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Abstract We evaluated changes in the succession process
in benthic algal communities of an afforested stream by
comparing them with those in a grassland stream through
analysis of temporal changes in composition, structure
and functional traits in a 3-month experiment. We
hypothesized that sunlight intensity reduction as a result
of streamside implanted tree shading reduces the succes-
sion rate and community physiognomic complexity. We
selected two streams with different riparian cover (grass-
land and pine afforestation) for installation of unglazed
tiles as artificial substrates. The tiles were collected from
each stream after 23, 45 and 73 days of exposure.
Afforestation produced changes in algal succession, with
lower biomass, lower diversity at the beginning of the
experiment, and an increase in the proportion of small,
low-profile, tolerant, unicellular and stalked algae, coin-
ciding with the predominance of Achnanthidium. How-
ever, the grassland stream contained a higher proportion
of intermediate-size algae, as well as a larger proportion of
high-profile algae, coinciding with the expected results. In
the afforested stream, succession proceeded toward the
dominance of low-profile species, that were tolerant of
low-light conditions. However, in grassland streams with
higher sunlight availability, high-profile algae prevailed
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without the displacement of tolerant forms. Overall, our
results indicate that algal communities in afforested
stream remain structurally simpler.
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Introduction

Species replacement through time and the mechanisms in-
volved in succession have long been studied in aquatic at-
tached algal communities such as periphyton (Hudon and
Bourget 1981; Hoagland et al. 1982; McCormick and
Stevenson 1991; Tuji 2000; Passy and Larson 2011).
Hoagland et al. (1982) proposed that the three-dimensional
structure of periphytic communities through time indicates
that their microsuccession is analogous to vascular plant
succession, with changes in their vertical structure tending
to be dominated by organisms of large stature (owing to cell
size or long stalks), and the progressive decrease in succes-
sion rates. Tuji (2000) agreed that stalked species develop in
later phases of succession, but proposed a new phase, with
tangled-type and rosette-type species developing in the up-
per part of the biofilm, tangled among the stalks.

Some authors have related microalgal succession
patterns with those occurring in plants communities
(Odum 1969; Hoagland et al. 1982; Steinman and
Mclntire 1986). However, it is still not clear if stream
periphyton follows the pattern from low-profile to high-
profile species described for plants, or how environ-
mental factors such as light, current, dissolved sub-
stances or nutrients interact in the three-dimensional
spatial complexity, affecting succession (Dudley and
D’Antonio 1991; Larson and Passy 2012). These factors
may be altered by riparian vegetation changes, particu-
larly when grasslands are afforested with perennial tree
species without buffer strips.

Monoculture plantation of rapid growth trees in
grassland ecosystems has become an accepted land use
practice in semiarid areas around the world (Simberloff
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et al. 2010), resulting in profits for timber and labour
production, and enhancing sequestration of carbon from
the atmosphere. While those benefits are unquestion-
able, scientists have pointed out unintended negative
effects of such practices, most of which are related to the
biogeochemical and hydrological balance of afforested
catchments and their potential effects on available water
quality and quantity (Farley et al. 2005; Jackson et al.
2005; Matyas and Sun 2014). However, there is a gap in
knowledge regarding how aquatic biodiversity is af-
fected. In Argentina, semiarid lands were extensively
afforested with exotic evergreen pines during the 1970s
as a result of a tax deferral plan implemented by the
government. In our study area (Coérdoba Province in
central Argentina), up to 36,000 ha of mountain grass-
lands have been converted to pine plantations, which
produced changes in the stream algal community (Cibils
et al. 2015); however, the effects on succession patterns
are still not well known.

Streamside implanted trees have reduced sunlight
inputs to streams for years, diminishing the physiog-
nomic options of members of periphytic algal commu-
nities. Structural complexity can only develop under
ample light conditions (Lowe et al. 1986; Hill 1996;
Lange et al. 2011), and light is important to community
structure and functioning (Roberts et al. 2004); there-
fore, it is likely that the succession patterns of algal
communities in the study area have been strongly al-
tered. Large species and high-profile algae have a com-
petitive advantage for light against non-motile, prostrate
taxa (i.e., low-profile species) (Boston and Hill 1991; Hill
1996; Lange et al. 2011), which may show partial shade
adaptation (Hill et al. 1995). Passy (2008) reported that
algae with a differential position in the biofilm matrix
may have different tolerance to nutrient limitations. In
this sense, large and high-profile species may be con-
sidered sensitive to light limitations, whereas low-profile
algae would be tolerant to lower light intensities. Passy
and Larson (2011) proposed that direction and rate of
succession are driven by the environment through its
influence on sensitive forms. Hence, we expected suc-
cession in afforested streams to be limited by shade,
which mainly affects sensitive species with higher light
demands.

The rapid development and short generation times
of benthic algae allow the study of succession in the
field, which enables further analysis of the effects of
land use changes on this process. Therefore, we eval-
uated the changes in the succession process in benthic
algal communities of an afforested stream by compar-
ison to those in a grassland stream through analysis of
temporal changes in composition, structure and func-
tional traits in a 3-month experiment. We hypothesized
that reduced sunlight intensity as a consequence of
streamside plantation of trees reduces the succession
rate and community physiognomic complexity. We
expected (1) greater differences in algal composition
and structure with time in grassland streams than af-
forested streams, with grassland communities develop-

ing earlier and reaching higher values of biomass; and
(2) a predominance of high-profile algae as late suc-
cessional species in grassland streams compared to af-
forested streams, where only shade-tolerant low profile
species would grow.

Methods
Study area

The study area included streams belonging to the
headwaters of the Ctalamochita River, which are situ-
ated between 800 and 1500 m a.s.l. on the east side of the
Coérdoba Hills, Argentina. Vegetation varies according
to altitude, with grassland developing between 1000 and
1500 m a.s.l. (mainly Festuca hieronymi Hack., Nasella
spp., Schizachyrium condensatum (Kunth) Nees and
Eragrostis airoides Nees; Cabido et al. 2003; Oggero and
Arana 2012). Annual precipitation in the region reaches
725 mm, occurring mostly between spring and the end of
summer (October—March) (Cabido et al. 2003), whereas
the maximum temperature reaches 34 °C in summer
(December—March), and decreases to as low as —5 °C in
winter (June—September). The lithology is dominated by
granite, but localized patches of metamorphic rocks
(gneiss, schist, migmatite) are present. The study area is
affected by anthropogenic activities, mainly livestock
and afforestation with exotic pines, dominated by the
slash pine Pinus elliottii Engelm. from North America
(Plevich et al. 2002).

Experimental design and laboratory methods

We selected two streams with different riparian cover,
one flowing entirely through grassland (31°5847”S,
64°48’41”W, 1175 m a.s.l., drainage area 87 ha) and the
other flowing entirely through a pine plantation
(31°5922”S, 64°48'44”W, 1144 m a.s.l., drainage area
89 ha). The experiment was conducted during the low
flow season (July—September 2012). Water depth, cur-
rent velocity, dominant substrate type and channel wet
width were registered at the beginning of the experiment
in four riffles each corresponding to the location of tiles
in each stream. Depth, width and current velocity were
measured with a digital water velocity meter (Global
Flow probe FP101), while substrate type was visually
assessed (Gordon et al. 1994) and assigned to a category
proposed by Thomson et al. (2001). Some physico-
chemical parameters were measured three times at each
stream during the experiment, coinciding with the
extractions of tiles for algal community analysis. The
PAR (photosynthetically active radiation) intensity was
measured with a QSL-2100 Irradiance Sensor (Bio-
spherical Instruments, Inc., San Diego, CA, USA) at
midday along a 50 m reach in each stream. Water pH,
conductivity and temperature were recorded with
portable sensors. Total dissolved solids (TDS), carbon-
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Table 1 Environmental variables measured in grassland and afforested streams

Environmental variables Grassland Afforestation df F P
PAR (umol m~2s71h) 2028 (169) 533 (353) 1 41.19 0.008
Depth (cm) 15.56 (4.81) 7.95 (0.49) 1 9.95 0.02
Current velocity (m s~ ') 0.06 (0.02) 0.09 (0.05) 1 1.08 0.34
Width (m) 1.60 (2.7) 1.22 (2.6) 1 3.92 0.09
pH 8.95 (0.64) 8.70 (0.44) 1 0.23 0.66
Conductivity (1S cm) 84.33 (16.20) 174.33 (72.7) 1 3.84 0.06
Temperature (°C) 15.17 (2.84) 10.33 (1.89) 1 4.55 0.12
TDS (mg 17") 135.67 (103.65) 151.67 (54.6) 1 0.14 0.73
Carbonate (mg 17") 2.83 (3.91) 0.00 1 1.69 0.28
Bicarbonate (mg 1) 82.10 (69.65) 97.50 (38.49) 1 0.32 0.61
Nitrate (mg 17) 0.33 (0.58) <0.1 1 1.20 0.35

Mean values, standard deviation and results of ANOVAs (df, F and P values) are shown. Significant differences between grassland and
afforested streams are in bold (P < 0.05). Repeated measures ANOVAs were performed for PAR, pH, conductivity, temperature, TDS,

carbonate, bicarbonate, and nitrate

PAR photosynthetically active radiation, 7DS total dissolved solids

ate, bicarbonate and nitrates were analyzed by the area
of Hydrology, Department of Geology, National
University of Rio Cuarto, according to standard meth-
ods (APHA 1998). Carbonates and bicarbonates were
measured by potentiometric titration with a Thermo
Orion-selective electrode, while nitrates were determined
by potentiometry using an ion selective electrode (Orion
Model 9307), a reference electrode and an Orion
potentiometer 710 A. To calibrate the potentiometer, six
benchmarks (5, 10, 25, 50, 100 and 300 mg L! NO3")
were used. The detection limit for NO;~ was 0.2 mg L™
and the analytical error was 0.5%.

Thirty unglazed tiles of 7.5 X 7.5 cm were used as
artificial substrates. Substrates were placed on the
stream bottom at different riffles. Five tiles were col-
lected from each stream at 23, 45 and 73 days of expo-
sure. We considered this timescale to include several
generations of algae (Hulot et al. 2000; Floder and
Hillebrand 2012). At each extraction date, tiles were
taken to the laboratory and algae from the upper surface
of the substrates were scrubbed off with a stiff nylon
brush, after which they were rinsed with clean water and
all the dislodged material was collected. The periphyton
suspension was homogenized and fractionated in two
subsamples. One fraction was filtered through a glass-
fiber filter GF/C to extract and quantify Chl a by spec-
trophotometry (Nusch 1980). Next, each filter was dried
at 60 °C for 48 h, weighed (to the nearest 0.01 mg),
combusted at 500 °C for 1 h, and then re-weighed to
determine the ash free dry mass (AFDM). The auto-
trophic index (AI) was then calculated from the Chl
a and AFDM (Al = AFDM/Chl a) for each substrate
replicate (Weber 1973). This value is indicative of the
proportion of the community composed of hetero-
trophic (plus organic non-living matter) and autotrophic
organisms. The AFDM represents the combined mass of
heterotrophic and autotrophic biomass (and organic
detritus), and Chl « reflects the autotrophic component
(Biggs and Kilroy 2000). Biofilm is considered to be
more heterotrophic for values higher than 400 (Collins

and Weber 1978). Another aliquot was fixed with 4%
formalin and used for species identification and density
calculations. Algal communities were analyzed quanti-
tatively at 400x magnification with organisms grouped
taxonomically by genus. For each sample, three sub-
samples were counted following transects along the
coverslip to determine cell densities (cells cm 2, based
on Villafane and Reid 1995) and taxa richness. The
counting unit was an individual cell for unicellular
organisms and coenobia, a 10 um length for filaments
and a 10 x 10 pm area for colonies. The biovolume was
estimated by multiplying the cell densities by the average
biovolume of each species according to the size of the
analyzed populations and then fitting to the nearest
geometric models. The results were given in pm?® cm™>
(Hillebrand et al. 1999).

Data analysis

Environmental variables were compared between
grassland and afforested streams using one-way ANO-
VAs for those registered at the beginning of the experi-
ment in four riffles at each stream, and repeated
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Fig. 1 Non-metric multidimensional scaling (NMDS) of algal
communities developed on substrates of grassland (open symbols)
and afforested streams (filled symbols) collected on three dates (/
23 days, 2 45 days and 3 73 days)
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Fig. 2 Genera making the greatest contribution to differences
between vegetation type and extraction date according to SIMPER
(similarity percentages) and with relative abundance (pi) higher
than 5% at some extraction dates in grassland (a) and afforested
(b) streams. Ency: Encyonema, Achi: Achnanthidium, Gomp:
Gomphonema, Frag: Fragilaria, Cym: Cymbella, Phor: Phormidium

measures ANOVA for those measured three times at
each stream. We evaluated differences in benthic algal
communities between riparian vegetation types and time
of exposure using non-metric multidimensional scaling
(NMDS) based in the Bray—Curtis dissimilarity matrix,
and performed permutational multivariate analysis of
variance (PERMANOVA, Anderson 2001; McArdle
and Anderson 2001) using distance matrices (Bray—
Curtis) to statistically test differences between groups,
with 999 permutations. To determine if groups differed
in terms of their centroids not being induced by differ-
ences in variances, we used analysis of multivariate
homogeneity of group dispersions (PERMDISP,
Anderson 2001). Additionally, SIMPER (similarity
percentages) analysis was performed to determine which
species contributed most to the dissimilarity between
sampling units (Clarke and Warwick 2001; Quinn and
Keough 2002). All statistical analyses described above
were performed in R version 3.0.1, using vegan library
(Oksanen et al. 2013; R Core Team 2013).

Structural attributes of algal communities [density,
richness, and Shannon diversity (H’) and evenness in-
dices (J')] were calculated. Shannon’s diversity index was
calculated from the biovolume data as follows:

S
H ==Y pi logopi,
P

where, p; is the contribution of the iy, species to the total
biovolume of the community and S is species number
(Hillebrand and Sommer 2000). Evenness was calculated
as H'/H'.x. Additionally, genera were grouped in cat-
egories of functional traits according to Cibils et al.
(2015): size, morphological guild, resources requirement,
attachment mechanism and life-form (Table S1). Taxa
were placed into five size classes, consisting of those with
different biovolumes from class 1, which included
smaller species, to class 5, which contained larger spe-
cies. Morphological guild was defined according to the
access of taxa to resources and vulnerability to distur-
bances. In particular, short-statured algae constituted
the low-profile guild, while tall-statured algae extending
above the substrate were considered the high-profile
guild and fast-moving biraphid diatoms or flagellated
soft algae were considered the motile guild. Resource
requirements were defined related to the tolerance or
sensitivity of species to nutrients and light limitation.
Algae requiring high resource levels for growth and
reproduction are considered sensitive, while those pro-
liferating under low resource levels are viewed as toler-
ant. The attachment mechanism determines the spatial
position in biofilm and the ability to withstand distur-
bances. Adnates were algae firmly attached by their
valve face or by their girdle view. Algae with mucilage
pads secrete a small mucilage pad at one end of the valve
to attach to the substrate, allowing them to stand up-
right. Species with mucilage stalks grow attached to
surfaces by the stalks, which can be simple (one cell) or
can link several cells forming arbuscular colonies. In
species assigned to the holdfast category, filaments are
attached by an initial cell. Unattached included species
without any specific mechanism of attachment, because

Table 2 Density, biovolume and traits designation of genera with relative abundance > 5% at some extraction dates in grassland (Grass)

and afforested (Aff) streams

Taxa Density (org cm™2)  Biovolume (um® cm™2) Morphological and functional traits
Grass Aff Grass Aff Size classes  Guild Res. req. Attach. mech. Life form

Achnanthidium 182,097 221,808 1.48 x 107 1.83x10" ¢l L T S Un
Cymbella 87,177 1137 252x 108 329x10° ¢5 H S S C
Encyonema 82,045 14,622 1.66x 10"  3.16 x 10° 2 H S A C
Fragilaria 400,810 7221 1.13x10%° 216 x10° 2 H T P C
Gomphonema 91,589 23,156 233x 107  590x10° <2 H S S Un
Phormidium 1870 78,924  7.92x10° 343x10" ¢5 H S U F

Density and biovolume values presented are the mean values for each stream at three extraction dates. Morphological and functional
traits: size classes: ¢l <99 pum?, ¢2 100-299 um?, ¢3 300-599 pm?, c4 600-1499 pm?, ¢5 > 1500 pm?

Guild morphological guild: H high profile, L low profile. Res. req: resources requirement: S sensitive, 7 tolerant. Attach. mech. attachment
mechanism: A4 adnate, P pad mucilage, S stalked, U unattached. Life form: C colonial: diatoms that usually form chains or rosettes or
arbuscular aggregates were assigned to colonial categories, even when these are not real colonies, F filamentous, Un unicellular
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Table 3 Results of repeated measures ANOVAs for structural variables of algal communities developed in grassland (G) and afforested
(F) streams (factor vegetation, Veg), in substrates collected on three dates (factor time, 1: 23 days, 2: 45 days and 3: 73 days)

Variable Factor df F P A posteriori
Ln density Veg 1 0.69 0.44
Time 2 10.19 0.002 1<3=2
Veg x time 2 0.48 0.63
Richness Veg 1 1.18 0.32
Time 2 5.46 0.02 1<2=3
Veg x time 2 2.95 0.08
Diversity Veg 1 3.79 0.09
Time 2 5.93 0.05 1<2=3
Veg X time 2 5.11 0.06
Evenness Veg 1 242 0.17
Time 2 3.37 0.12
Veg x time 2 7.20 0.04 F1 < F2=G3 =F3 =Gl = G2
Chl a Veg 1 0.77 0.41
Time 2 20.75 <0.0001 1<2<3
Veg x time 2 27.88 <0.0001 Gl =F1 = G2=F3 <F2 <G3
AFDM Veg 1 0.46 0.52
Time 2 16.80 <0.0001 1<3<2
Veg x time 2 1.25 0.30
Ln Al Veg 1 0.23 0.65
Time 2 9.24 0.001 3<1=2
Veg x time 2 8.95 0.001 G3 <F2=F3=F1 =Gl <G2

For each variable, factors that showed a significant effect are in bold (P < 0.05), with degrees of freedom (df), F value, P value and a

posteriori results (DGC test)

Chl a chlorophyll a, AFDM ash free dry mass, A autotrophic index

they float or move freely. Life-form categories are re-
lated to biofilm architecture, and the response of a
community to environmental factors changes if it is
dominated by unicellular forms or filamentous and
colonial organisms. Diatoms which usually form chains
or rosette or arbuscular aggregates, were categorized as
colonies, even when they were not real colonies.

Structural attributes, Chl a, AFDM, Al variables and
the proportion of algae corresponding to different
functional trait categories were compared by repeated
measures ANOVA. This was used to determine if dif-
ferences between riparian vegetation types and
time X riparian vegetation type interactive effects were
significant during succession. ANOVAs were performed
using InfoStat, which implements an interface of plat-
form R to estimate general and mixed linear models (Di
Rienzo et al. 2011, 2012). Validation of assumptions of
the models was performed reviewing standardized
residuals vs. predicted, the normal Q-Q plot of stan-
dardized residuals and the Shapiro—Wilks test. Variables
that did not meet ANOVA assumptions were natural
logarithm transformed. The DGC test (Di Rienzo-
Guzman—Casanoves), which is a hierarchical method
that controls type I error while maintaining accept-
able power, was used for multiple comparisons.

Results

Environmental variables measured to characterize
grasslands and afforested streams are shown in Table 1.
The PAR intensity was 70% lower in afforested streams.

Additionally, afforested streams showed higher con-
ductivity than grassland streams, although ANOVA was
marginally significant. Time had no effect on the vari-
ables measured in triplicated in each stream (P > 0.05).
For variables measured only once at the beginning of the
experiment, there might not have been differences
throughout the experimental period based on previous
studies in the area (see Cibils et al. 2015; Marquez et al.
2015).

Up to 88 genera were identified and counted, with
50% being diatoms, 20% Cyanobacteria, 20% Chloro-
phyta, 10% Charophyta, and one genus of Euglenozoa
(Table S1). NMDS revealed differentiation of commu-
nities from grasslands and afforested streams (Fig. 1,
stress = 0.12, PERMANOVA, F;, =830, P =
0.001) and differences between assemblages present at
each extraction date (PERMANOVA, Fj,4 = 6.14,
P = 0.001). In addition, differentiations were not due to
differences in dispersion within groups (PERMDISP,
Fi,5 = 0.001, P = 0.97). According to SIMPER, the
genera that made the greatest contributions to differ-
ences between vegetation type and extraction dates were
Fragilaria, Achnanthidium, Phormidium and Gom-
phonema, which are shown in Fig. 2 with two other
genera that presented a relative abundance higher than
5% on some extraction dates (Encyonema and Cym-
bella). The mean density and biovolume of these genera
at each stream type and designation to functional traits
categories are shown in Table 2. Fragilaria capucina
Desmaziéres and Achnanthidium minutissimum (Kiitz-
ing) Czarnecki were the most abundant species in the
study (Fig. 2). In the grassland stream, the proportion of
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Fig. 3 Structural variables of algal communities developed on
substrates of grassland (open symbols) and afforested streams (filled
symbols) collected at 23, 45 and 73 days. For each variable, the
mean values and standard error are shown. a Algal abundance,

Fragilaria decreased and that of Achnanthidium in-
creased with time, while in afforested stream Achnan-
thidium also increased, dominating at the end of the
experiment (Fig. 2). As the predominance of Fragilaria
in the grassland stream was decreasing, some stalked
species become more important, such as Cymbella
cymbiformis C.Agardh, Gomphonema pumilum (Gru-
now) Reichardt & Lange-Bertalot and Gomphoneis her-
culeana, the latter having long and thick stalks. In this
stream, there were also some important filamentous al-
gae, including Bulbochaete, or mucilaginous colonies
such as Tetraspora. Some frequent taxa in the grassland
stream, but absent from the afforested stream were:
Aphanothece, Bulbochaete, Euastrum, and among dia-
toms Aulacoseira granulata (Ehrenberg) Simonsen,
Craticula cuspidata (Kiitzing) D.G.Mann, small fragi-
larioids and G. herculeana (Ehrenberg) Cleve.

In relation to structural variables, density and rich-
ness increased with time, but were not affected by
riparian vegetation (Table 3; Fig. 3). However, the

Days

b richness, ¢ Shannon diversity, d evenness, e Chl a, chlorophyll
a values, f AFDM, ash free dry mass, g Ln Al natural logarithm of
autotrophic index

grassland stream had 12 more species at the end of the
experiment. Diversity and evenness values were lower at
the beginning of the experiment in the afforested stream,
but increased at 45 days, reaching values similar to
grassland communities. Chl @ values increased with time
in both streams, but higher values were observed in the
grassland stream at the end of the experiment, while in
the afforested stream it was higher at the second
extraction date. AFDM varied similarly in the grassland
and afforested streams, showing lower values at 23 days
and higher at 45 days. As a result, the autotrophic index
was more variable in the grassland stream, and at the
end of the experiment the Al was low in the grassland
stream (mean value = 71), but remained high in the
afforested stream (mean value = 169).

Streamside afforestation primarily affected the tem-
poral dynamics of algal functional traits. The proportion
of small (cl) and large algae (c5), respectively, increased
and decreased with time in the afforested stream (Ta-
ble 4; Fig. 4). In contrast, these size classes did not
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Table 4 Results of repeated measures ANOVAs for the proportion (Pi) of genera corresponding to each category of functional traits of
algal communities developed in grassland (G) and afforested (F) streams (factor vegetation, Veg), in substrates collected on three dates

(factor time, 1: 23, 2: 45 and 3: 73 days)

Traits Variable (Pi) Factor df F P A posteriori
Size cl Veg 1 23.66 0.003 G <F
Time 2 25.64 <0.0001 1<2=3
Veg x time 2 9.07 0.003 Gl =F1=G2=G3 <F2<F3
c2 Veg 1 121.84 <0.0001 F<G
Time 2 1.98 0.17
Veg x time 2 0.90 0.43
c3 Veg 1 0.27 0.62
Time 2 1.51 0.25
Veg x time 2 0.51 0.61
Ln c5 Veg 1 1.44 0.27
Time 2 16.62 0.0002 3<2<1
Veg x time 2 8.60 0.003 F3 <G2=G3 =G1=F2<Fl
Morphological guild High profile Veg 1 26.59 0.002 F <G
Time 2 16.86 0.0001 3=2<1
Veg x time 2 4.73 0.02 F3 =F2 < G3 =G2=F1 =Gl
Low profile Veg 1 26.27 0.002 G <F
Time 2 20.28 0.0001 1<2=3
Veg x time 2 6.16 0.01 Gl =F1=G2=G3 <F2<F3
Motile Veg 1 0.44 0.53
Time 2 0.13 0.88
Veg x time 2 0.42 0.66
Resources requirement Sensitive Veg 1 0.06 0.80
Time 2 3.85 0.04 3=2<1
Veg x time 2 8.94 0.002 F3 =Gl =F2=G2=G3 <Fl
Tolerant Veg 1 0.06 0.80
Time 2 3.85 0.04 1<2=
Veg x time 2 8.94 0.002 F1 <G3=G2=F2=Gl1=F3
Attachment mechanism Adnate Veg 1 5.72 0.05 F <G
Time 2 1.81 0.20
Veg x time 2 0.09 0.92
Pad Veg 1 32.66 0.001 F <G
Time 2 13.22 0.0005 3=2<1
Veg x time 2 8.54 0.003 F3=F2=F1 < G3 =G2 <Gl
Stalked Veg 1 4.23 0.08
Time 2 23.69 <0.0001 1<2<3
Veg x time 2 2.90 0.09
Holdfast Veg 1 0.69 0.44
Time 2 1.23 0.32
Veg x time 2 1.12 0.35
Unattached Veg 1 7.60 0.03 G <F
Time 2 4.68 0.03 3=2<1
Veg x time 2 4.78 0.02 F3=G2=Gl1 =G3=F2<F1
Life form Unicellular Veg 1 7.96 0.03 G <F
Time 2 21.55 <0.0001 1<2<3
Veg X time 2 1.40 0.28
Colonial Veg 1 66.34 0.0002 F <G
Time 2 13.08 0.0005 3<2<1
Veg X time 2 6.11 0.01 F3 =F2 =F1 < G3 < G2 <Gl
Coenobial Veg 1 4.70 0.07
Time 2 0.11 0.89
Veg x time 2 4.75 0.02 F3 =Gl =F2 =F1 = G2 < G3
Ln Veg 1 17.87 0.005 G <F
Filamentous Time 2 7.25 0.007 3=2<1
Veg x time 2 2.45 0.12

For each variable, factors that showed a significant effect are in bold (P < 0.05), with degrees of freedom (df), F value, P value and a
posteriori results (DGC test). References: size classes: ¢1 <99 pm?, ¢2 100-299 pum?, ¢3 300-599 pum?, ¢4 600-1499 pm?, ¢5 > 1500 pm?>

changed during succession in the grassland stream,
where mid-size algae (c2) predominated (Tables 2, 4;
Fig. 4). The succession of morphological guilds was also
affected by afforestation, with low-profile algae
increasing and high-profile algae decreasing with time.
No temporal changes were observed in the algal com-

munity of the grassland stream, where high-profile algae
dominated (Tables 2, 4; Fig. 4). Sensitive species were
predominant in the afforested stream at 23 days, and
were replaced by tolerant species. In the grassland
stream, there was a higher proportion of tolerant species
at the beginning of the experiment, but a similar pro-
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<« Fig. 4 Variation in relative abundance (pi) of the different

categories of functional traits of algae developed on substrates of
grassland and afforested streams collected at 23, 45 and 73 days.
For each variable, mean values and standard error are shown.
a Size classes in afforestation, b size classes in grassland,
¢ morphological guild in afforestation, d morphological guild in
grassland, e resources requirements in afforestation, f resources
requirements in grassland, g attachment mechanism in afforesta-
tion, h attachment mechanism in grassland, i life form in
afforestation, j life form in grassland. Categories with a propor-
tion <1% were not plotted (i.e., c3, c4, adnates, holdfast,
coenobial).  References: size  classes: ¢l <99 pm®, 2
100-299 pm?, ¢3 300-599 pm?, c4 600-1499 pm?, ¢5 >1500 pm?.
Morphological guilds: low-profile: short-statured algae; high-
profile: tall-statured algae; motile: fast-moving biraphid diatoms
or flagellated soft algae. Resources requirements: sensitive: algae
requiring high resource levels; tolerant: low resource requirements

portion of tolerant and sensitive species at 73 days
(Tables 2, 4; Fig. 4). Algae with different attachment
mechanisms changed with time in both streams. Stalked
algae increased in both the grassland and afforested
stream. Unattached forms were dominant at 23 days in
the afforested stream, while algae with pad mucilage
predominated in the grassland stream, and both forms
decreased with time (Tables 2, 4; Fig. 4). The propor-
tions of algae from different life-form categories also
changed with time depending on streamside vegetation
(Tables 2, 4; Fig. 4). In the afforested stream, unicellular
algae increased and filamentous forms decreased. In the
grassland stream, the proportion of unicellular forms
was lower than in the afforested stream, but they also
increased with time, while filamentous forms com-
prised <1%. Colonial forms decreased with time in the
grassland stream and were kept in low proportion in the
afforested stream. Coenobial algae (e.g., Scenedesmus,
Pediastrum) presented a low proportion throughout the
experimental period in both streams.

Discussion

Our study revealed that afforestation of grassland
streams changes the succession dynamic of algal com-
munities. We expected higher differences with time in the
grassland stream, and we indeed found earlier growth
and higher biomass in these algal assemblages. Most
structural attributes showed different trajectories under
pine afforestation (i.e., richness, diversity, evenness,
biomass as Chl a and the autotrophic index) compared
to grassland streams. Regarding functional traits, suc-
cession in the afforested stream was differentiated by an
increase in the proportion of small, low-profile, tolerant,
unicellular and stalked algae, which coincided with the
predominance of Achnanthidium. Instead, a higher pro-
portion of intermediate-size algae was registered in
grassland streams, as well as an increase in the propor-
tion of high-profile algae, coinciding with the expected
results, which is coincident with the results reported by
Lange et al. (2011). These findings for the grassland
stream can be compared with the increase in structural
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complexity described for microalgal communities
(Hoagland et al. 1982; Steinman and Mclntire 1986; Hill
1996; Lange et al. 2011), macroalgae (Branco et al. 2005)
and plants of tropical and deciduous forests (Terborgh
1985; Guariguata and Ostertag 2001).

Communities from grassland streams reached higher
density and biomass. Similarly, Villeneuve et al. (2010)
reported an increase in periphyton biomass and algal
density at higher light intensities, and other researchers
have found that colonization is slower at low light
intensities and temperature (Stevenson 1996; Diaz Vil-
lanueva and Modenutti 2004). Accordingly, even when
algal density increased through time in the afforested
stream, it was at a lower rate compared to grassland.
Furthermore, some authors proposed that algae could
compensate for low light intensities by increasing their
cellular Chl a content (Wellnitz and Ward 2000; Roberts
et al. 2004). This could explain the high values of Chl
a in the afforested stream at 45 days. This compensation
mechanism was also inferred in a previous experiment in
the area, in which similar values of Chl a concentration
and AFDM were found between grassland and affor-
ested streams in a 30-day community (Principe et al.
2015).

Temporal changes in periphyton growth can be
conceptualized in three phases after a major flood event:
colonization, exponential growth and sloughing (Biggs
1996; Biggs and Stokseth 1996). At the beginning, there
is low biomass and high diversity. Over time, biomass
and cell density increase until reaching a plateau, while
diversity decreases, although some processes such as
detachment can alter these phases (Roemer et al. 1984;
Boulétreau et al. 2006). In our reference grassland
stream, density, richness and Chl a increased with time.
However, in the afforested stream we noticed a decrease
in these variables, but an increase in diversity with time
given that, at the beginning of the experiment, the total
biovolume of the community was dominated by
Phormidium, which was subsequently dislodged and re-
placed by diatoms. This resulted in a more equitable and
therefore more diverse community. The results obtained
with structural variables could reflect differences in the
succession process with different riparian vegetation,
with a longer accrual phase occurring in grassland
streams. Other researchers have reported altered dura-
tion of phases given differences in hydrological (Artigas
et al. Artigas et al. 2012) or pollution (Duong et al. 2007)
regimes. Our results could also reflect inhibition of the
growth of microorganisms given the release of sub-
stances from large needle packs present year round in
afforested streams (Bérlocher and Oertli Bérlocher and
Oertli 1978a, b). Our experiment coincided with the low
discharge period (i.e., winter-early spring dry season),
which may have led to higher ambient leachate con-
centrations from this detritus accumulation. In addition,
the physical wearing down by needle packs accumulated
on the algal communities could occur in afforested
streams, though further experiments are needed to fully
understand these effects.
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The identity of dominant taxa was heavily altered by
afforestation. The most abundant species were Fragilaria
capucina and A. minutissimum, which is in agreement
with the results of other succession studies (Sekar et al.
2002; Diaz Villanueva and Modenutti 2004; Villeneuve
et al. 2010). A. minutissimum has been cited as an early
colonizer (Korte and Blinn 1983; Roemer et al. 1984;
Stevenson et al. 1991), though in our study its propor-
tion increased with time, both in the grassland and af-
forested streams, possibly because of its high
immigration rate (Stevenson et al. 1991). The increase
through time of some stalked species in the grassland
stream (C. cymbiformis, G. pumilum, G. herculeana) is in
agreement with the results proposed by other authors
(Hoagland et al. 1982; Tuji 2000), especially that of G.
herculeana, which has long and thick stalks. In this
stream, there were also important filamentous algae such
as Bulbochaete, and mucilaginous colonies such as Te-
traspora. In agreement with these results, Wu et al.
(1999) highlighted the importance of filamentous algae
and stalks as structural components of the assemblage
during the final stages of succession. Roemer et al.
(1984) mentioned that the mucilage of diatoms affects
community structure, since it allows the attachment of
other algae (e.g., 4. minutissimum) and vertical stratifi-
cation of the community. Similarly, Tuji (2000) noted
that stalks could be a secondary substrate for the colo-
nization of algae loosely attached in the final stage of
succession. In the afforested stream, the community
succeeded to one dominated by 4. minutissimum, which
is likely explained by low sunlight intensities that usually
prevent the settlement of larger algae (Lamberti et al.
1989; Lange et al. 2011), together with the shade-toler-
ance characteristics of 4. minutissimum (Johnson et al.
1997; Diaz Villanueva and Modenutti 2004). This
behavior is analogous to that of non-pioneer species able
to germinate and establish under forest shade (Swaine
and Whitmore 1988).

The observed trend in the afforested stream was to-
ward the predominance of small, low-profile, tolerant
species, coinciding with other studies that showed a
mature community dominated by low-profile algae
forming a thin and simple layer under low resource
availability (Hudon and Bourget 1981, 1983; Passy and
Larson 2011; Hlubikova et al. 2014; Cibils et al. 2015).
In contrast, all species could grow in high sunlight
availability, as occurred in the grassland stream, with
predominance of high-profile species that accumulated
higher amounts of biomass (i.e., Chl a concentration)
and formed a superior thick layer without eliminating
tolerant forms (Passy 2008; Passy and Larson 2011). We
also observed that communities from the grassland
stream reached higher algal biomass and richness, which
was expected, and supported the assumption that re-
duced sunlight intensity as a result of trees planted along
streams reduces the succession rate and community
physiognomic complexity.
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