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Local and effective temperatures of quantum driven systems
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We introduce thermometers to define the local temperature of an electronic system driven out of equilibrium
by local ac fields. We also define the effective temperature in terms of a local fluctuation-dissipation relation.
We show that within the weak driving regime these two temperatures coincide. We also discuss the behavior of
the local temperature along the sample. We show that it exhibits spatial fluctuations following an oscillatory
pattern. For weak driving, regions of the sample become heated, while others become cooled as a consequence

of the driving.
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The study of heat transport at the mesoscale and nano-
scale is being the subject of intense interest at present. Mo-
tivation in this field is twofold. On one side, the technologi-
cal trend toward miniaturization of electronic circuits pushes
for a better understanding of heat dissipation at this scale.
From a more general point of view, one is often faced with
situations, in which the very fundamental concepts of stan-
dard statistical mechanics and thermodynamics are put into
test. This is for instance the case when the system under
consideration is driven out of equilibrium.

Dynamical evolution out of thermodynamical equilibrium
takes place in a great variety of physical situations and many
efforts have been devoted during the last decade toward the
extension of standard thermodynamical concepts to this do-
main. Well-known examples in this area include the aging
regime of glassy systems, granular materials and colloids. A
break through in this field has been the identification of ef-
fective temperatures, that is, even when the system evolves
out of the equilibrium, it is possible to identify a parameter
that has the same properties of the temperature of a system at
equilibrium. Even more, it is sometimes possible to formu-
late a generalization of the equilibrium fluctuation dissipa-
tion relations (FDR), with this new parameter playing the
role in an effective temperature.'~

In the context of quantum transport, electronic devices
driven under ac potentials offer an ideal playground to ex-
plore these fundamental issues. The study of heat transport in
these systems has captured increasing attention during the
last years.5-8 Particularly appealing in this sense are setups
where the ac fields act locally within some region of the
sample, that we define as the “central system.” In practical
configurations, this central (out of equilibrium) system is in
contact with macroscopic wires which remain at thermody-
namical equilibrium and act as particle and thermal reser-
voirs. A paradigmatic example is a quantum dot driven at its
walls by two voltages oscillating with a phase-lag named
“quantum pump.”®~!! Another example corresponds to arrays
of driven quantum capacitors coupled to the edge state of an
electronic gas in the Hall regime.'>!3

The aim of this work is to introduce the concept of local
temperature along the central system. To this end we follow
a procedure inspired in a pioneer work by Engquist and
Anderson.'* The idea is to include in the microscopic de-
scription of the driven system a thermometer, namely, a mac-
roscopic system, which is in local thermodynamic equilib-
rium with the sample. This theoretical construction enable us
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the investigation of interesting features on the behavior of
the energy propagation along the sample. One of the most
remarkable features is the development of spatial fluctuations
of the local temperature, which leads to local cooling of re-
gions of the sample within the weak driving regime. We also
make a step further by identifying a FDR, which for weak
driving casts an effective temperature that is shown to ex-
actly coincide with the local one measured by the thermom-
eter.

Our setup, including the device with the driven system in
contact to reservoirs and thermometer is described by the
Hamiltonian

H(t) = Hsys(t) +H.p+Hp,

Hsys(f)=HL+HcL+Hc(f)+HcR+HR- (1)

The piece H,y,(t) contains the term describing the central
system (C) with the ac fields, Ho(r)=Hy+H (1) as well as
terms corresponding to left (L) and right (R) reservoirs with
the ensuing contacts H,.; and H_.;. The term Hp represents
the thermometer. It consists in a macroscopic system weakly
coupled to a given point [P of C, through a contact described
by H_p. It behaves like a reservoir with a temperature 7)p that
is determined by the condition of a vanishing heat flow be-
tween it and C. This is the thermal counterpart of a voltage
probe (see Ref. 14-16). All the reservoirs are modeled by
systems of noninteracting electrons with many degrees of
freedom, Ha=2ka8kaczackw being a=L,R,P. The corre-
sponding contacts are H,,=Wo(C},Cla+CloCra)» Where la de-
notes the coordinate of C at which the reservoir a is con-
nected. We take into account the noninvasive property of the
thermometer!* by treating w,p at the lowest order of pertur-
bation theory when necessary. We leave for the moment H
undetermined as much of the coming discussion is model
independent.

The dynamics of the system is best described within the
Schwinger-Keldysh Green functions formalism. This in-
volves the calculation of the Keldysh and retarded Green’s
functions,

Gy (t,8") = ie), (t)e(t) = e (t)e) (1),

Gt == Ot =" Yei(ey (1) + ) (te(D),  (2)

where the indexes [,I" denote spatial coordinates of the cen-
tral system. These Green functions can be evaluated after
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solving the Dyson equations. For ac driven systems, it is
convenient to use the Floquet Fourier representation of these
functions, !

11’(” 2

k=—0 J —0

_e—z(kQOt+wr)GK R(k w) (3)

where () is the frequency of the ac fields.

We determine the local temperature by requiring that the
heat current from the system to the thermometer vanishes.
We will assume here that the L and R leads are at the same
temperature 7" and that both leads and the thermometer have
the same chemical potential u. We work in units where #
=e=kg=1. As shown in,” given H(t) without many-body
interactions, the heat current from the central system to the
thermometer can be expressed as

Btp= 3 3 | 0 - 0] X (o

a=L,R,P k=—» J —»

= W p(0)T ()| Glp 1ok, ), (4)

where w;=w+kQo, T (0)==27w,|* 2 w—¢g,) is the
spectral function that determines the escape to the reservoir
a, and f(w)=1/[eP*"®+1], is the Fermi function, which
depends on the temperature 7,=1/8, and the chemical po-
tential of the reservoir a. Thus, the local temperature 7)p
corresponds to the solution of the equation J%(T p)=0. In
general, the exact solution must be found numerically, how-
ever, an exact analytical expression can be obtained within
the weak-coupling and low-temperature 7 regime.

Before doing so, let us analyze a FDR between the local
Green functions Gf,’R(t,t'). Let us recall that for systems in
equilibrium, the fluctuation dissipation theorem establishes a
relation between the Keldysh (correlation) and Retarded
Green functions. Indeed, for a system such as the one under
consideration, but without the time-dependent fields, it can
be shown that the relation between the fluctuations in the

system iG)(w), with the dissipation term of the bath,
[ (w),is**

iG%(w) = tanh ['B( . “)}o,(w), (5)

() ==2Im[G){(w)]= X |G]ji(@)Ty(w). (6)
a=L,R
where the supraindex zero indicates that we are considering
Hy(t)=0 and all the reservoirs at the same temperature T.
When the time- dependent term is turned on, identities be-
tween Green functions!! generalize to

iGE(0,0) = Eta h{ﬁ( . M)}cp,(k,w_k), (7)

k=—o

2 |Gfla(k’ w)|2Fa(w)' (8)

a=L,R

(P[(k, (l)) =

We will show below that within the weak driving-adiabatic
regime, where the term H,(r) is treated as a perturbation and
driving frequency is smaller than the dwell time of the elec-
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trons within the central system,'” it is possible to define an
effective temperature Teff =1/ Beff through the following re-
lation:

[ B (w-

iG}(0,) — iG(0, u) = tanh ):|(p,((u), 9)

2
with @)(w)=-2 Im[Gf,(O,w)]:Ekqal(k,w_k). A similar rela-
tion in the time domain has been studied numerically for a
driven ring in contact to a reservoir.* In the present problem,
we are able to demonstrate that for weak driving and low
temperature, Te coincides with the temperature 7)p deter-
mined by the thermometer

We now turn to analyze in detail the weak driving regime
where we consider Hy(z) as a perturbation in evaluating J}Q,
(see Refs. 7, 11, and 16). For reservoirs at low-temperature T
(compared with the Fermi energy), a Sommerfeld expansion
may be applied in Eq. (4) leading to

%CI)IP(k) 2Fp(k, )
T2, ~ — Ik , 10
" ﬂl%sz(k,,U«_k) ’ %FIP(kuU*—k) (10)
where
o
®1(k)=f do(w,— p ek, o), (11)
Mok
Fi(k,0) = [(wk— )ik, w)], (12)

encode the dependence on the driving field and the geometry
of the central system. This expression makes it explicit the
fact that the local temperature is different from the tempera-
ture of the leads.
In order to be more specific, let us consider a driving term
of the form,
M

Hy(t) = 2 Vi(n)ejey, (13)

j=1
with V(1)=V, cos(Qt+ ), being Ij the positions at where
the ac fields are applied. For small V|, the Dyson equation is
solved to lowest order in this amplitude and the only nonva-
nishing Floquet components of Gfl,(k,w) are those with k

=—1,0,1.7!" The adiabatic condition is introduced by ex-
panding all terms of (10) in powers of (). Keeping terms up
to Q%,

3 1
Tip ~ T+ MR ()05 + 2N (W) TP Q0 = SNF (W05
(14)

being

1 2 (k)”*zd Lok, w)]. (15)

)\E”)(w): 1 d 7
2 alko)™

We now carry out a similar analysis with the effective
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temperature. For weak driving, the relevant electronic ener-
gies o are such that |o—u|=<max(7,(,). For small T and
O, we, thus, expand both sides of Eq. (9) around w=pu.
Keeping terms up to first order in w, we find,

77ff= l ‘51(,“)
2 d 1 ’
do Blo_i— )
dw > @k, w_k)tanh{+
k=-1 .
(16)
which, for low-driving frequency (), reduces to
T =140 ()] (17)

By comparing this expression with Eq. (14) we find that
Tf{;f =T;p when ()y<<T. We would like to emphasize that our
definition of local temperature is independent of the weak
driving-adiabatic assumption. However, it is within this re-
gime where the system is slightly out of equilibrium and the
equivalence with the effective temperature defined from the
FDR Eq. (9) is expected.

In order to show other explicit results we will choose a
simple set up composed of a central system with two local ac
fields oscillating with a phase lag, i.e., M=2, 6;=0, and &,
=4 in Eq. (13), a simple model for a quantum pump. As
central system we take a one-dimensional lattice of N sites,
with the first one connected to L and the site NV connected to
R (la=1,N for a=L,R), and Hy=—w2}'(c/c,, +H.c.). All
energies and temperatures are expressed in units of w.

We first discuss the behavior of the local temperature.
One would expect that the driving fields heat the sample
giving rise to dissipation of energy from the system to the
reservoirs and leading to a local temperature of the sample
which is higher than that of the reservoirs. At weak driving,
however, it has been shown that it is possible to coherently
transport energy along the sample in a way that some of the
ac fields develop power against other ones with a low dissi-
pation of heat to the reservoirs.” Actually, the mechanism of
energy exchange between the fields behaves «(),, while the
rate at which energy is dissipated as heat is OCQ(Z). A non
trivial behavior of the local temperature, could, thus, take
place within this regime. This is, in fact, the case shown in
Fig. 1, where parameters are chosen within the weak driving
and low temperature regime. In agreement with our previous
discussion we show that T,,=T. Remarkably, as a func-
tion of the position at which the thermometer is connected or,
equivalently, the FDR (9) is evaluated, the local temperature
varies along the sample, being lower than 7" in some places,
while higher in others. One end of the system is hotter than
the other because the presence of the quantum pump breaks
time-inversion and space-inversion symmetries being the
value of & that determines which one is hotter.”!1%!! Between
the two pumping centers, the local temperature displays os-
cillations with a spatial period ~2kg. These oscillations are
due to processes OCVSQO sin(8) and have a similar origin as
the Friedel oscillations detected by voltage probes.'> Similar
oscillations in the local temperature were also reported in
other mesoscopic systems.® In the present system, the latter
are a consequence of interference processes in the charge
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FIG. 1. (Color online) Local (solid red) and effective (black
diamonds) temperatures along a one-dimensional model of N=50
sites with two ac fields operating with a phase-lag d=/2 at the
positions indicated in dotted lines. The system is in contact to res-
ervoirs with chemical potentials ©=0.2, and temperature 7=0.001.
The driving frequency is Q=107 and the amplitude is V;=0.05.

transport that take place between the two pumping centers,
which act as dynamical local impurities.'® Therefore, the os-
cillatory behavior in T}p is a signature of the coherence of at
least some component of energy transport along the sample.

In Fig. 2 we show results for the local temperature as a
function of the position of the thermometer beyond the re-
gime of validity of the weak driving and/or adiabatic ap-
proximation. Oscillations of the local temperature between
the two pumping centers are apparent, pointing to the sur-
vival of a coherent component in the energy propagation. At
fixed 7, the mean temperature of the sample, T,
=(ZN,_,T;p)/ N grows as (), increases and becomes soon
higher than the temperature of the reservoir.

Finally, we analyze the behavior of the mean temperature
T, as a function of T. Results are shown in Fig. 3 for a
driving frequency beyond the adiabatic regime and different
values of the pumping amplitude V. As expected, for T
fixed, the mean temperature of the sample increases for in-
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FIG. 2. (Color online) Local temperature along the sample for
n=0.2, =m/4, V4=0.25, Qy=0.1, and 7=0.001 (blue squares) and
T=0.01 (red circles). All other parameters are the same as in Fig. 1.
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FIG. 3. (Color online) Departure of the mean temperature of the
central system from the temperature of the reservoirs for u=0.2,
0y=0.1, =m/4, Vy=0.1 (blue squares), V,=0.05 (red circles), and
Vp=0.01 (black diamonds). Other parameters are the same as in
Fig. 1.

creasing V. Instead, 7,,—T is a decreasing function of 7.
This reflects the fact that for reservoirs at a high temperature,
the effect of the driving becomes washed up and the sample
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becomes mainly heated due to the contact with a high tem-
perature environment.

To conclude, we have defined local temperature for a
quantum system driven out of equilibrium. The behavior of
this quantity indicates a global heating, which manifests it-
self in the form of a mean temperature T, higher than the
one of the reservoirs. A more striking feature is the occur-
rence of 2ky oscillations in the local temperature, similar to
the ones predicted under a stationary situation.® This is an
indication of quantum interference, i.e., coherence in the en-
ergy propagation along the sample. At weak driving, these
oscillations give place to the local cooling of the sample. We
have also defined an effective temperature from a local fluc-
tuation dissipation relation. We have shown that for weak
driving and for temperatures smaller than the Fermi energy
of electrons, the latter coincides with the one defined by the
thermometer. This equivalence has been previously estab-
lished only for classical spin systems.! The fact that such a
kind of equivalence holds for quantum fermionic systems is
an important conceptual issue and its scope for other systems
worth further future investigation.
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