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Abstract

The explicit simulation of time dependent electronic processes requires computa-

tionally onerous routes involving the temporal integration of motion equations for the

charge density. Efficiency optimization of these methods typically relies on increas-

ing the integration time-step and on the reduction of the computational cost per

step. The implicit representation of inner electrons by effective core potentials—or

pseudopotentials—is a standard practice in localized-basis quantum-chemistry imple-

mentations to improve the efficiency of ground state-calculations, still preserving the

quality of the output. This article presents an investigation on the impact that effec-

tive core potentials have on the overall efficiency of real time electron dynamics with

TDDFT. Interestingly, the speedups achieved with the use of pseudopotentials in this
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kind of simulations are on average much more significant than in ground-state calcu-

lations, reaching in some cases a factor as large as 600×. This boost in performance

originates from two contributions: on the one hand, the size of the density matrix,

which is considerably reduced; and on the other, the elimination of high-frequency

electronic modes, responsible for limiting the maximum time-step, which vanish when

the core electrons are not propagated explicitly. The latter circumstance allows for

significant increases in time-step, that in certain cases may reach up to three orders of

magnitude, without loosing any relevant chemical or spectroscopic information.
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1 Introduction

Many fundamental processes of general relevance in nature and technology, from the res-

piratory chain to the photo-luminescence of light-emitting diodes, involve the dynamics of

electrons in molecules, nanostructures, and mesoscopic systems.1–5 This has motivated the

proliferation of theoretical methods aimed to solve the quantum many-body problem in

the time-domain. In the context of ab-initio methods, time-dependent density functional

theory (TDDFT)6 has become the most popular approach, with a success relying on an ex-

traordinary balance between predictive power and computational efficiency. While the vast

majority of existing TDDFT implementations are based on a perturbative strategy within

linear-response theory (LR-TDDFT), the simulation of quantum-dynamics in processes as

those mentioned above, or in the interaction with intense external fields, may require the

explicit time-domain propagation of the Kohn-Sham equations. To this end, in recent years

implementations designed to evolve the Kohn-Sham states in real time (RT-TDDFT) have

started to emerge.7–12 These implementations are based on numerical integration of the elec-

tronic equations of motion, assuming a finite time-step which is typically two to three orders

of magnitude smaller than a femtosecond. At every step, all terms of the Kohn-Sham matrix

have to be recalculated. Thus, simulations evolving for 10 or 20 femtoseconds may become

very costly and even unfeasible for systems of a few hundreds of electrons.

It is well known that most of chemistry is determined by the valence charge density, with

the core electrons remaining essentially undisturbed relative to their distribution in isolated

atoms in the majority of the processes of interest to chemists. This circumstance has led to

the formulation of a variety of ab-initio electronic structure models which, to gain compu-

tational efficiency, avoid the explicit description of the inner electrons, and compensate for

their effect on the valence density with additional potentials added to the Hamiltonian.13,14

Such potentials are known as pseudopotentials, or effective core potentials (ECP)15 in the

realm of Gaussian basis sets implementations. The advantage of ECP methods is twofold:

on the one hand they reduce the size of the basis set required to correctly represent the elec-
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tronic structure; and on the other hand they offer a route to introduce relativistic corrections

in heavy atoms.

Real-time time-dependent density functional implementations have been developed both

in the plane-waves (PW) and localized basis sets frameworks. In the implementations of

the first kind, such as CPMD,10,16 the representation of core electrons is computationally

very demanding and the adoption of pseudopotentials is the rule. Whereas PW schemes are

naturally suited for periodic structures, localized basis methods have been devised in both

periodic and non-periodic boundary conditions. Gaussian functions are the most common

type of localized basis employed in the context of real time TDDFT simulations,7–9,17 but in

general they are limited to finite systems in open-boundaries. On the other hand, they offer

the possibility to perform calculations with hybrid DFT functionals at a very affordable cost

in comparison with a PW setting, in which the computation of the exact exchange matrix

turns out to be much more expensive. There are other real time TDDFT schemes capable of

dealing with periodic boundary conditions using localized basis-sets. The SIESTA method

uses numerical basis but provides a periodic description of the density and the potential

thanks to the use of a real space grid and a Fourier-space representation.18,19 The GPAW

program combines PW and atom-centered basis, being able to solve the electronic structure

either in periodic or open-boundary conditions.20 This capability is shared by the Octopus

code, which does not rely on basis-functions but solves the electronic problem directly on a

real space grid.21 Some of the most interesting physical-chemical processes, as for example

those mentioned at the beginning of this introduction, occur in the condensed phase, or in

complex environments. In these cases the periodic schemes implemented in Octopus, CPMD

or GPAW codes represent an advantage. The implementation described in the present article

is not periodic, but can deal with these situations by means of a multi scale QM-MM strategy

(see references22 and23).

Different approaches have been used to integrate the equations of motion for the electrons,

including the Magnus, the Crank-Nicholson, and the split-operator techniques, among several
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others.24 In some cases these schemes have been merged for improved results. For example,

Sugino and Miyamoto have combined a higher-order Suzuki-Trotter type split operator with

a cutoff of the kinetic and potential energy operators, and the replacement of the usual

predictor-corrector approach by the so-called “railway curve interpolation” to update the self-

consistent potential. With this strategy they substantially improved the numerical stability

of the propagation, reaching an increase in the time-step of at least an order of magnitude.

This technique has been adopted in some recent PW implementations.25 As explained below

(section 2.2), in the present paper we employ a simpler propagator.

In this work, we show than in a RT-TDDFT scheme, the incorporation of pseudopoten-

tials offers an additional substantial advantage: aside from the impact on the dimension of

the density matrix, which may significantly alleviate the cost of the propagation algorithm,

it also extends the length of the required time-step, by eliminating the need to integrate

the motion of the inner electrons, associated with high energy transitions and fast fluctua-

tion frequencies. In what follows, we analyze the effects of pseudopotentials on time-step,

stability and efficiency of RT-TDDFT. We choose the absorption energies associated with

the electronic spectrum as a quality parameter for comparison with other approaches like

LR-TDDFT or all-electron calculations. The remainder of this paper takes the following

form: the overall methodology is outlined in section 2, where the general SCF process and

initial electronic structure is discussed in section 2.1, the propagation scheme is detailed in

2.2, section 2.3 explains the strategy to obtain absorption spectra, and section 2.4 highlights

the basics aspects concerning the implementation of ECP. The contributions of core and va-

lence electrons during time propagation are analyzed in section 3.1, section 3.2 explores the

stability of electron dynamics and, finally, the effect of pseudopotential on electron dynamics

is studied in section 3.3.
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2 Methodology

2.1 General details

All RT-TDDFT calculations reported in this study have been performed with the LIO code,

developed in our group.22,23 The LIO project encompasses a highly efficient DFT program

based on Gaussian functions, which uses radial grids to compute the exchange-correlation

energy, and handles the most expensive parts of the calculation in graphic processing units

(GPUs). All the simulations reported in this study were performed using the Perdew-Burke-

Ernzerhof (PBE) generalized gradient approximation functional.26,27

The total energy in DFT is expressed as a sum of the terms in eq. 1, where Ts corresponds

to the kinetic energy of the electrons, VNe to the interaction between nuclei and electrons,

Vee to the electronic repulsion, and EXC to the exchange-correlation contribution.

E[ρ] = Ts[ρ] + VNe[ρ] + Vee[ρ] + EXC [ρ] (1)

To generate the initial state in electron dynamics simulations, the system is usually

relaxed to its ground state and then subjected to an external perturbation which moves it

away from equilibrium.

2.2 Time evolution

Absorption spectra and other dynamical properties can be obtained from the temporal evo-

lution of the electron density. In particular the electronic absorption spectrum can be com-

puted from the response of the dipole moment after the application of an external electric

field (see section 2.3). The dynamics can be propagated in terms of the density matrix P

according to the Liouville-von Neumann equation (hereafter, a single bar on top of an object

will denote a vector, and a double bar a matrix):
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ih̄
∂P

∂t
= [H,P ] (2)

where H is the matrix associated with the electronic Hamiltonian, and P is expressed in

the orthogonal basis of the molecular orbitals ψi(r, t),

ψi(r, t) =

NAO
∑

µ=1

Cµi(t)φµ(r), (3)

Pµν =

NMO
∑

i=1

C∗
µi(t)Cνi(t). (4)

φµ(r) is an element of the atomic basis set of size NAO, and NMO is the number of

occupied molecular orbitals.

Different algorithms have been proposed to integrate the electron dynamics in eq. 2.

In the LIO code two routes have been implemented: a Verlet scheme23 which provides a

simple expression for the temporal evolution; and a more complex algorithm based on the

Magnus expansion,17 requiring the calculation of a greater amount of commutators, but

with the advantage of tolerating significantly longer time-steps.23 In this paper we used the

Verlet propagator because, given its simplicity and its higher sensitivity to the time-step, it

offers a more suitable test-bed to examine the stability of the dynamics. According to this

integration scheme the electron density at time t+∆t is computed by this simple formula:

P (t+∆t) =
2

ih̄
[H(t), P (t)]∆t+ P (t−∆t). (5)

2.3 Absorption spectra calculations

As in previous publications,23,28 absorption spectra were obtained from the response of the

electronic system to a narrow linearly polarized gaussian electric field (E(t)) resembling the

effect of a time domain δ function kick, which excites all the resonances with the same
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intensity:

E(t) = E0 · exp[−(t− t0)
2/2ω2]r̂ (6)

where t0 is the time at which the pulse reaches its maximum value E0, ω is its width,

and r̂ is the unitary vector pointing in the direction of x, y or z. Within this work, E0 and

ω were fixed, respectively, to 10−3 atomic units (au, 1 au = 0.002419 fs) and
√
10

2
∆t (with

∆t the integration time-step). The applied field enters the Hamiltonian through its coupling

with the electric dipole moment,

Vapp(t) = −E(t) · µ(t). (7)

The absorption spectrum S(ω) is calculated from the the absorption cross section tensor

σ(ω),

S(ω) =
1

3
Tr[σ(ω)], (8)

σ(ω) =
4πω

c
Im[α(ω)], (9)

where α is the linear polarizability tensor. To compute α from a time-dependent simulation,

we consider the following first order expansion for the dipole moment:

µik(t) = µo
k +

∫

dt1αik(t− t1)Ei(t1) = µo
ik + µind

ik (t). (10)

In this equation, µo
k is the k̂ component of the electric dipole in the absence of an external

perturbation, and the index i indicates the direction of the applied field (every spectrum is

obtained from three simulations, in each of which the perturbation is applied along the x, y,

and z directions). Rewriting eq. 10 in the frequency domain, the polarizability tensor can

8
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be expressed as a function of the induced dipole µind(t) obtained from the dynamics:

αik(ω) =
µind
ik (ω)

Ei(ω)
=

∫

dt eiωtµind
ik (t)e−γt

∫

dt eiωtEi(t)
. (11)

The damping factor e−γt is added to the expression above to produce a broadening in the

absorption spectrum peaks emulating the coupling effects between electronic and nuclear

degrees of freedom. Within this work values in the order of 0.1 au were adopted.

2.4 Effective Core Potentials

The ECP are terms included in the Hamiltonian, to mimic the interaction between the

(absent) inner electrons and the valence charge, restraining the penetration of the latter in

the nuclear region. As already mentioned, the advantage of pseudopotentials is, on the one

hand, to reduce the size of the basis set and therefore the dimension of the matrices involved

in the calculation, and, on the other hand, to parametrize relativistic corrections. In Gaussian

basis methods, the contribution of an atomic pseudopotential to the total Hamiltonian is

given by the following equation:15

V core(r) = VLMAX +
LMAX−1
∑

l=0

l
∑

m=−l

|l,m〉
(

Vl(r)− VLMAX(r)
)

〈l,m| (12)

where r is the distance to the atom center, Vl(r) are radial functions usually parametrized

as a product of Gaussian and polynomials functions, and |l,m〉 are real orthonormal spher-

ical harmonics centered on the atom. To construct Vl(r) some ad hoc decisions must be

made, such as the maximum angular momentum to be included in the parametrization

(LMAX), the boundary of the core region, and the particular relativistic approach. These

variants have led to different families of pseudopotentials. The Compact Effective Potential

“CEP”29–31 (also denoted by the acronym SBKJC), the CRENBL,32–35 the Los Alamos,36–38

and the Stuttgart39 pseudopotentials, are examples of common parametrizations employed

9
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with Gaussian basis. In this article the CEP scheme was adopted, because, being constructed

with a small number of functions, it proved to be the most efficient within our code, without

prejudice to the quality of the results. In any case, additional tests were performed with

different ECP for comparison, which results are presented as supporting information.

The present ECP implementation in the LIO program follows the work by Bode and Gor-

don40 for all integrations, though we introduce a cut-off distance (Rcutoff ) so that the compu-

tational cost scales linearly with the system size. Thus, the interaction between the electrons

and a pseudopotential centered on atom I, is restrained by the condition αi|MI|2 < Rcutoff ,

where |MI| is the distance between the origin of the basis function M and atom I, with αi

the basis exponent. Appropriate cut-off radii were determined from energy calculations in

different systems.

3 Results and Discussion

3.1 Split propagation of P

The treatment in section 2.3 provides a route to the electronic frequencies from the evolution

of the total charge density. In this study, however, we seek to individualize the contribution

of every orbital to the absorption spectrum, to analyze separately the role of core and valence

electrons. This can be achieved by propagating the TDDFT equations in terms of the Kohn-

Sham orbitals. alternatively, this can also be accomplished using the Liouville von Neumann

master equation (eq. 2), providing the density matrix is decomposed in NMO matrices P i,

which elements consist of a single term of the sum in eq. 4:

P i
µν(t) = C∗

µi(t)Cνi(t). (13)

In the electronic ground state, every matrix P i is associated with the Kohn-Sham orbital i.

Thanks to the linearity of all operations when integrating via eq. 5, it is possible to evolve

10
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each matrix P i separately; this set of equations, however, is coupled because H depends on

the total electron density of the system. The above decomposition is schematized in Figure

1.

µ

ν

i

P i
µν

Pµν

Σ i
N
C
O

Figure 1: To track the contribution of every molecular orbital to the frequency spectrum,

the density matrix is decomposed in NMO matrices P i. Each of these is evolved separately,
reflecting the dynamics of the ith molecular orbital.

The HCl molecule was chosen to test the behavior of this split propagation scheme, be-

cause it is small but has enough electrons for the ECP to make a difference in performance,

and to establish a clear distinction between core and valence charge. For small systems as

those considered here, linear response schemes are likely to be computationally less demand-

ing to access absorption spectra with respect to a real time approach; in the present work,

however, the interest is not to obtain the electronic spectrum, but to employ it as a quality-

test of the dynamics. In its low energy region, the experimental absorption spectrum of HCl
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presents a band centered at ∼ 8 eV ,41,42 which will be used to benchmark our calculations.

To calculate the spectrum the system must be subjected to three orthogonal perturbations,

and its response needs to be computed in each case. However, to the end of this study,

which aims at examining the role of core electrons on the simulated dynamics, it would be

irrelevant to impose the excitations in all directions to extract the full spectrum. Instead,

it is enough to reproduce the response of the system to the perturbation in some axis, since

the quantity of interest is basically the maximum time-step, and the overall computation

time. Excitations in the three axes would involve additional complexity, providing no further

insight. Thus, to keep the analysis simple, we have focused on one of the three contributions

to the absorption spectra. As shown in Figure 2, the generalization to the other axes does

not affect the comparison.

Figure 2 shows the resulting spectra for HCl, displaying also the contributions of each

diagonal element of the absorption cross section tensor σ (which reflects the imaginary part of

the polarizability tensor). In our analysis, we will consider the components of σ perpendicular

to the molecular axis, because they are responsible for the transition of interest in the low

energy range of the spectrum.
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Figure 2: Absorption spectrum, and individual contributions of the absorption cross section
tensor, calculated for the HCl molecule. Given the orientation of the molecule, the yy and
zz elements are equivalent. Every spectrum has been computed from simulations of 50 fs
using a 6-311G** basis set and a time-step of 0.001 au.

The left panel in Figure 3 shows the frequencies of the HCl molecule obtained with a 6-

311G** basis set,43,44 for an applied electric field perpendicular to the molecular axis. Given

the total number of electrons, and assuming a closed-shell representation, there are 9 P i

matrices to be propagated, each one associated with a particular ground state molecular or-

bital. We note that P 1 and P 2 are essentially related to orbitals 1s and 2s of Cl, respectively,

whereas P 3 to P 5 can be identified with the 2p electrons of Cl. The absorption spectrum

arises from the full density matrix computed from the sum of all the propagated matrices.

The contribution of the 5 orbitals associated with the lower eigenvalues in the ground state,

were grouped as part of the “core” frequencies, while that of the remaining orbitals were

considered “valence”. The right panel depicts the dipole moment (in the direction of the

perturbation) calculated from the charge density of selected orbitals. It is manifest that the
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dipole moment associated with the evolution of the lower energy orbitals, for example 1,

fluctuates much faster than in the case of the higher energy electrons, for example 3 or 9.

This behavior is reflected in the fact that the major contribution to the lower part of the

absorption spectrum originates from the valence electrons.
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Figure 3: (I) Oscillator strength calculated for the HCl molecule from the split-propagation
scheme (see text, section 3.1). The contribution of the core states is depicted in green and
that of the valence charge in orange. The inset zooms on the transition of interest. (II)
Temporal evolution of the dipole moment (in the direction of the perturbation) associated
with selected orbitals. The calculation corresponds to a 50 fs simulation using a 6-311G**
basis set and a time step of 0.001 au.

It is well known that the optimal time-step to integrate any dynamical equation is deter-

mined by the highest frequency in the system. This example clearly shows than in electron

dynamics, the faster fluctuations are related to the first eigenstates, or, in other words, that

core electrons are the limiting factor in the length of the time-step. We focus on this question

in the next section.

3.2 Propagator stability

According to the Liouville von Neumann equation (eq. 2) the variation rate of the density

matrix is given by the commutator [H(t), P i(t)]. Usually, the loss of stability in the prop-

agation algorithm is manifested in the divergence of the density matrix, and therefore of
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its commutator with the time-dependent Hamiltonian. In order to analyze the stability of

the electron dynamics and its dependence on the time-step, the norms of the commutators

were followed along the split propagation. Figure 4 shows the results for 5000 steps of dy-

namics using different time-steps, for molecular orbitals 1 (black) and 9 (red), which are the

most internal and external, respectively. It can be seen that fluctuations in the commutator

norm are much more sensitive to the time-step for orbital 1 in comparison to orbital 9. In

particular, there is a limiting time-step (∼0.00315 au), which will be referred to as Tmax,

above which the commutator diverges before completing 5000 steps. For this time-step the

propagation of orbital 9 necessarily diverges as well, with some delay, since all electronic

modes are coupled through the Hamiltonian matrix in the commutator. The distinctive

sensitivity to time-step of these fluctuations, suggests that Tmax is too high to propagate the

lower eigenstates, whereas it appears appropriate to integrate the lower frequency modes.

To further assess the incidence of the inner electrons on the time-step, the same analysis was

repeated for a partially frozen-core configuration, i.e., performing the propagation without

evolving the P 1 matrix. The bottom panel on the right in Figure 4 presents the results cor-

responding to using Tmax: the propagation does not diverge within the first 5000 steps, and

the oscillations in the norm of the commutator associated with the valence orbital become

much smoother.
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Figure 4: Temporal evolution of the norm of [H(t), P i(t)] (in atomic units) for molecular
orbitals i=1 (black) and i=9 (red) during the simulation of the HCl molecule, using the Verlet
propagator with different integration time-steps. Panels I, II, and III show, respectively,
results obtained from time-steps equivalent to 50%, 99%, and 100% of Tmax (maximum

tolerated time-step, ∼0.00315 au). Finally Panel IV displays the magnitude of [H(t), P 9(t)]

when freezing the P 1 matrix and integrating with a time-step of Tmax. A 6-311G** basis
set was used for all calculations.

The effect of freezing the core orbitals on the absorption spectrum is considered in Figure

5. It can be seen that the low energy region is essentially independent of the evolution of the

inner electrons, even when the full core charge—the set of the first five orbitals—is frozen. At

least for HCl, these results show that the dynamics of the core electrons does not modify the

absorption spectrum in the low energy range, which is the one of general interest. Therefore,

the use of ECP in the time-propagation should allow for more efficient electron dynamics

without loss of relevant spectroscopic information with respect to the all-electron calculation.
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Figure 5: Oscillator strength calculated for the HCl molecule. Results for all-electron dy-
namics (red), and frozen-core dynamics, freezing the lowest-energy orbital (blue), and the set
of 5 lower-energy orbitals (green). The inset presents the high-energy region, in eV. Spectra
were computed from 50 fs simulations using a time-step of 0.001 au and a 6-311G** basis
set.

3.3 RT-TDDFT using ECP

The implementation of a pseudopotential scheme in the framework of Gaussian basis methods

requires the parametrization of a specific basis set to represent the valence orbitals in the

presence of a given core potential. In this way, each set of pseudopotentials has an associated

set of basis functions designed to optimize its performance for SCF calculations. Most

of the basis sets designed for ECP, are typically constructed to reproduce ground state

properties. However, TDDFT calculations are meant to represent both ground and excited

states, and the computed absorption frequencies usually turn out to be very sensitive to

the choice of basis functions. In particular, the spectrum computed with the 6-311G**
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basis43,44 from an all-electron simulation exhibits significant differences with respect to that

obtained from a CEP pseudopotential29 calculation (data not shown). Even if the CEP basis

is augmented with polarization functions,45,46 the frequencies continue to differ significantly

from those emerging from the calculation with the 6-311G** basis set. Therefore, for the sake

of comparison, in the pseudopotential calculations we have replaced the specific CEP basis

by the same 6-311G** functions used in the all-electron runs. This fusion will be denoted as

ECP/6-311G**. Alternatively, we have also explored the same combination but removing

the innermost functions of the 6-311G** basis, which will be referred to as ECP/6-311G**

(valence only).
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Figure 6: Oscillator strength calculated for the HCl molecule using the 6-311G** basis
set, obtained from the all-electron (black) and CEP simulations in combination with the
6-311G** basis set, with and without the core functions (red and green respectively). The
corresponding time-dependent dipole moments are displayed in the inset.

Figure 6 compares all-electron (black curve) and CEP calculations (red curve), performed
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in every case with the full 6-311G** basis set,43,44 for the absorption of the HCl molecule.

The agreement suggests that the aforementioned differences in the frequencies emerging from

CEP and all-electron 6-311G** calculations are not related to the core representation, but

their origin can be attributed to the basis set quality. If the innermost functions of the

6-311G** basis set are removed to give the ECP/6-311G** (valence only) basis, green curve

in Figure 6, the low energy part of the spectrum obtained from time-dependent calculations

is analogous to the corresponding spectra calculated with the full basis set. As already seen

in the previous results, this region is practically unaffected by the use of the effective core

potentials.

Even though the accuracy in the low energy range is about the same for the all-electron

and pseudopotential calculations, the computational cost differs almost by an order of mag-

nitude. The maximum time-step allowing for stable integration turns out to be ∼0.015

au and ∼0.003 au for the ECP/6-311G** (valence only) and the all-electron simulations,

respectively. The overall gain in efficiency, of about 10×, is not explained by the sole time-

step increment (of 5×) but also from the faster computation of the Kohn-Sham and density

matrices with the smaller basis set associated with ECP.

Figure 7 depicts the values of Tmax in all-electron/DZVP46,47 and CEP pseudopotentials

dynamics, for alkaline earth metals, halides, and binary species of carbon. We recall that

this value corresponds to the longer time-step allowing for the stable integration of equation

of motion 5 along 5000 steps of dynamics. In the all-electron calculations, Tmax decreases

rapidly when going down within a given Group in the Periodic Table. This is the expected

trend with the increase of the atomic charge, which rises the frequencies associated with the

inner electrons. The Figure shows that this trend on time-steps is effectively neutralized

with the use of core potentials.
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Figure 7: Maximum time-steps tolerated in electron dynamics simulations using the Verlet
propagator. Full electron and ECP calculations were performed with DZVP and CEP basis
sets, respectively. (I) alkaline earth metals. (II): halides. (III): carbon binary species.

As already mentioned, the improvement in the efficiency of pseudopotential-based elec-

tron dynamics stems not only from higher time-steps, but also, of course, from a reduction of

the dimension of the matrices H and P . The main operations involved in the Liouville-von

Neumann propagation, i.e., matrix multiplications and the calculation of the Kohn-Sham

operator, scale cubic with the size of these matrices. Table 1 shows for various systems, the

total simulation times elapsed in an hour of execution in a NVIDIA GeForce GTX 760 GPU

in combination with an Intel Core i5-4430 CPU.

20

Page 20 of 30

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Table 1: Electron dynamics simulation times (femtoseconds) accomplished in one hour of
execution in a GTX 760 GPU. Full-electron and ECP calculations were performed with
DZVP and CEP basis sets, respectively.

ECP Full-electron
System Tmax(au) (fs/h) Tmax (au) (fs/h) Speedup
Be 1.8 40645.88 0.18 3730.92 10.89
Mg 1.65 28516.21 0.020 341.51 83.50
Ca 1.1 16092.53 0.0068 107.37 149.86
Sr 0.44 5754.67 0.0015 17.70 325.13
Zn 0.0044 57.43 0.0028 45.52 1.26
Cd 0.0095 133.96 0.00093 12.19 10.98
F− 0.39 11461.87 0.035 646.06 17.74
Cl− 0.285 5991.83 0.0095 172.79 34.68
Br− 0.60 11788.85 0.0018 28.03 420.63
I− 0.32 5799.83 0.00075 9.39 617.65
CH4 0.52 2938.47 0.076 317.69 9.25
CF4 0.17 707.94 0.034 115.32 6.14
CCl4 0.14 613.89 0.0095 28.34 21.66
CBr4 0.24 1055.82 0.0018 4.03 261.65
CI4 0.16 631.25 0.00075 1.08 586.46
FeCN4−

6 0.0072 6.34 0.0038 2.03 3.13
RuCN4−

6 0.018 14.49 0.0011 0.70 20.58
Heme-CO 0.010 1.24 0.0038 0.34 3.66

Figure 7 and Table 1 show that computational efficiency is systematically improved by

the use of ECP when the number of electronic shells is increased within a group. For

representative elements, the overall improvement derived from pseudopotentials is usually

between one and two orders of magnitude. In the case of transition elements, the speedup is

substantially lower. To understand this different performance, it must be recalled that most

representative elements pseudopotentials consider only the outermost electrons (nsj npk),

but incorporate inner shells in the case of transition elements ((n− 1)s2 (n− 1)p6).30,36–39

For the iron atom, for example, this entails the explicit representation of 3s and 3p electrons,

which are subject to a higher effective charge in comparison with the electrons in the third

shell of the elements of the second row. Similarly, the ruthenium ECP incorporates 4s and

4p electrons to the valence charge. As a consequence, the speedup achieved from Fe and Ru
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pseudopotentials is comparable to, or below that obtained for representative elements of the

third and fourth row, respectively. The CRENBL Ar-like core pseudopotentials developed

by Christiansen et al.,33 consider only the nsj and (n − 1)dk electrons within the valence.

The use of this ECP to propagate the electron dynamics of the FeCN4−
6 complex leads to a

8-fold increase in performance with respect to the all-electron calculation, in contrast with

the more modest speedup of 3× found for the CEP pseudopotential.

To close this section, we emphasize that the leap-frog Verlet integrator used in this

work is a simpler and faster algorithm, but less stable, compared to the more sophisticated

expansions typically employed in real time TDDFT simulations.24 Thus, if the Verlet scheme

is replaced by the Magnus propagator to evolve the electron dynamics of HCl with the

ECP/6-31G** (valence only) basis, we find that the time-step can be risen from 0.015 au to

0.15 au. According to our tests, such an increase of an order of magnitude associated with

the replacement of the leap-frog by the Magnus approach, appears to be a general result.

In a similar way, the time-step to integrate the electronic degrees of freedom in C2H4 using

the exponential midpoint method (EMM) reported by Wang et al. in all-electron Ehrenfest

calculations with Gaussian basis sets,8 is nearly five times larger than the one required by

the Verlet propagation in our all-electron simulations for CH4.

The maximum time-step is very sensitive to the specific basis-set and pseudopotential.

For example, the CEP scheme with the corresponding basis set tolerates an integration

time-step in HCl of about 2 au with the Magnus expansion. Comparable time-steps have

been used with the Magnus propagator in SIESTA calculations,18,19 where the quality of

the numerical basis roughly pairs that of the CEP functions. In particular, a time-step as

large as 1 au was reported in Fe-porphyrin calculations employing a Fe pseudopotential that

describes explicitly only the 4s and 3d electrons.19 Our calculations on the same system

with the Magnus propagator and CEP, LANL2DZ or Stuttgart pseudopotentials, which take

into account a more extended valence charge, including 3s, 3p, 4s, and 4p electrons, do not

tolerate time-steps above 0.1 au (see Supporting Information). Another example of this
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kind of behavior is presented in the Supporting Information for Zn: if it is modelled with

just 4s electrons, a Magnus time-step of 2.4 au can be used, which drops to 0.005 au when

the third shell is added to the valence. This explains the difference in time-steps across

implementations.

4 Concluding remarks

This work implements effective core potentials in real time TDDFT simulations. It is shown

that the use of pseudopotentials can have, in these kind of simulations, a much more signif-

icant impact on computational efficiency that it has in the case of SCF calculations. The

reason for these substantial speedups, which may be as large as 600× for some representa-

tive elements, stems from the use of larger time-steps when the core charge, associated with

high-frequency modes, is not evolved in time. Additionally, though with a lesser impact in

most cases, the use of pseudopotentials reduces the dimension of the basis set and therefore

cuts down the cost of matrix multiplication operations, which are at the core of the time-

propagation algorithm. The use of a frozen-core approximation would provide the same gain

in terms of time-step, but the dimension of the matrices will be no different from that in an

all-electron calculation. Moreover, in contrast with the frozen-core scheme, pseudopotentials

allow for the incorporation of relativsitic effects, and, with the appropriate choice of basis

sets, the replacement of inner electrons by core potentials can be effected with practically

no loss of accuracy.

In general terms, the speedup provided by a pseudopotential in the framework of electron

dynamics, will depend on the angular momentum of the lower eigenstates in the valence, and

on the effective charge. Thus, at variance with the trend expected in ground-state calcu-

lations, the overall gain in performance in transition elements with explicit inner electrons,

turns out to be significantly below the one obtained in representative elements belonging to

the same period, which have only the outermost electrons in the valence. For example, for
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iron-containing compounds, the speedup is found to be around a factor of 3 or 4, while in the

case of Br species, it is over two orders of magnitude. In any case, this study shows that the

implementation of pseudopotentials makes a qualitative difference in the efficiency of real

time TDDFT simulations, and appears to be an essential ingredient to tackle the quantum-

dynamics of large chemical systems and nanostructures, with a much more significant impact

than in ground-state electronic structure calculations with Gaussian-functions.
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