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Abstract. Numerical simulations of two-dimensional Magnetohydrodynamic (2D MHD) turbulence reveals the presence of
a huge number of sites where magnetic reconnection locally occurs. The properties of this ensemble of reconnection events,
that are spontaneously generated by turbulence, have been studied. The associated reconnection rates, computed as theelectric
field at the neutral points, are broadly distributed and the statistics of these events are presented. This new description of
reconnection is relevant for space and laboratory plasmas,where generally turbulence is present.
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INTRODUCTION

Magnetic reconnection is a nonlinear process that occurs
in many astrophysical [1, 2, 3, 4] and laboratory plas-
mas [5]. The common features for these nonlinear sys-
tems is the presence of an inhomogeneous magnetic field
that changes rapidly across a narrow region. Reconnec-
tion, in two dimensions, implies the presence of a mag-
netic X-type neutral point where a conversion of mag-
netic into kinetic energy occurs [6, 7], and where a strong
peak in the electric current density is present.

In the past decades many theoretical studies have dis-
covered much of the basic physics of magnetic recon-
nection, especially in simple geometries. Sweet [6] and
Parker [7], using conservation of mass, pressure balance
and continuity of the electric field, revealed the essential
large scale dynamics of magnetic reconnection. In partic-
ular, in the (idealized) configuration of two-dimensional
Magnetohydrodynamics (2D MHD), a neutral sheet sep-
arating plasma regions is subject to a pressure imbal-
ance that produces a plasma flow toward the neutral sheet
from the strong field regions.

Generally, simulation studies of magnetic reconnec-
tion have been performed in simplified geometries and
boundaries conditions [8, 9], but, reconnection might be
expected to be of importance in more general circum-
stances, as for example fully 2D MHD turbulence [10].
Some speculations have been made concerning both the
general role of reconnection in MHD turbulence and the
impact of turbulence on reconnection [10, 11, 12, 13, 15,
14], but no quantitative description of these effects has
been documented, especially at high Reynolds numbers.

Only recently [16], it has been shown that in fully de-
veloped turbulence, complex processes of reconnection
locally occur. Here we further describe the statistical fea-
tures of this complex scenario of reconnection events,
where initial and boundary conditions are naturally im-
posed by the turbulence itself.

TWO-DIMENSIONAL MHD
TURBULENCE

The two-dimensional, incompressible, MHD equations
can be written in terms of the magnetic potentiala(x,y)
and the stream functionφ(x,y) (uniform mass density
ρ = 1) as follows [17]:

∂ω
∂ t

= −(vvv·∇∇∇)ω +(bbb ·∇∇∇) j +Rν
−1∇∇∇2ω , (1)

∂a
∂ t

= −(vvv·∇∇∇)a+Rµ
−1∇∇∇2a, (2)

where the magnetic field isbbb = ∇∇∇a× ẑzz, the velocity
vvv=∇∇∇φ × ẑzz, the current densityj=−∇∇∇2a, and the vortic-
ity ω =−∇∇∇2φ . Eqs. (1)-(2) are written in familiar Alfvén
units [10] with lengths scaled to a typical scaleL0. Rµ
andRν are, respectively, magnetic and kinetic Reynolds
numbers (reciprocals of kinematic viscosity and resistiv-
ity).

Eqs. (1)-(2) are solved in doubly periodic(x,y) Carte-
sian geometry (side 2πL0), with a dealiased (2/3-rule)
pseudo-spectral code [18]. We report results from runs
with up to 81922 grid points andRν =Rµ = 5000. Time
integration is second order Runge-Kutta. The initial state



TABLE 1. Table of runs. In the fourth column
the energy shell excited initially is reported. The
last column shows the timet∗ at which the analysis
have been performed (at peak of the mean square
current density〈 j2〉).

Mesh
points

Rµ
(= Rν )

Initial
spectrum t∗

Run 1 40962 1700 4≤ k≤ 10 0.4
Run 2 40962 2500 5≤ k≤ 30 0.2
Run 3 40962 2500 3≤ k≤ 10 0.7
Run 4 81922 5000 5≤ k≤ 30 0.3

consists of Gaussian fluctuations: random phases are em-
ployed for the initial Fourier coefficients and uncorre-
lated, equipartitioned velocity and magnetic field fluctu-
ations are considered. For the main 81922 run (Run 4),
energy is initially in the shell 5≤ k ≤ 30 (k in units of
1/L0), and the total energyE = 〈|vvv|2 + |bbb|2〉 ≃ 1 (〈...〉
denotes a spatial average). The time of our analysis is at
the peak of the mean square current density〈 j2〉, when
nonlinear activity is strong (t∗ ∼ 0.3). The main parame-
ters of all the runs are reported in Table 1.

ELECTRIC FIELD PROPERTIES

We investigate the properties of the turbulent electric
field, given by the Ohm’s law:

EEE = −vvv×bbb+R−1
µ j (3)

In 2D, only an out of plane component is present (along
z). In Fig. 1, color maps of the advective and diffusive
terms of the electric field in Eq. (3) are separately shown.
As it can be seen, the diffusive electric field (|R−1

µ j| ≤
0.3) is very small compared to thevvv× bbb–electric field
(|Evvv×bbb| ≤ 3). The total electric field is essentially due to
the termvvv×BBB, that is the electric field produced by fluid
plasma motions. The diffusive electric fieldR−1

µ j, is very
small and with a much narrow distribution [14]. The re-
sistiveR−1

µ j contribution is non-Gaussian and gives in-
formation about the intermittent nature of MHD turbu-
lence, and is related to the local reconnection processes.

As described in [16], in order to understand the mag-
netic field topology we analyzea(x,y) [17]. The square

Hessian matrix ofa is Ha
i, j(xxx) = ∂ 2a

∂xi ∂xj
. At each neutral

point, ∇∇∇a = 0, we compute the eigenvalues ofHa
i, j . If

both eigenvalues are positive (negative), the point is a lo-
cal minimum (maximum) ofa (an O-point). If the eigen-
values are of mixed sign, it is a saddle point (an X-point).
Fig. 2 shows an example of the magnetic potential (only
a fraction of the entire box) with its critical points (for

FIGURE 1. 2D plot of thezcomponents of the electric field:
(a) the advective term−vvv×bbb, and (b) the diffusive partR−1

µ jjj.

Run 4, for example, the number of X-points is≃ 1300.)
Many magnetic islands are present, and, at the bound-
aries of these vortices, the diffusive electric field isbursty
[see Fig. 1-(b)].

The reconnection rates are computed as the rate of
change of the magnetic flux through∂a/∂ t, and using
Eq. (3) at the saddle points,

∂a
∂ t

= R−1
µ j|X−point= −E×, (4)

whereE× is an abbreviation for the electric field mea-
sured at the X-point. The reconnection rates have been
normalized to the mean square fluctuationδb2

rms, appro-
priate for Alfvènic turbulence. In Fig. 3 the PDF of the
absolute value of the reconnection rate is shown. The
PDF of the electric field at theX-points is quite broad
and peaked around zero value. The mean value of the re-
connection rate is≃ 0.04, with strong variations from the
average. In terms of the global parameters this observed
range of reconnection rates varies from very slow to fast,
in fact |E×| ∈ [10−6÷0.3]. For Run 4 (Rµ = 5000), the
global Sweet-Parker rate would be estimated as∼ 0.014.
In this sense the typical reconnection rate is found to be
far higher than what is expected based on a simple global

application of the Sweet-Parker rateE× ∼ R−1/2
µ . More-

over, since this rate is broadly distributed, there are some
values ofE× that can easily exceed 0.1, as it can be seen
in Fig.s. 1 and 3).



FIGURE 2. Contours of magnetic potentiala with the po-
sition of all the critical points:O-points (blue stars for the
maximum and red open-circles for the minimum) andX-points
(black×). Only∼ 1/17 of the entire simulation box is shown.

A MODEL FOR RECONNECTION IN 2D
TURBULENCE

When magnetic reconnection is in a stationary state,
the rate depends on the geometry of the diffusion re-
gion [16, 7, 17], that can be characterized by two lengths:
the thicknessδ and theelongationℓ of the current sheet.
From the matrixHa

i, j(xxx) (see previous Section), the ratio

ℓ/δ ≃
√

λmax/λmin, beingλmax(min) the maximum (min-
imum) of the eigenvalues at the X-point. Since we can
obtain the ratio of the eigenvaluesλmax/λmin, the prob-
lem reduces to measure each current sheet thicknessδ
(thenℓ ∼ δ

√

λmax/λmin.)
We build up a system of reference with its origin at

the X-point, and the (normalized) eigenvectors of the
Hessian matrix identify the directions associated with
inflow (êees) and outflow (̂eeel ) regions. Using this system
of reference, we can obtain the tangential and the normal
component of the magnetic field asbt = êeel ·bbb andbn =
êees ·bbb, respectively.

We found that the strongest reconnection events have
the tangential magnetic fieldbt that reaches a max-
imum and then decreases going far from the saddle
point [19, 20]. This gives rise to much steeper gradients
of the field near the neutral point. Another interesting
feature is that reconnection in turbulence is essentially
asymmetric [21]. Because of the asymmetry of the prob-
lem, we compute the total width of each current peak as
δ = δ1+δ2, beingδ1(2) the left (right) contribution in the
system of reference of the X-point. The values ofδ1,2 are
found by assuming that the magnetic field, close to the
X-point can be approximated with hyperbolic functions.

FIGURE 3. PDF of the reconnection rate (absolute value of
the electric field at the X-points.) The vertical dotted black line
in the panel represents the mean value of the distribution.

We interpolate the current densityj, along the inflow co-
ordinates, using the following parametric functions:

fle f t(s) = A1sech2
(

s−s0

δ1

)

+C1 {s< x0}

fright (s) = A2sech2
(

s−s0

δ2

)

+C2 {s≥ x0} (5)

beingA1,2 the amplitudes (they are proportional to the
magnetic field inside the two islands),s0 the position of
the current peak andC1,2 local constants. For each X-
point the fit has been optimized by an iteration procedure
in order to minimized the error of the interpolation [22].
Using the above procedure, the lengths of the diffusion
region (δ andℓ) and the up-stream (tangential) magnetic
fields (b1 andb2) have been found (note we suppressed
the index “t”).

A recent steady, anti-parallel reconnection model [21]
allows for asymmetries including unequal upstream
magnetic field valuesb1 andb2 by analyzing conserva-
tion laws in the diffusion region. In the incompressible
case the associated reconnection rate is given by:

γ =

√

√

√

√

b
3
2
1 b

3
2
2

Rµℓ
. (6)

To understand scaling we evaluated Eq. (6) using several
numerical experiment, listed in Table 1. Fig. 4 shows that
in all the simulations the reconnection rates are consis-
tent with the prediction given by Eq. (6). In this scenario
turbulence plays a crucial role, providing locally the pa-
rameters that determine the Sweet-Parker reconnection
rate: the lengths and local magnetic field strengths.



FIGURE 4. Computed reconnection ratesvs. expectation
from Eq. (6) [21]. Different symbols distinguish the runs in
Table 1. The system is reconnecting in a asymmetric Sweet-
Parker scenario.

CONCLUSIONS

Properties of magnetic reconnection in turbulence have
been investigated through direct, high Reynolds num-
ber, numerical simulations of 2D MHD. The turbulent
cascade produces a distribution of reconnecting islands.
Computing the electric field at theX-points, we see that
turbulence produces a broad range of reconnection rates,
with values in excess of 0.1 in dimensionless global
Alfvén units. Only a small portion of the available tur-
bulent electric fieldEvvv×bbb is supplied to the local recon-
nection processes. These results may explain how rapid
reconnection occurs in MHD turbulence in association
with the most intermittent non-Gaussian current struc-
tures. From the other hand, turbulence can also generate
many reconnection sites that have very small rates.

This new point of view on reconnection may be highly
relevant to space and astrophysical applications [2, 3,
4, 1]. On the basis of the current results, we would ex-
pect to find in a turbulent MHD system a broad distribu-
tion of size of interacting islands, with a concomitantly
broad distribution of reconnection rates. A useful exten-
sion will be to employ models that are suited to low col-
lisionality plasmas, where for example anomalous resis-
tivity, Hall MHD, or other kinetic effects, may be impor-
tant.
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