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We study the fate of superconductivity in the vicinity of a class of metallic quantum critical points obtained
by coupling a Fermi surface to a critical boson. In such systems there is a competition between the enhanced
pairing tendency due to the presence of long-range attractive interactions near criticality, and the suppression
of superconductivity due to the destruction of the Landau quasiparticles. We show that there are regimes in
which these two effects offset one another, resulting in a non-Fermi liquid fixed point with finite, scale invariant,
BCS coupling. While these interactions lead to substantial superconducting fluctuations, they do not drive
the system into a superconducting ground state. The metallic quantum critical fixed points are connected to
the superconducting regime by a continuous phase transition. These results are established using a controlled
expansion in the deviation from d = 3 spatial dimensions, as well as in a large number N of internal flavors. We
discuss the possible relevance of our findings to the phenomenon of superconducting domes condensing out of a
non-Fermi liquid normal state near quantum critical points.
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I. INTRODUCTION

One of the central unresolved issues of modern condensed
matter physics involves the enhancement of superconductivity
near metallic quantum critical points [1–5]. Indeed, many of
the strongly correlated electron materials, such as the cuprates
[6], iron pnictides [7], organic [8], and heavy fermion systems
[9] appear to have enhanced superconducting “domes” when
they are tuned experimentally towards a quantum critical point.
And often, the normal state exhibits scaling behavior that is
inconsistent with Fermi liquid theory. The manner in which
such “non-Fermi liquid” behavior is related to the enhanced
pairing scale remains a long-standing, yet exciting and actively
pursued topic of investigation.

The reason for the enhancement of pairing near quantum
critical points has been known for some time: there are
induced attractive long-range interactions between electrons
near the Fermi surface mediated by critical order parameter
fluctuations. These interactions are long ranged because of the
diverging correlation length at criticality, and, like phonons,
order parameter fields mediate attractive forces. However
precisely the same order parameter fields have an opposing
effect, they tend to destroy the quasiparticles, enhancing their
scattering rate relative to their energy. If this second effect is
dominant, the effective description of such fermion modes is
then no longer governed by Fermi liquid theory. The fermion
fields develop an anomalous dimension, and there is no longer
a quasiparticle description of the low energy dynamics. The
system will then be governed by a non-Fermi liquid fixed point.
The destruction of the Landau quasiparticle therefore has a
pair-breaking effect, weakening the superconducting tendency
of the system.

A challenge remains to predict the circumstances under
which the enhanced superconducting interaction dominates,
and those in which the fermion anomalous dimension domi-
nates. Furthermore, given the fascinating properties of quan-
tum criticality, it would be extremely interesting to construct
models of metallic systems exhibiting quantum critical points
with non-Fermi liquid behavior in the deep IR. However, in

most examples so far, the superconducting instability sets in
before non-Fermi liquid effects become important. As a result,
the fixed point is fully covered by a superconducting dome,
and quantum criticality is not observed.

In this paper we address these questions in a class of
quantum metals where the order parameter fields condense
at zero momentum. Examples include the Ising nematic
transition in metals, which have been argued to be relevant
to the phenomenology of both the cuprate [10] and iron
pnictide [11] superconductors. We consider a solvable large
N limit where exact statements about pairing instabilities
can be made. Our first key result is that the competition
between the long-ranged attraction and the destruction of
Landau quasiparticles can lead to a fixed point where the BCS
interaction among fermions is finite. This is in sharp contrast to
the behavior of Fermi liquids, where the BCS coupling flows
to zero for repulsive forces, or grows indefinitely, leading to a
BCS instability if the couplings are attractive. The finite BCS
interaction fixed point here corresponds to a metallic phase
with scale invariant interactions in the BCS channel which do
not result in Cooper pair condensation. As a result, we will
be able to exhibit a “naked” fixed point with critical BCS
coupling, not covered by a superconducting dome [12]. The
thermodynamic and transport signatures at such finite BCS
interaction fixed points are interesting in their own right and
may be relevant to experiments involving quantum critical
metals. We will study these phenomenological properties in
future work.

Our second main result is that there is a continuous
transition between the regime where the RG flows are always
towards enhanced superconductivity, and the regime where
IR stable fixed points with finite BCS couplings occur.
Approaching the transition from the critical regime, the IR
fixed point annihilates against an unstable UV fixed point
and disappears. From the other side, the superconducting
parameter and all its derivatives vanish as we tune towards
the transition. This is reminiscent of the Berezinski-Kosterlitz-
Thouless (BKT) transition, as we will explain in detail below.
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The paper is organized as follows. In Sec. II we define the
bare tree-level action and, neglecting superconductivity for the
moment, we describe the dominant quantum corrections by
solving the Schwinger-Dyson (SD) equations for the system.
These equations are exact to all orders in perturbation theory,
for the large N limit we consider. Next, in Sec. III we study
the system using the renormalization group. We construct a
scaling theory consistent with the analysis of the SD equations,
determine the one loop β functions, and characterize the non-
Fermi liquid fixed point. Section IV is devoted to the analysis
of the BCS interaction: we show that there is a regime where
the 4-Fermi coupling flows to a stable fixed point, and another
regime where it leads to a superconducting instability. We
establish that both states are connected by a continuous phase
transition. Section V contains our conclusions regarding the
phase diagram of the theory and discusses future directions.
Some technical calculations are presented in two Appendixes.

II. EFFECTIVE ACTION AND QUANTUM CORRECTIONS

In this section we present the classical theory and compute
quantum effects. We use the Schwinger-Dyson equations for
the boson and fermion two point functions and work in a large
N limit, which will allow us to obtain results that are exact to all
orders in perturbation theory. Here we focus on the correlation
functions that are local on the Fermi surface, while in Secs. III
and IV we take into account the 4-Fermi interaction in the BCS
channel.

A. The model

In this work we will analyze the quantum theory for a
Fermi surface coupled to a gapless boson φ. Our starting bare
euclidean Lagrangian is

L = 1

2
Tr[(∂τφ0)2 + (∇φ0)2] + ψ

†
i0[∂τ + ε0(i∇) − μF ]ψi

0

+Lψ,φ + LBCS,
(2.1)

Lψ,φ = g0√
N

φi
0j (q)ψ†

0i(k + q)ψj

0 (k),

LBCS = − v0

2kd−1
F

λ0

N
ψ

†
0i(p + q)ψj

0 (p)ψ†
0j (−p − q)ψi

0(−p).

The subscript 0 denotes bare quantities (we will consider the
effects of renormalization after integrating out high energy
modes below); the indices i,j will be defined shortly. The bare
band dispersion of the fermions is denoted by ε0(k) and for
simplicity we consider a rotationally invariant Fermi surface;
the chemical potential is μF = ε0(kF ). The sign in LBCS is
such that λ0 > 0 corresponds to an attractive interaction.

We will consider a soluble limit of the theory above.
First, we introduce an internal SU(N ) global flavor symmetry
(a generalization of spin rotation symmetry) under which
the fermion fields transform in the fundamental (vector)
representation, whereas the bosons transform in the adjoint
(matrix) representation. In this case, i,j = 1, . . . ,N in (2.1).
We work in the limit N � 1 with g0 and λ0 fixed; many
diagrams will be shown to be subleading, and it will be possible
to resum exactly the leading quantum corrections. We note that
the large N theory here explores a distinct asymptotic regime

than the standard large N approach to this problem, in which
the boson remains a scalar while the fermions are fundamental
fields of a global flavor symmetry group. Furthermore, we
work in d = 3 − ε spatial dimensions with ε � 1, namely near
the critical dimension for the Yukawa coupling. As discussed
below, the small parameter ε will be used to avoid infrared
divergences from corrections to the cubic vertex.

Besides providing limits where quantum corrections sim-
plify, N and ε will also affect the infrared dynamics of the
theory. Our task will be to determine the low energy phase
diagram of the theory as a function of N and ε. Before
proceeding to the discussion of quantum corrections, let us
develop some intuition by comparing the scales of non-Fermi
liquid effects and superconductivity. Corrections from the
anomalous dimension γ become important at a scale

μNFL ∼ e
− 1

2γ (�) �, (2.2)

where in the large N theory the anomalous dimension will be
found to be related to the Yukawa coupling g by

γ = g2

24π2v
≡ α

2
. (2.3)

Here g and v are physical couplings (see below), and � is an
energy scale. We will deduce this result shortly, but for now
we just want to explore some of its consequences. On the other
hand, the scale of the superconducting gap taking into account
the enhancement from boson exchange is (see [13] and below)

μsc ∼ e
− π

2

√
N

α(�) �. (2.4)

At the quantum critical point described below, α ∼ ε. We see
here the interplay between NFL and gap effects: for ε � 1/N ,
superconductivity dominates, and the Fermi surface is gapped
before the NFL regime is reached. However, in the opposite
limit N � 1/ε, μNFL � μsc and hence we expect (and will
find) strong NFL corrections to the superconducting gap. This
is the range where a new quantum critical point for the BCS
interaction will be obtained. We will show that both regimes
are connected by a continuous phase transition that occurs
when Nε ∼ 1. As we will demonstrate below, our analysis is
controlled by the presence of both small parameters 1/N and
ε; it remains controlled for arbitrary values of the ratio of these
two parameters, even in the regime where Nε � 1.

Our strategy will be to first determine the dynamics in the
non-Fermi liquid regime, corresponding to N � 1/ε. Here we
will neglect the superconducting gap, and then check that this
is a self-consistent approximation. We will then incorporate
effects from superconductivity and will characterize this
phase that occurs when 1 � N � 1/ε. This will be done by
analyzing the RG β function for the 4-Fermi BCS coupling.

B. Quantum corrections

Let us then begin the analysis of quantum effects focusing
on the self-energies and boson-fermion coupling. At suffi-
ciently high energies, the scaling behavior of the theory can
easily be understood. Considering the Yukawa coupling to be
small, scaling is constructed about the limit wherein a Fermi
liquid is decoupled from the order parameter field. Scaling
behaviors of the fermions and bosons are governed by Fermi
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liquid theory and Landau-Ginzburg-Wilson effective theories,
respectively. The dimension of any composite operator, such as
ψ†ψφ, is then immediately known from the decoupled scaling
dimensions of these fields. The conclusion of such an analysis
is that the Yukawa coupling has a bare scaling dimension

[g] = 3 − d

2
= ε

2
. (2.5)

Our next task is to determine the way in which quantum
corrections alter this behavior.

As discussed in many previous works [14–26], there are
many subtleties involved with taking a strict large N limit
in this class of theories. Indeed, the scaling behavior in the
large N limit depends quite strongly on the order in which
the N → ∞ and low energy ω → 0 limits are taken. If
the N → ∞ limit is taken first, the resulting fixed points
obtained only govern behavior at intermediate energy scales
[27], because they only take into account a subset of the
important quantum corrections. In particular, in this limit,
key O(1/N ) quantum corrections that qualitatively alter the
IR behavior are neglected; these quantum corrections act as
effective relevant coupling constants that destabilize potential
N = ∞ fixed points. Here we wish to avoid such peculiarities,
and build in all the important quantum corrections, even those
that formally are 1/N corrections, into our theory.

Our strategy for obtaining a scaling theory will be to look for
effects that are exact to all orders in perturbation theory at large
N . This will be obtained by investigating the Schwinger-Dyson
(SD) equations for this system. A key simplification of large N

is that quantum corrections to the cubic vertex are suppressed
by an extra power of 1/N compared to the tree level term, at
fixed g0. This allows us to neglect vertex corrections [28]. In
this case we find a closed system of SD equations for the boson
and fermion self-energies, expressed as follows (see Fig. 1):

�(q0,q) ≡ D−1(q0,q) − D−1
0 (q0,q)

= g2
0

N

∫
dk0d

dk

(2π )d+1
G(k0,k)G(k0 + q0,k + q),

(2.6)
�(p0,p) ≡ G−1(p0,p) − G−1

0 (p0,p)

= −g2
0

∫
dk0d

dk

(2π )d+1
G(k0,k)D(p0 − k0,p − k),

Σ(p) =

Π(p) =

FIG. 1. Schwinger-Dyson equations for the fermion (full line)
and boson (wiggly line) two-point functions in the large N theory.

where D(G) refer to the exact boson (fermion) propagator.
Here q0 is the frequency or energy, while q denotes the spatial
momentum; the same holds for k and p.

There are many possible solutions to these equations,
depending on the parameter that is being held fixed while
taking the large N limit. We will solve these equations, in
d = 3 − ε spatial dimensions, and in the limit where both
N → ∞, kF → ∞ holding fixed the following quantity:

M2
D = cd

kd−1
F

2πv0

g2
0

N
, (2.7)

where cd is a constant that depends on the dimensionality of
space. The factor kd−1

F /v0 is proportional to the density of
states at the Fermi energy. Physically, this is the scale below
which Landau damping of the boson becomes very important
and is equivalent to the “Debye” screening scale, below which
long range Coulomb interactions are screened in a metal. As
we will see below, by holding M2

D fixed, the theory simplifies
substantially in the IR. These equations build in the dominant
quantum corrections in the large N limit above the scale of the
superconducting gap.

Above the scale of MD , there are logarithmic corrections
to the fermion self-energy, which are both frequency and
momentum dependent. They produce a small anomalous
dimension (proportional to ε) and cause a slight reduction
of the Fermi velocity. Both of these effects can be seen
directly in perturbation theory in the UV. For large enough
MD , however, these effects are subdominant in relation to
the Landau damping of the bosonic order parameter fields,
which is a UV finite, nonlocal quantum correction to D(q),
and therefore is invisible in a Wilsonian treatment of the
problem. Nevertheless, it strongly affects the dynamic scaling
of the boson. This quantum correction comes directly from the
first equation in (2.6) and can be interpreted as coming from
resumming the geometric series of fermion bubbles (analogous
to RPA):

D(q0,q)−1 = q2
0 + 
q 2 + �(q0,q). (2.8)

The behavior in the regime |q0| � v0|
q |, which will be
relevant for us, is [24]

�(q0,q) ≈ M2
D

|q0|
v|
q | . (2.9)

The boson propagator then takes the approximate form

D(q0,q)−1 ≈ 
q 2 + M2
D

|q0|
v0|
q | (2.10)

and is characterized by a zb = 3 scaling q0 ∼ |
q |3/M2
D . MD

therefore acts as a crossover scale, separating the z = 1 UV
behavior from the z = 3 IR behavior in this regime. Our
analysis will focus on scales smaller than MD .

Below the scale MD , the self-energy ceases to have
substantial momentum dependence and depends mainly on
frequency. Therefore, at energies much less than MD the
velocity renormalization is primarily due to the fermion
anomalous dimension (i.e., the velocity will vanish at the fixed
point where Z vanishes). The nonzero anomalous dimension
will also cause the renormalization of the Yukawa coupling
(note again that vertex corrections are suppressed in our large
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N limit; only field rescaling due to the anomalous dimension
causes renormalization of the bare Yukawa coupling). Given
(2.10), the solution to the fermion SD equation in (2.6) is

�(p0) = −ip0
3α0

ε

(
M2

D|p0|
)−ε/3

, α0 ≡ g2
0

12π2v0
. (2.11)

Recalling that the bare coupling α0 has engineering dimension
ε, the self-energy has engineering dimension 1 (as it should),
but the scaling dimension with p0 is 1 − ε/3. We emphasize
again that this scaling applies below MD , which plays the role
of a UV scale in our effective theory.

We conclude that the effective (quantum) Lagrangian
involving the fermion kinetic energy and the Yukawa coupling
is

Leff,ψ = −ψ
†
0[iZ(p0)p0 − v0p⊥]ψ0

+ g0√
N

ψ
†
0(k + q)ψ0(k)φ0(q), (2.12)

where Z(p0) is the quasiparticle residue,

Z(p0) = 1 − �(p0)

ip0
= 1 + 3α0

ε

(
M2

D|p0|
)−ε/3

. (2.13)

The fermion momentum here is decomposed radially towards
the Fermi surface,


p = n̂(kF + p⊥), (2.14)

and n̂ is a unit vector that defines the position on the Fermi
surface.

The second term in (2.13) represents the effects of quantum
corrections. Below a scale μNFL defined by

μNFL =
(

3α0

ε

)3/ε

M−2
D , (2.15)

the quasiparticle residue Z is dominated by quantum correc-
tions, and the frequency dependence of the fermion kinetic
term has the following behavior:

po � μNFL : Z(p0)p0 ≈ 3α0

ε
M

−2ε/3
D p

1−ε/3
0 . (2.16)

This is of the form p
1−2γ

0 : in other words, at low energies the
fermions develop an anomalous dimension,

2γ ≈ ε

3
(2.17)

and the quasiparticle residue becomes

Z(μ) ≈
(

μNFL

μ

)ε/3

. (2.18)

C. Physical quantities and IR dynamics

The bare quantities written above are not physically
measurable. Once quantum corrections arise, the physically
observable fields and couplings depend on the energy scale.
In the large N limit this occurs only because of (1) Landau
damping of the bosons and (2) a nonzero fermion anomalous
dimension.

The physical quantities are obtained after canonically
normalizing the fermion fields at a scale μ, ψ ≡ Z1/2(μ)ψ0.
The physically observable Fermi velocity (as seen in heat

capacity or in tunneling density of states, for instance) will
depend on the energy scale μ as

v(μ) = Z−1(μ)v0. (2.19)

Note that for μ � μNFL, the velocity flows to zero with a
power law determined by (2.18),

v(μ) ∼ v0

(
μ

μNFL

)ε/3

. (2.20)

Next, we have to determine the relation between the physical
dimensionless coupling g(μ) and g0 or, more usefully [29],

α(μ) ≡ g2(μ)

12π2v(μ)
. (2.21)

From the effective Lagrangian in terms of canonical fields, we
read off α(μ) ∝ Z(μ)−1α0. Here two powers of Z(μ)−1 come
from g2(μ) in (2.21), while v(μ) gives an additional factor of
Z(μ) according to (2.19).

It remains to determine the dimension δ of α(μ). For this
we write the relation between bare and renormalized couplings
as

α0 = Mε−δ
D Z(μ) μδ α(μ), (2.22)

where MD is added to match engineering dimensions. The
dimension δ by definition cancels factors of the external
frequency in loop integrals, such that we get a perturbative
expansion in terms of α and dimensionless ratios μ/p0. The
one loop fermion self-energy calculated using renormalized
perturbation theory is

�(p0) = −ip0
3α(μ)

ε
M

ε/3−δ

D

μδ

|p0|ε/3
. (2.23)

Therefore, δ = ε/3, namely

[α(μ)] = ε

3
(2.24)

and, as expected, the microscopic scale MD cancels when
working in terms of the physical coupling.

Combining this with (2.22) obtains the relation between α0

and α(μ) to all orders in the large N theory,

α(μ) = α0

3α0
ε

+ (
M2

Dμ
)ε/3 . (2.25)

This energy dependence of α(μ) has the property that for scales
μ � μNFL the coupling flows to

α(μ) → ε

3
, (2.26)

a non-Fermi liquid fixed point that will be analyzed in more
detail in Sec. III.

Equations (2.19) and (2.25) are the main results of this
section. They tell us how the physical fermion velocity
and Yukawa coupling at a scale μ behaves. Thus, while
perturbation theory about the decoupled fermion-boson limit
would suggest that [α] = ε, quantum corrections treated by
the SD equations instruct us how these classical dimensions
are altered.

To summarize, using the SD equations we have computed
the quantum corrections that occur to all orders in perturbation
theory in the large N limit, at scales E < MD , and with MD
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fixed. Our next objective is to obtain this behavior using scaling
and Wilsonian RG below the Debye scale. This method will
then allow us to determine the evolution of the BCS interaction.
An alternative analysis of the superconducting gap in terms of
its Schwinger-Dyson equation (the Eliashberg equation) will
be presented in [30].

III. RENORMALIZATION GROUP APPROACH
INCLUDING BCS COUPLINGS

We next determine the RG β functions that define the
flow of physical couplings for our theory. The first step
will be to reproduce the SD results in a Wilsonian RG
framework. We will then focus on the RG flow for the BCS
coupling. A Schwinger-Dyson treatment of superconductivity
effects including the anomalous dimension is more involved,
and will be presented in [30]. Before proceeding, we note
that in the theory in d = 3 − ε spatial dimensions, it will
be computationally more convenient to organize quantum
corrections in powers of 1/ε (effectively using ε as a regulator),
instead of employing the physical cutoffs �f and �b. The map
between both approaches was given in [25].

A. Scaling theory

The first step in an RG approach is to construct a consistent
scaling. The solution of the SD equations places strong
constraints on a scaling theory which, in particular, has to
reproduce (2.24). We now present the scaling that agrees
precisely with the form of quantum corrections obtained above.

Reference [25] showed that a consistent renormalization of
the Fermi surface coupled to a massless boson requires two
independent decimation procedures: the Fermi surface high
momentum modes are integrated on shells

�f − d�f < |p⊥| < �f , (3.1)

where the fermion momentum is decomposed radially towards
the Fermi surface,


p = n̂(kF + p⊥), (3.2)

and n̂ is a unit vector that defines the position on the
Fermi surface. This is known as the “spherical RG” for the
Fermi surface. On the other hand, the boson momentum 
q is
decimated towards the origin, with an independent cutoff �b:

�b − d�b < |
q | < �b. (3.3)

These two independent momentum-shell integrations with
fermion and boson cutoffs �f,b are needed to capture the
leading quantum corrections to correlation functions. The
reason is that some contributions that look IR from the point
of view of the fermions, actually come from UV bosonic
modes, and hence have to be taken into account in the
Wilsonian RG. Important consequences of this were the
running Fermi velocity, and tree-level logarithmic running of
4-Fermi couplings.

This approach has to be modified if the boson has a
nontrivial dynamical exponent zb. This is discussed in detail
in Appendix A. First, we find that the scaling of the fermions
is not changed by zb,

[p0] = [p⊥] = 1, [ψ(p)] = −3/2. (3.4)

The dimension of the 4-Fermi BCS coupling is classically
marginal in any dimension, since we work in the spherical RG
for the fermions.

On the other hand, the bosonic scaling is modified as
follows. Given a patch with angular position n̂ on the Fermi
surface, we decompose the boson momentum into orthogonal
components


q = n̂q⊥ + 
q‖. (3.5)

We show in Appendix A that the correct scaling obeys

[q0] = [q⊥] = 1, [q‖] = 1/3, [φ(q)] = −10 − ε

6
(3.6)

for d = 3 − ε.
With these scalings, the classical dimension of g becomes

[g] = ε

6
. (3.7)

Therefore, the dimension of g is nearly marginal with this
scaling for the overdamped boson, as is also the case above the
Landau damping scale. This scaling reproduces the quantum
result (2.24) obtained from solving the SD equations.

The near marginality of g after including Landau damping
is important, as it is consistent with a smooth crossover
between the undamped and overdamped regimes (see also
[24]), and perturbation theory does not break down. Had we
scaled the boson momentum homogeneously, the result would
have been [g] = (2 + ε)/6 ≈ 1/3, giving an order one relevant
interaction in the overdamped regime. Such a relevant coupling
would be inconsistent with the results of the SD equations.

B. Local non-Fermi liquid behavior

Let us discuss first the RG for correlations that are local
on the Fermi surface because they do not involve antipodal
patches—the self-energies and the boson-fermion coupling.
The one loop corrections are shown in Fig. 2.

We argued in Sec. II that below the Landau damping scale
the boson flows to a zb = 3 dynamical exponent. This is not a
Wilsonian effect: it comes from integrating particle-hole pairs
at the Fermi surface; it is a finite renormalization effect that
becomes relevant below the scale MD . Here we start from this
dressed boson propagator and focus on E < MD , but we note
that the crossover between zb = 1 and zb = 3 is smooth [24].

In the zb = 3 regime, the fermion self-energy depends only
on frequency. This results in a velocity flowing to zero with
a rate determined by the anomalous dimension Zv = Z−1.
Furthermore, quantum corrections to the cubic vertex are
suppressed by 1/N at large N , and can be neglected in our
perturbative framework. Therefore, the one loop β functions
characterizing quadratic and cubic correlators are determined
purely in terms of the fermion anomalous dimension γ . Using

FIG. 2. One loop corrections to the boson self-energy, fermion
self-energy, and cubic Yukawa vertex.
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= +

FIG. 3. Tree-level running of the BCS interaction.

renormalized perturbation theory at one loop, the anomalous
dimension is [24]

γ = g2

24π2v
. (3.8)

In terms of α defined in (2.21), the one loop β functions on a
local patch of the Fermi surface then become

2γ = −μ
d log Z

dμ
= α,

μ
d log v

dμ
= 2γ, (3.9)

μ
dα

dμ
= −ε

3
α + 2γα.

This agrees with the β functions obtained from the SD analysis
by requiring that the bare parameter in the relation (2.25)
be independent of the RG scale μ. Note that the one loop
approximation here is exact at large N .

This system admits a non-Fermi liquid fixed point,

α∗ = ε

3
, γ∗ = ε

6
(3.10)

that is perturbatively controlled at small ε and large N .
Although we can make no definite prediction for ε ∼ 1, we
note that as ε → 1 (i.e., for d = 2 spatial dimensions) this
fixed point approaches the strongly coupled non-Fermi liquid
of [17]. It would be interesting to use the ε expansion to
understand more systematically the ε → 1 limit.

C. BCS β function

We now want to include the effects from the BCS 4-Fermi
coupling, which is classically marginal and can destabilize
this fixed point. The renormalization of the BCS interaction
proceeds in two steps [25,31]. First, at tree level the boson
exchange gives rise to running of the BCS couplings in the
angular momentum basis, see Fig. 3. At one loop there are two
additional contributions: from the anomalous dimension and
the BCS one loop diagram. This is shown in Fig. 4.

FIG. 4. Diagrammatic one loop contributions to the BCS coupling.

The one loop β function then becomes (see also [13])

μ
dλ

dμ
= −2π2α + 2γ λ − λ2

2π2N
. (3.11)

(We recall that λ > 0 corresponds to an attractive interaction).
To our knowledge, the term linear in λ has not been included
in previous works. It captures the non-Fermi liquid corrections
to fermion scattering on antipodal points of the Fermi surface
and hence the formation and condensation of Cooper pairs. We
will find that it has dramatic effects on the IR phase structure
of the theory, which we consider in Sec. IV.

There are two and higher loop quantum corrections to
the 4-Fermi coupling. At the same order in N as in (3.11)
there is a geometric series of fermion bubbles, as well as
anomalous dimension insertions in internal fermion lines.
These are automatically resummed into the solution of the
RG β function. Subleading in N effects come from vertex
corrections (as before) as well as higher loop contributions
containing BCS interactions that are not sums of fermion
bubbles. This large N suppression is a consequence of the
nonplanarity of the BCS coupling in our theory. We then
conclude that (3.11) is exact at large N . The last aspect to
understand is whether the 4-Fermi interaction corrects the
local non-Fermi liquid behavior of Sec. III B [32]. All such
contributions are again subleading at large N , again due to the
nonplanarity of the BCS interaction (recall that the non-Fermi
liquid behavior above arises at the planar level).

Another way of organizing these quantum corrections is to
study the Schwinger-Dyson equation for the superconducting
gap together with (2.6). This approach will be presented in
[30], with conclusions that are consistent with the present
renormalization group results.

IV. QUANTUM CRITICALITY AND FATE OF
SUPERCONDUCTIVITY

In this section we consider the consequences of Eq. (3.11).
We start by describing, at a heuristic level, the various possible
fates of the BCS coupling encoded in this equation. We then
perform a more detailed RG study and discuss the phase
diagram of the theory.

A. Qualitative analysis of the BCS interaction

For the present analysis we treat γ as an independent
parameter to exhibit more clearly the effects from anomalous
dimension corrections (in our theory, γ = α/2). Furthermore,
at this heuristic level we will ignore effects from the running
of α; these will be incorporated below in a more detailed RG
treatment.

First, for simplicity consider the case of α = γ = 0. In this
case, the scalar is effectively absent from the theory and we
recover the marginally relevant flows of the BCS coupling
in a Fermi liquid. Attractive interactions grow under the RG,
whereas repulsive interactions weaken. The only difference
here is that BCS couplings are N suppressed because of the
large N limit we have taken. Thus, there is a limiting case
where ordinary Fermi liquid theory is captured.

Consider next the regime where the term proportional to
γ λ is subdominant. In this case, the effect of the anomalous
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FIG. 5. (Color online) BCS β function for different values of the
anomalous dimension. The two real roots at γ > γc give stable and
unstable fixed points. These merge at γ = γc and then annihilate; this
gives rise to a superconducting instability for γ < γc.

dimension in (3.11) can be neglected but the term ∝ α alters
the qualitative nature of the superconducting instability. There
is an exponentially enhanced pairing instability, and the pairing
scale far exceeds the scale at which the Landau quasiparticles
would have been destroyed. The inverse correlation length at
which λ � 1 in the IR is of order

μsc ∼ exp

[
−

√
N

α

π

2

]
�. (4.1)

This is what one finds in color superconductivity, and is also
what has been recently been reported in Ref. [33] in the context
of 2d quantum criticality. Next, consider the regime in which
the anomalous dimension plays the most important role. In
this case, one can neglect the λ2 term of the β function, and
one finds a stable non-Fermi liquid fixed point with zero BCS
coupling.

Finally, consider the full expression, where all three terms
play an important role. Now, there are competing, and
offsetting effects between the anomalous dimension, and the
enhanced pairing tendency. Since the β function is quadratic
in λ, depending on its discriminant there are three different
possibilities, illustrated in Fig. 5.

Neglecting the running of α (to be incorporated shortly),
we can write the zeros as

λ± = λ0
(
1 ±

√
1 − γ 2

c /γ 2
)
, (4.2)

where λ0 = 2π2Nγ , and γc = √
α/N . The quantity γc plays

the role of a “critical anomalous dimension” which separates
two regimes. The fixed points are only physical when γ > γc,
that is, when the zeros of the β function occur on the real
axis. In this case, there is a UV fixed point λ+, and an IR
fixed point λ−. We should emphasize that the critical behavior
associated with λ− is qualitatively different from a non-Fermi
liquid fixed point that is local on the Fermi surface, since it
affects correlation functions with support on antipodal points
of the surface. We will discuss further properties of this fixed
point in the next section.

As γ → γc, the two fixed points meet at λ0. Finally, when
γ < γc, the zeros move off the real axis, and fixed points
no longer occur. Note that near the IR fixed point, γ ∼ ε,
whereas γc ∼ √

ε/N . Thus, for sufficiently large N , the critical
value of the anomalous dimension needed to have finite BCS
fixed points can be made arbitrarily small. Therefore, in this

theory, N acts as a tuning parameter in the space of theories
for γc.

Next, consider what happens as γ → γc from above.
In this limit, the UV and IR fixed points approach one
another, and when this ratio becomes unity, the fixed points
annihilate. Once this happens, for γ < γc the system develops
a superconducting instability, and the metallic phase is lost.
In this case, the fermion anomalous dimension is not strong
enough to avoid a superconducting instability. The inverse
correlation length associated with the BCS coupling can be
estimated as follows (see also Ref. [34] where such behavior
is studied in detail):

ξ−1
sc � � exp

[∫ λir

λuv

dλ

β(λ,α)

]
� exp

[
− π

2
√

γ 2
c − γ 2

]
�.

(4.3)

The correlation length diverges exponentially as γc/γ → 1,
signaling a continuous phase transition that separates the
quantum critical and superconducting states. This behavior
is similar to the way in which the correlation length of the
2d XY model diverges at the BKT transition. The analog of
critical temperature is played here by γc.

Notice that for γ → 0, (4.3) reproduces the boson-
enhanced scale (4.1). On the other hand, as γ ∼ γc, we
find strong non-Fermi liquid corrections to the supercon-
ducting order parameter, which eventually destroy it via a
continuous phase transition. Passing this phase transition
obtains a quantum critical point characterized by non-Fermi
liquid exponents for the quasiparticle dimension, Yukawa
coupling, and BCS interaction. This QCP is characterized
by a finite BCS coupling, with no superconductivity, and
with a power-law behavior for the superconducting correlation
function.

B. Quantum criticality and superconductivity

Before, we presented a qualitative discussion of Eq. (3.11).
Our task now will be to study in more detail the phase structure
and low energy dynamics as a function of N and ε.

To begin with, let us start from the non-Fermi liquid fixed
point at α = 2γ = ε/3. Then, the discriminant of the BCS β

function vanishes at

εN = 12. (4.4)

For N > 12/ε, the BCS coupling flows to the stable IR fixed
point

λ− = π2

3
εN [1 −

√
1 − 12/(εN )]. (4.5)

Note that λ− ∼ O(1) over all the critical range. An important
point here is that the attractive fixed point has a finite domain
of attraction: for sufficiently large initial values of λ, the
suppression from the anomalous dimension term does not
set in fast enough and λ will diverge in the IR, signaling a
superconducting instability. This is due to the existence of
the unstable fixed point at λ+. The size of the domain of
attraction at the NFL fixed point is of order |λ+ − λ−|. This
is much bigger than 1 for N � 12/ε, and shrinks to zero as
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the continuous transition is approached at N = 12/ε. These
results are explained in more detail in the Appendix B.

It is possible to solve exactly the coupled system of
equations

μ
dα

dμ
= −ε

3
α + α2,

(4.6)

μ
dλ

dμ
= −2π2α + αλ − λ2

2π2N

in terms of hypergeometric functions. The boundary condi-
tions for the RG are imposed at some high scale μ = M which
should be below MD given our approximations on the zb = 3
boson scaling. In accordance with our previous analysis, this
obtains a fixed point α = ε/3 and λ = λ− for N > 12/ε, a
superconducting phase for N < 12/ε, and a continuous phase
transition at N = 12/ε.

Near the continuous phase transition at Nε = 12, the scale
of the superconducting instability (namely the scale at which
λ diverges) is found to be

μsc � exp

[
−π

2

√
3N

ε

1√
1 − εN/12

]
�. (4.7)

For εN � 12 this shows the enhancement due to boson
exchange; however, as εN → 12 non-Fermi liquid effects
dominate over this enhancement and destroy the supercon-
ducting parameter by a characteristic BKT scaling. This is
one of our main results regarding the competition between
superconducting and non-Fermi liquid effects due to a critical
boson.

An illustrative way of presenting these RG results is in
terms of streamlines for (βλ,βα) as a function of (λ,α). The
left panel in Fig. 6 shows the case N > 12/ε, and the red
points correspond to the stable, unstable, and Gaussian fixed
points. The flows in the superconducting range N < 12/ε are
presented in the right panel, where we also show the Gaussian
fixed point.

V. DISCUSSION

In this paper we have studied a class of quantum metals
(such as the Ising nematic quantum phase transition), obtained
by coupling a Fermi surface to a nearly critical bosonic
order parameter which preserves translation invariance, and
condenses at zero momentum. We analyzed the interplay
between superconductivity and non-Fermi liquid effects in a
theoretically controlled setup depending on N (the rank of an
internal global symmetry) and ε (the deviation from spatial
dimension d = 3). We found a novel class of fixed points,
stable against the superconducting instability, where the BCS
interactions flow to scale invariant values. These QCPs display
non-Fermi liquid behavior in observables that are local on the
Fermi surface (the anomalous dimension and Fermi velocity)
but also in operators that combine fermions on antipodal
points, such as the Cooper pair field or the BCS operator. We
also showed that for sufficiently small N a superconducting
instability sets in, via a continuous phase transition. We
next consider the possible relevance of our findings to the
experimental observations of superconducting domes near
quantum critical points in a broad class of correlated electron
materials.

We consider the phase diagram as a function of temperature
and the parameter that tunes the boson to criticality (e.g.,
doping, pressure), which we label x. For N � 1/ε, the
massless boson produces a strong enhancement in the BCS
interaction, but a negligible non-Fermi liquid anomalous di-
mension. In this case we find a superconducting dome covering
the critical point. As N is increased, non-Fermi liquid effects
become stronger, with the result that the fermion anomalous
dimension tends to make the 4-Fermi attraction irrelevant and
decreases the scale of superconductivity. Finally, for N >

12/ε, superconductivity is destroyed and the non-Fermi liquid
fixed point emerges. The competition between non-Fermi
liquid and superconducting fluctuations is summarized in the
scaling (4.7) for the gap. These different regimes are presented
schematically in Fig. 7.

In this work we have considered a large N theory where
the fermion is in the fundamental of SU(N ) and the scalar is

FIG. 6. (Color online) Streamlines for (βλ,βα), with N > 12/ε (left) and N < 12/ε (right). The red dots are fixed points; we show the
stable, unstable, and Gaussian fixed points in the left panel, and the Gaussian fixed point in the right panel. We thank A. Maharaj for help in
generating this plot.
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FIG. 7. (Color online) Fate of the superconducting domes for
different values of Nε: (a) Nε � 1 (left) and (b) Nε > 12. Here
the various labels denote the following: the ordered phase (I), Fermi
liquid (II), and non-Fermi liquid (III).

in the adjoint. The N × N bosonic degrees of freedom were
crucial for obtaining a quantum critical point stable against
the BCS interaction. Another possibility, discussed before in,
e.g., [16–18,20,33,35,36], is to introduce a large number NF

of fermionic fields while the order parameter remains a singlet.
In such theories, it seems unlikely to obtain superconducting
domes that condense out of a non-Fermi liquid normal state.
The primary reason for this is that the fermion anomalous
dimension in such theories is proportional to α/NF . By
contrast, in our formulation, the fermion anomalous dimension
γ ∼ α. Comparing scales, in large NF theories,

μNFL ∼ e− NF
α �, (5.1)

whereas the scale at which the superconducting instability
develops is the same as in our theory,

μsc ∼ e
− π

2

√
NF
α �. (5.2)

It therefore is virtually impossible in a perturbative framework
for non-Fermi liquid behavior to occur at scales above the
superconducting instabilities in the large N limit of this class
of theories. A similar conclusion, though from a somewhat
different approach, has been reported in [33].

In future work we wish to study the phenomenological
consequences of the IR stable fixed point with finite BCS
coupling. In particular, it would be interesting to determine the
effect of a scale-invariant BCS interaction on thermodynamics
(e.g., heat capacity) and transport (e.g., magnetoresistance,
resistivity) properties. We wish also to study the effect of a
magnetic field in our scenario. For instance, in the regime
of N,ε where there is a superconducting dome enveloping
a quantum critical point, it is natural to ask what the
properties of the system are when a magnetic field is used
to destroy superconductivity. It is conceivable that when the
superconducting dome is destroyed by a magnetic field, there
still remain substantial superconducting fluctuations governed
by the BCS coupling; we can then ask whether the Cooper pair
fields retain power-law correlations.

We also found regimes where even though Nε > 12, for
sufficiently small initial α or for large enough λ, the system still
flows towards the superconducting phase, see Fig. 6. This gives
to a superconducting instability deep inside the non-Fermi
liquid state. It would be interesting if this is of relevance to
the phase diagram of some of the high Tc superconductors.

Finally, the analysis of the superconducting phase using the
gap equation, and its connection with the present RG approach,
will be discussed in [30].
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APPENDIX A: SCALING ANALYSIS

In this Appendix we construct the scaling theory (within
the spherical RG) that agrees with the form of the SD quantum
corrections.

In the presence of a nontrivial dynamical exponent zb, the
RG approach of Ref. [25] needs to be modified. First, the
scaling of the fermions is not changed by zb: from the action
near the Fermi surface,

Sf = −
∫

dp0dp⊥dd−1n̂ ψ†(ip0 − vp⊥)ψ, (A1)

we read off the scaling dimensions

[p0] = [p⊥] = 1, [ψ(p)] = −3/2. (A2)

On the other hand, the bosonic momenta that dominate quan-
tum corrections appear as differences of close-by fermionic
momenta, as can be seen from the cubic interaction,

SYuk =
∫

dp0dp
′
0d

dp ddp′ g φ(p′ − p)ψ†(p′)ψ(p). (A3)

Given 
p = n̂(kF + p⊥), let us decompose the other fermion
momentum as


p ′ = n̂′(kF + p′
⊥) ≈ n̂(kF + p′

⊥) + kF δn̂. (A4)

The boson momentum decomposed with respect to the local
Fermi surface direction n̂ then satisfies


q = n̂q⊥ + 
q‖, q⊥ = p⊥ − p′
⊥, 
q‖ = kF δn̂. (A5)

Therefore, [q0] = [q⊥] = 1, and it remains to understand how
to scale δn̂.

The scaling of 
q‖ is determined by the zb = 3 boson
propagator (2.10). Since [q⊥] = 1, it is q‖ that is affected
by the dynamical exponent, and hence is the component
that dominates the momentum transfer. We conclude that for
bosonic momenta,

[q0] = [q⊥] = 1, [q‖] = 1/3, [φ(q)] = −10 − ε

6
(A6)

for d = 3 − ε. The scaling of the bosonic momenta has
become anisotropic due to the dynamical exponent.

From a purely bosonic point of view it seems somewhat
artificial to select a direction n̂ and scale the two components
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q⊥ and q‖ differently, as this breaks the isotropy of the boson
dispersion relation. Our statement, however, is that this is
the scaling that will dominate inside correlation functions,
where the boson momentum behaves as a difference of two
fermionic momenta. In many condensed matter systems, the
bosons indeed represent fermionic collective modes, hence it
is very natural to identify their momenta with the difference
between those of fermions. The scaling of q‖ is then equivalent
to scaling differences in fermionic angles kF δn̂, a process that
determines the size of the Fermi surface patch that couples
more relevantly to a given fermion ψ(p,n̂). We note the related
RG analysis of the fermion-boson system in the patch picture
[19], though we stress that the spherical RG being used here
is not the same as the patch scaling of [17,35,36].

With these scalings, the classical dimension of g calculated
from

Sb =
∫

dp0dp
′
0dp⊥dp′

⊥ d2−ε(n̂ + n̂′)d2−ε(n̂ − n̂′)

× g φ(p′ − p)ψ†(p′)ψ(p) (A7)

becomes

[g] = ε

6
. (A8)

APPENDIX B: RG SOLUTION FOR THE BCS COUPLING

We found that the stable fixed point λ− has a finite domain
of attraction due to the existence of the unstable fixed point at
λ+. One interesting consequence of this is that we could have
an RG trajectory that ends in a superconducting instability
even if N > 12/ε. This may then realize a superconducting
dome condensing out of a non-Fermi liquid and could be of
relevance for certain strongly correlated materials. For this
reason, in this Appendix we discuss in more detail how this
occurs in a simple case.

By fixing α to its critical value α = ε/3, we can solve the
RG analytically across the transition, starting from arbitrary
UV boundary condition λ(M) = λ0. Denoting μ = Me−t , the
solution takes the form

λ(t) = π2αN

{
1 − √

αN − 4 tanh

[
t

√
α2

4
− α

N
+ 1

2
log

(
λ+ − λ0

λ0 − λ−

)]}
αN > 4, λ− < λ0 < λ+

= π2αN

{
1 − √

αN − 4 coth

[
t

√
α2

4
− α

N
+ 1

2
log

(
λ+ − λ0

λ− − λ0

)]}
αN > 4, otherwise

= π2αN

⎧⎨
⎩1 − √

4 − αN cot

⎡
⎣t

√
α

N
− α2

4
+ tan−1

⎛
⎝

√
4

αN
− 1

1 − λ0
π2αN

⎞
⎠

⎤
⎦

⎫⎬
⎭ αN < 4 . (B1)

From these solutions we can see that for αN > 4, the only possible pole occurs when the argument of the coth function
becomes zero. Since the log term in the argument is positive for λ0 < λ−, for t > 0 a pole can only exist for λ0 > λ+. The
corresponding superconducting scale is at

μ+
sc = M

(
λ0 − λ+
λ0 − λ−

) 1√
α2− 4α

N . (B2)

Viewing λ0 as a tuning parameter, there is a phase transition at λc = λ+, whose order is given by 1√
α2− 4α

N

. The order diverges as

we tune αN towards the critical value 4. For αN < 4, the superconducting scale is given by

μ−
sc = M exp

⎡
⎣− 2π√

4α
N

− α2

⎤
⎦f (λ0), (B3)

where

f (λ0) = exp

[
− tan−1

(
π2

√
4αN − α2N2

π2αN − λ0

)]1/

√
α
N

− α2
4

. (B4)

We see that once we cross below αN = 4, the phase transition in λ0 reduces to a step discontinuity across λdisc = π2αN : there
is no choice of λ0 that can kill the superconducting instabilities.
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