to a clear operational procedure in terms of equations, it does
not provide a natural criterion. The notion of threshold is usually
presented as: when the introduction of one exposed/infected

(c) day100

(b) day60

(d) day125

Fig. 6. Spatio-temporal evolution of the infectious human population during an outbreak for a grid of 13 x 13 patches, 200 BS/patch, an initial population of 100 susceptible
humans per patch and the arrival of one exposed January 1st in the central patch of the grid. Four moments of the outbreak are shown: days 25, 60, 100 and 125 considering

January 1st as day = 0.
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Fig. 7. Probability of no-development of an epidemic outbreak (P(0)) and pupae per person ratio (r) vs. the date of arrival of the exposed human in the susceptible population

for different densities of breeding sites, 20, 50, 100 and 200 BS/patch.

individual into a community of susceptible individuals will not
give rise to a large outbreak with probability one, the system is be-
low threshold. The criterion is associated with the necessary use of
the word “large”. In natural sciences there is no “large” or “small”
but rather “larger than” and “smaller than”.

Nevertheless, not always the introduction of an infective human
results in a major epidemic. Two epidemiological scenarios are
possible, as it has been already shown in Fig. 3. Either no infection
or only a few individuals will become infected or else a large pro-
portion of the population of susceptible humans will have been in-
fected by the end of the epidemic [26], but no clear non-arbitrary
threshold can be computed from observations or simulations.

Several works have been carried out [7,8,10,13,12] in order to
find a suitable expression for the basic reproductive number Ry
for dengue transmission. By Ry we understand the average number
of secondary cases arising from a single primary case in a large
population of susceptible humans, and it is used as an ordinary
threshold condition for the existence of an endemic state.

In 2000, Focks et al. attempted to develop dengue transmission
thresholds for several dengue-endemic or dengue-receptive tropi-
cal locations in terms of the pupae per person ratio [30], and esti-
mated this ratio in several conditions of constant temperatures and
initial seroprevalences of antibodies in the population. In particular
the ratio is approximately between 1 and 3 for constant tempera-
tures between 24 and 26 degrees (according to daily mean temper-
atures of the city of Buenos Aires in summer) and with an initial
seroprevalence of antibody of 0%.

Considering Figs. 4 and 7 jointly, we see that the epidemic out-
breaks for 200 BS that start on November 1st (day 123 in Fig. 7)
present about 1 pupa per human and a probability of not develop-
ing an epidemic of 0.8, but a possibility of having large epidemic
outbreaks. This is not precisely a disagreement between our work
and that by Focks et al., but rather a necessary consequence of sea-
sonal effects not included in the models by Focks. Such effects not
always take the form of summer-winter temperature differences,
but even in tropical regions they are present as humid (rainy)-
dry seasons.

According to our model, pupae per person ratios between 1 and
3 would correspond to densities between 50 and 100 BS/patch and
probabilities of no-development of an epidemic outbreak P(0)
between 0.75 and 0.45, respectively. Differences between both
models were not unexpected because even though the pupae per

person ratio might be a good estimate of A. aegypti infestation,
its use as a dengue risk index is doubtful in temperate climates
where the mosquito spatio-temporal dynamics modulates the
epidemic outbreaks. We have already shown that very unlikely
epidemic outbreaks beginning at the end of spring could lead to
large final sizes of epidemics.

In 1964, M. S. Bartlett proposed a simple analytical expression
for the probability of no major epidemics started from only one in-
fected human [31]. This probability Q" is given by Eqgs. (11) and
(12). We must keep in mind that in Bartlett’s model, vector popu-
lations and infection rates were considered constant (no seasonal
effects) although he was inspired in malaria (a comprehensive
retelling of Bartlett results can be found in [32]).

Q* Py (,UZ + 4 *Sh)
" 1% Sh(pty + A2 % Sv)

(11)

or
Q=1

whichever is the smaller and where Sh is the initial population of
susceptible humans, Sv is the initial population of susceptible vec-
tors, /; is the rate of infection for humans per susceptible human
per infected vector, /, is the rate of infection for vectors per suscep-
tible vector and infected human and g, and u, are the removal rates
for infected humans and vectors, respectively.

According to our model, the parameters of Bartlett’s model can be
expressed as: ; = cycle2 x avh, 2, = cyclel « ahv, u, = (1/VP), u, =
ma, Sh = Nhgj) and Sv = Av;; which is the total adult female vector
population whose dynamics are seasonal. Then a Bartlett-like esti-
mate of P(0) is given by Eqs. (13) and (14).

(1/VP) * (ma + cycle2 « avh * Nh(ij))

(12)

Q= cycle2 « avh = Nhg;)((1/VP) + cyclel = ahv « Ay ) (13)
or
Q' =1 (14)

whichever is the smaller and where cyclel and cycle2 are the
gonotrophic cycle rate coefficients (see Appendix B), ahv is the
transmission probability from host to vector, avh is the transmis-
sion probability from vector to host, (ahv = avh = 0.75), VP is the
viremic period (VP =3 days),ma is the mortality coefficient of
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adult vectors ma = 0.091 days ' and Nh;; and Avg; are the

human and adult female vector populations per patch respec-
tively.

Fig. 8 shows the P(0) values obtained with our model (with 0.90
confidence intervals) vs the date of arrival of the exposed human in
the susceptible population for different densities of breeding sites
(20, 50, 100 and 200 BS/patch) and, for comparison, results derived
from a Bartlett-like Model, Eq. (13). First, notice that the Bartlett
model assumes a constant vector population, which we took as
the population of the day the first infectious individual is placed.
Second, Bartlett's model produces the probability of not having a
major outbreak (P*) where as already explained, major has no pre-
cise meaning, but we know that P* > P(0). Finally, Q" is an approx-
imation to P* that not only simplifies the biological problem but
also introduces linear rates instead of the non-linear rates of the
problem. The way in which the linearization is performed disre-
gards the slowing down (and eventually ceasing) of the epidemic
outbreak by the exhaustion of susceptible individuals and satura-
tion of exposed vectors. Since P* > Q" and P > P(0) the relation
between Q" and P(0) is not fixed a priori.

Fig. 8 shows that for low vector densities (20 and 50 BS/
patch) Q" > P(0). We see that Q" would suggest zero probability
of large epidemic outbreaks starting on November 1st or May
1st even for 200 BS/patch, although both situations are quite dif-
ferent. Epidemics starting on May 1st have no chance to develop
into large epidemic outbreaks but those starting on November
1st can produce major outbreaks although with small frequency.
When the epidemic outbreaks start near the maximum of the
mosquito population (February 1st) the estimation by Eq. (13)
goes from excess at 20 BS/patch to defect at 200 BS/patch corre-
sponding to the increase in the abundance of vectors and the
corresponding improved performance of the linearization. For
20 BS/patch, the predicted epidemic outbreaks starting on Janu-
ary 1st involve 14 cases. However, whether 14 cases represent
a not-large epidemic outbreak in a region with no precedents
of dengue is a matter of public policy and cannot be settled by
mathematical criteria completely unrelated to public health
criteria.

6. Miscellaneous discussion
6.1. Dengue and yellow fever

Dengue and yellow fever are two kinds of encephalitis that pro-
duce hemorrhagic fever. At the level of description explored in the
present work they are not distinguishable, except perhaps for dif-
ferent characteristic times of the clinical phase and the extrinsic
cycle of the virus.

From a clinical point of view, the main difference between
dengue and yellow fever is the mortality of the toxic period. In
both diseases, fever takes a saddle back pattern, with fever drop-
ping or disappearing during some hours (up to 48 h) followed by
a re-emergence [34,37]. In yellow fever, this second febrile period
is called the “toxic period” and occurs in about 15-25% of the cases
[33], leading to death in about half of them. The toxic period in yel-
low fever is not contagious and as such does not change the
dynamics of the epidemic.

From a virological point of view, dengue and yellow fever are
produced by two flaviviruses of the Flaviviridae family [35].

The involved vector in the Americas for urban yellow fever and
dengue is the same mosquito: A. aegypti [20,36,35].

The immunological response to these viruses is so similar that
the IgG-ELISA and hemagglutination-inhibition tests cannot distin-
guish between flaviviruses [37]. It has been argued that dengue
could provide immunity for yellow fever, an argument that has
been later proven wrong by experiments in mice [38]. Yet, chime-
ric dengue vaccines are being sought as modified yellow fever vac-
cines [39], a project that exploits similarities at the molecular level
of both viruses.

All the similarities described indicate that our dengue model
can be used, with a proper choice of parameters, to simulate urban
yellow fever outbreaks, as discussed in [35] for simpler models.

6.2. Choice of parameters for dengue

The quantitative details of dengue transmission are not com-
pletely known, in part because clinical manifestations of dengue
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Fig. 8. Probability of no-development of an epidemic outbreak (with 0.90 confidence intervals) vs the date of arrival of the exposed human in the susceptible population for
different densities of breeding sites, 20, 50, 100 and 200 BS/patch and comparison with results predicted by Bartlett Model.
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do not follow immediately the inoculation of the virus by the
mosquito. The acute febrile period begins after 3-14 days of
inoculation [2] (Gubler reports that averages are in the range of
4-7 days [37]). During the febrile period, which lasts between 2
and 19 days, dengue viruses can circulate in the peripheral blood
[[37]p484]. Since these numbers are conditioned to those people
reporting dengue symptoms, thus asymptomatic and subclinical
cases are not part of the sample adding more uncertainties to the
description. In addition, “viremia usually peaks at the time or
shortly after the onset of illness and may remain detectable for var-
ious periods ranging from 2 to 12 days” [[37], p. 487].

More uncertainties are added by the various kinds of models
used for dengue. In a first group we have the stochastic models
with exponentially distributed times and their deterministic limits
such as in [7,9,10] and this work. These works follow Newton and
Reiter [7] in their choice of parameters, with an average intrinsic
incubation period of 5 days and average viremic period of 3 days.

A second set of parameters is used by Focks et al. [15]. The de-
fault value for the duration of the incubation period is of 4 days
and for the duration of viremic period is of 5 days. The precise
way in which this parameter is used is not clear, presumably in
an accounting program (also called dynamics time table). After
being infected, people enter the incubation stage and after 4 days
move into the viremic phase, which lasts 5 days. To add further
complexity, the transmission of virus to the biting mosquito re-
sponds to the level of viremic titer, whose form changes along
the viremic period.

A third and last set of parameters is used in a deterministic
model implementing the so-called linear-chain-trick [40]. In this
case the mean intrinsic incubation period is of 5.5 days and the
viremic period has a mean of 5 days (These averages correspond
to incomplete gamma distributions associated with 54 and 25
exponentially distributed steps).

It is clear that the three families of models rely heavily on what
is possible to simulate. Existing data are scarce. Experiments per-
formed with human beings before World War II are perhaps the
best source of data. Recently two of these experiments have been
revisited [41].

The incubation period is defined in [41] as the time from the
mosquito bite until the day of the onset of the illness (i.e., fever),
and averages 6 days (DEN4) and 5.7 days (DEN1) with cases as
early as 3 days and as late as 10 days. The viremic period is counted
from the onset of classical dengue symptoms (day zero) and ex-
tends from —2 to 3 days (i.e., the possibility of infecting a mosquito
can precede 2 days the appearance of clinical symptoms). In order
to compute Virus Transmission Rates (VTR(t)), counting by days
from the inoculation, we need to perform the convolution

/0 Gnc(t — 5)g(5)ds (15)

where ¢;,.(s) is the probability density distribution for the incuba-
tion time and g(s) the probability of infecting a mosquito at the time
s after the onset of the contagious period (i.e., g(t) is zero for
t ¢ [0, WV] where WV is the limit of the window for viremia). The
experimental function reported in [41] has WV = 5 days, the accu-
mulated weight factor of virus transmission is W = fg’w g(s)ds =
3.5, the average time of incubation (i.e., before viremia) is 4 days
(DEN4) and 3.7 days (DEN1) and the average transmission time is
ATT = fé’w sg(s)ds/W, which takes the value ATT = 2.38 days count-
ing from the start of the viremic period.

The interpretation of the identified characteristics is as follows:
assume that susceptible mosquitoes bite at a constant rate b and
that the time is counted from the beginning of the viremic period.
When t > WV there are no viruses transmitted to the mosquitoes.
The average number of infected mosquitoes per viremic person is

then W b, while the average time when a mosquito loaded the
virus is ATT. When the viremic period is exponentially distributed
with parameter VP and the transmission probability from host to
vector is ahv, we have W = VP ahv and ATT = VP.

It is extremely important to notice that the incubation period as
defined by Gubler [37] and by Nishiura and Halstead [41] differs in
meaning with the incubation period given in modelling works
including those by Focks et al. [15], Chowell et al. [40] and this
work. Incubation period refers to the time from virus inoculation
to fever in [37,41] and from virus inoculation to the beginning of
the infective period here and in [15,40].

We summarize the results corresponding to the data and mod-
els in Table 8. Notice that the value of W will only be relevant when
not only the evolution of the epidemic but also the adult mosquito
population is measured, since the mosquito population (or the
number of breeding sites in this work) is roughly a multiplicative
factor in front of g(s).

When the human viremic period is changed in the model, both
ATT and W change according to the assumed exponential distribu-
tion of the viremic time. As W increases, we expect a larger pro-
portion of mosquitoes infected and thus more circulation of the
virus and larger final size of the epidemic. However, the opposite
effect may occur to a lesser degree since it takes a longer average
time for a mosquito to load the virus, reducing the number of
contagious cycles prior to winter, and resulting in smaller out-
breaks. We illustrate these effects in Fig. 9. All the plots corre-
spond to the final size of an epidemic started with the arrival
of one infected person on January 1st and correspond to an envi-
ronment with A. aegypti sustained in the equivalent to 200 breed-
ing sites. The plot in the center is the same plot shown in Fig. 4
for January, repeated to facilitate the comparison. On top, only
the viremic period has been changed from 3 to 5 days, resulting
in larger epidemics as expected. The bottom plot presents the
same change in viremic period with the additional change of
ahv (7) from 0.75 to 0.45 to compensate the change of W. We
can see then how the effect of a longer period produces smaller
epidemics when the infected mosquitoes are compensated by
other parameters.

6.3. A first encounter with (real) dengue

The history of dengue in Argentina has been resumed in Appen-
dix A, but the account in the appendix was up to the date of sub-
mission of the initial version of this work.

Between the date of the first version and that of the revised ver-
sion, the largest ever epidemic of dengue in Argentina developed.
With several simultaneously active focus disseminated through
the country, such as in Charata, Catarmarca, Tartagal, Oran, Tuc-
uman and other cities, dengue virus began to circulate through
the country. In retrospect, the initial cases emerged at the begin-
ning of January while the peak of the epidemic was around mid-
April [42].

Table 8

Comparison of dengue transmission parameters in different works. The present work
follows [7]. The values extracted from [41] are direct elaboration of experimental
data. IIP = intrinsic incubation period; ATT = average time virus transmission (human
to mosquito); IIP + ATT = characteristic time from onset of dengue and mosquito
infection; W = accumulated weight factor of virus transmission and WV = window of
viremia.

Work [IP/days ATT/days 1+ATT/days W WV/days
Newton [7] 5 3 8 2.25 —
Focks [15] 4 0-5 4-9 1.5-2.75 5
Chowell [40] 5.5 ~2.5 ~8 ~0.98 —
Nishiura [41] 4 (DEN1) 2.38 6.38 35 5
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Fig. 9. Frequency of the total number of infected people in 100 simulations of epidemic outbreaks starting on January 1st for 200 breeding sites per block. Top, viremic period
of 5 days (ATT = 5 days, W = 3.75). Middle, viremic period of 3 days (ATT = 3 days, W = 2.25) and bottom, viremic period of 5 days (ATT = 5 days, W = 2.25).

During the year, a total of 106 imported cases were confirmed in
the city of Buenos Aires. However, potential local cases were rou-
tinely dismissed until the end of March enforcing the belief that den-
gue transmission was not possible in the region. The total of local
cases confirmed so far is of 20. During the same period of time only
72 imported cases were confirmed (the geographical distribution of
cases presents higher density in the quarter of Mataderos than in
other regions of the city). Assuming an equal handling of local and
imported cases, the ratio between local cases and total cases (R) is
R~ %~ 0.22, while our computations for Mataderos (a district
which has the largest recorded infestation of A. aegypti) are in the
range: 0.05 < R < 0.76 for infected people arriving on April 1st
(see Fig. 10). The range computed corresponds to the intrinsic diffi-
culties of estimating the number of breeding sites in the area.

While a detailed calculation is for the time being not possible
since details of the information are not available, we notice that
the model scales in the limit of large numbers with the number
of breeding sites, provided the ratio BS/human is kept constant.
In this extreme simplification, the data of the city of Buenos Aires

correspond to 0.5 BS/human according to our calculations. How-
ever, data available for the great Buenos Aires area (which includes
several satellite cities making a continuous urbanization) produce
an estimate of R = 0.58 which roughly corresponds to small epi-
demic scenarios computed for ratios of about 1.5 BS/human. These
data must be considered with extreme caution because reports of
confirmed cases are still changing.

The model has then survived its first encounter with dengue
transmission, being able to predict without any tuning, that the
ecological conditions in the city of Buenos Aires (and its extended
area) made it possible the circulation of the dengue to a limited ex-
tend, for infected people arriving by late March and early April.
According to the model, the date of arrival has been crucial for this
outcome and more dangerous epidemic situations would develop
in case of arrivals earlier in the year.

The data made so far available by the Health authority do not
make it possible a deeper analysis. We can only hope that the
information will be made available in the future so that more de-
tailed checks can be performed on the model.
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Fig. 10. Ratio between local cases and total cases in 100 runs (R) computed for different ratios of breeding sites to human beings in Mataderos.
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7. Summary and conclusions

We have developed a stochastic dynamical model for the trans-
mission of dengue that takes into account the seasonal and spatial
dynamics of the vectors and describes the disease dynamics trig-
gered by the arrival of infected people in the city and modulated
by the seasonal and the spatial vector dynamics.

The model takes into account the populations of both hosts
(Humans) and vectors (A. aegypti), which are divided into subpop-
ulations representing the disease status: susceptible (S), exposed
(E) and infectious (I) for adult female vectors and susceptible (S),
exposed (E), infectious (I) and removed (R) for humans. The trans-
mission of only one serotype of virus is considered and mechanical
transmission (i.e., without amplification of the virus in the vector)
is not taken into account. The evolution of the populations is con-
sidered in terms of random events with transition probabilities
prescribed in terms of the mosquito biology, the disease evolution
and the local environment. The model can be easily extended to
other diseases propagated by Aedes aegypti such as yellow fever.

While any model is reductionist, we have tried to build our
model avoiding as much as possible simplifying hypotheses (i.e.,
hypotheses with dubious biological support introduced only to
render the calculations simpler). We actually intended to produce
a simple but realistic model, where the different biological pro-
cesses are reflected and acknowledged. Our expectation is that in
case the model is shown not to agree with field research, the falsa-
tion will move up to the hypotheses and a piece of ignored or mis-
understood biology will be unearthed. Despite the very large
number of parameters required by the model, there are no free
parameters to fit the model to the observations, not even the num-
ber of active breeding sites (BS) which are hard to evaluate but not
hard to estimate.

We showed that the date of arrival of an exposed/infected hu-
man in a susceptible human population dramatically affects the
distribution of the final size of the epidemics. Outbreaks starting
with the arrival of the exposed in the late spring, have a lesser
probability to evolve, but those that eventually develop are likely
to produce large epidemic outbreaks because they have a longer
time to evolve until the extinction of the adult female vector pop-
ulation at the beginning of winter. In the contrary, a later arrival of
the exposed in summer (even if the probability of an epidemic out-
break is higher) produces outbreaks with lower populations of
infectious humans because the end of the epidemics is modulated
by the progressive extinction of the adult female mosquitoes by
the end of the autumn season.

Furthermore, when conditions are favorable for the spreading of
dengue in summer, the epidemic outbreak is quenched by the
extinction of the adult female population in winter. When the loca-
tion presents a seasonal dependence of climatic conditions, and
one season is sufficiently adverse to the mosquito to prevent the
spread of dengue, the probability of secondary cases will strongly
depend on the basic reproductive number and on the time of
arrival of the exposed person. Yet, even in situations below the epi-
demic threshold [31] not significantly large epidemics can sustain
the circulation of the virus until favorable conditions for a large
epidemic are reached. Seasonal climatic variations not only include
temperature as considered here, but also humid-dry periods as in
the cases studied in [16].

We believe that the results presented make a strong case for the
necessity of predictive models as opposed to “criteria”. If preven-
tive measures are to be taken in time to be useful, and not late
as quite often happens, it is necessary to predict the evolution of
mosquito populations and the viral disease according to the real
situation. Actually, mathematical models have the advantage of
making explicit the predictive mechanism while criteria, once
separated from the originating work, appear as universal conclu-

sions, as they leave for the user the verification of hidden
hypotheses.

Our model could be used as a mathematical tool to study differ-
ent epidemic scenarios in urban environments and to estimate the
risk and final size of epidemic outbreaks in temperate cities where
seasonal temperature changes cannot be ruled out. For general use,
the model needs to incorporate the dry-humid cycle. Work is in
progress in this direction as well, but we anticipate that current
biological knowledge on this matter is not as accurate as the
knowledge of the temperature influence, and the development of
an improved model runs in parallel with the development of bio-
logical understanding.

Having formulated a model that intends to be almost as realistic
as possible under present knowledge of the problem, we intend to
“validate” it by contrasting its results with real epidemic observa-
tions. The recent circulation of the virus in the target region will of-
fer a good opportunity for validation. The model can be easily
adapted to other regions using the appropriated climatic data,
and further validation and/or tuning can be achieved in this form.
Furthermore, since the model can also be easily adapted to yellow
fever outbreaks (as discussed in Section 6.1), the eco-epidemiolog-
ical approach supported in the description of the mosquito A. ae-
gypti can be tested with the historical records of urban yellow
fever epidemics. The reconstruction of the historic epidemic of
1871, with its more than 13,000 death cases will be the subject
of a separate study.

The discussion regarding the choice of parameters in Section 6
indicates that compensatory effects may occur. Epidemic data
may not be enough to determine, indirectly, parameter choices un-
less the details of the epidemic outbreak are considered and the
mosquito abundance is sampled. The data recently made available
by Nishiura and Halstead [41] suggest that all the existing dengue
models will fail at one point or another, and that new forms of
modelling are needed to achieve further realism.

Acknowledgements

The authors acknowledge CONICET and the support given by
the University of Buenos Aires under Grant X308 (2004-2007),
X210 (2008-2010) and by the Agencia Nacional de Promocion
Cientfica y Tecnolégica (Argentina) under Grants PICTR 87/2002
and PICT 00932/2006.

Appendix A. A brief history of dengue fever in Argentina

In 1916 an epidemic of dengue in Argentina, introduced from
Paraguay, affected the cities of Concordia (Corrientes) and Parana
(Entre Rios). In 1947 the Pan-american Health organization
(PHO) led a continental mosquito eradication program which con-
sisted of the use of insecticides and the systematic destruction of
water containers [43]. By 1967 the mosquito was considered to
be eradicated in 18 countries including Argentina. In 1986 the
mosquito was detected in Posadas, Puerto Iguazi and other cities
in northern Argentina, and finally in the city of Buenos Aires by
1995. In 1997 DEN2 cases were detected in cities of Salta such as
Oran, Salvador Mazza, Giiemes and Tartagal and in 1998 an epi-
demic outbreak of DEN2 in the region of the Chaco Saltefio with
epicenter in the city of Tartagal caused 359 confirmed cases [44].
From December 1999 to May 2000 the Muiiiz Infectology Hospital
of Buenos Aires received 50 patients infected with dengue (DEN1)
imported mainly from an extended epidemic in Paraguay [6]. In
2000 two DEN1 epidemic outbreaks were reported in Misiones
and Formosa, both outbreaks probably originated from imported
cases from neighboring endemic countries. In 2002 DEN3 appeared
in Misiones and 214 DENT1 cases were detected in Salta. A total of
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98 confirmed cases were reported in the country in 2003 [44], and
in 2004 an extended outbreak of DEN3 took place in the cities of
Salvador Mazza, Oran, Tartagal, Embarcacién, Aguaray and Picha-
nal [6]. The situation in the northwestern region became worse
in 2006 because of floodings mainly in the city of Tartagal. Small
outbreaks took place not only in the northwestern region (Chaco
Saltefio) but also in the northeastern region (Iguaza), with 55
and 90 reported cases respectively.

Appendix B. Temperature model and parameter values
B.1. Temperature model

A very simple model for the mean daily temperature variation,
which contains only the deterministic component of the tempera-
tures, was used in this work. The model was chosen from [45] and
takes the form:

2mt

with time measured in days beginning on the first of July. The
parameters a, b and ¢ were fitted from temperature records along
a period of time of 10 years and are: a =18.0°C;b = 6.7 °C and
¢ =9.2. The use and development of this model is detailed in
[17].

B.2. Developmental rate coefficients

The developmental rates that correspond to egg hatching, pupa-
tion, adult emergence and the gonotrophic cycles were evaluated
using the results of the thermodynamic model developed by Sharp
and DeMichele [46] and simplified by Schoofield et al. [47]. Accord-
ing to this model, the maturation process is controlled by only one
enzyme which is active in a given temperature range and is deac-
tivated only at high temperatures. The development is stochastic in
nature and is controlled by a Poisson process with rate Rp(T). In
general terms Rp(T) takes the form

Ro(T) = Rp(298 °K)
(T/298 °K) « exp((AHa/R)(1/298 °K — 1/T))
1+ exp(AHu/R)(1/Ty 2 — 1/T)

(17)

where T is the absolute temperature, AH4 and AHy are thermody-
namics enthalpies characteristic of the organism, R is the universal
gas constant, and T, ; is the temperature when half of the enzyme is
deactivated because of high temperature.

Table 9 presents the values of the different coefficients involved
in the events: egg hatching, pupation, adult emergence and gono-
trophic cycles. The values are taken from [48] and are discussed in
[17].

Table 9

Coefficients for the enzymatic model of maturation (Eq. (17)). Rp is measured in
day~!, enthalpies are measured in (cal/ mol) and the temperature T is measured in
absolute (Kelvin) degrees.

Develop. cycle (17) Rp(T) Rp(298°K)  AHu AHy Tip
Egg hatching elr 0.24 10,798 100,000 14,184
Larval develop. Ipr 0.2088 26,018 55,990 304.6
Pupal develop. par 0.384 14,931 472,379 148
Gonotrophic c. (A1) Cyclel 0.216 15,725 1,756,481 447.2

Gonotrophic c. (A2) Cycle2 0.372 15,725 1,756,481 447.2

B.3. Mortality coefficients

B.3.1. Egg mortality
The mortality coefficient of eggs is me = 0.011/day, indepen-
dent of temperature in the range 278 °K < T < 303 °K [49].

B.3.2. Larval mortality

The value of o (associated with the carrying capacity of a single
breeding site) is oy = 1.5 and was assigned by fitting the model to
observed values of immatures in the cemeteries of Buenos Aires
[17]. The temperature-dependent larval death coefficient is
approximated by ml = 0.01 + 0.9725 exp(—(T — 278)/2.7035) and
is valid in the range 278 °K < T < 303 °K [50-52].

B.3.3. Pupal mortality

The intrinsic mortality of a pupa has been considered as
mp = 0.01 + 0.9725exp(—(T — 278)/2.7035) [50-52]. Besides the
daily mortality in the pupal stage, there is an additional mortality
associated with the emergence of the adults. We consider a mortal-
ity of 17% of the pupae at this event, which is added to the mortal-
ity rate of pupae, hence the emergence factor is ef = 0.83 [19].

B.3.4. Adult mortality

Adult mortality coefficient is ma = 0.091/day and is considered
independent of temperature in the range 278 °K < T < 303 °K
[50,20,53].

B.4. Fecundity and oviposition coefficient

Females lay a number of eggs that is roughly proportional to
their body weight (46.5 eggs/mg) [54,55]. Considering that the
mean weight of a three-day-old female is 1.35 mg [20], we esti-
mate the average number of eggs laid in one oviposition as
egn = 63.

The oviposition coefficient ovr;; depends on breeding site den-
sity BS(;; and is defined as:

wpr. _ | 0/tdep if By <150 18)
@7 1/tdep if BSu; > 150 (

where 0 was chosen as 0 = BS;;/150, a linear function of the den-
sity of breeding sites [18].

B.5. Dispersal coefficient

We chose a diffusion-like coefficient of diff = 830 m2/day which
corresponds to a short dispersal, approximately a mean dispersal
of 30 m in one day, in agreement with short dispersal experiments
and field studies analyzed in detail in our previous article [18].
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