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Below-bandgap excitation of bulk semiconductors by twisted light
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Abstract. - I theoretically investigate the response of bulk semiconductors to excitation by
twisted light below the energy bandgap. To this end, I modify a well-known model of light-
semiconductor interaction to account for the conservation of the momentum of light. I predict
that the excited states can be thought of as a superposition of slightly perturbed exciton states
undergoing a complex center-of-mass 3D motion. In addition, other effects are found; first, the
absorption of twisted light and plane-wave light occur at a slightly different energy; second, the
absorption of twisted light produces complex spatial patterns in the polarization and electric
current.

In the realm of semiconductor optics, a generalized prac-
tice is to neglect the photon’s momentum in direct ab-
sorption/emission processes. This assumption, known as
“vertical transitions”(VT) [1], has been applied with such
success that sometimes the need to include the momentum
is understimated. Exceptions are found in early and re-
cent works, reporting theoretical and experimental results
strongly dependending on the conservation of the linear
momentum of the photon. In the late ’50 Hopfield elab-
orated the theory of exciton-polaritons [2], and later he
pointed out, in a different context, the existence of new
selection rules not accounted for by VT [3]. Afterwards
the photon drag effect [4] was proposed, experimentally
verified and brought to the point of technological appli-
cations. More recently, the photon momentum has been
incorporated in the equations of motion describing the dy-
namics of electrons and holes under the action of inhomo-
geneous light fields to treat lasers [5]; meanwhile, research
in exciton-polaritons continue evolving [6].

In the last few decades there has been an increase in the
number of studies on spatially inhomogeneous light fields,
most important to this article is the case of optical vortices
[7], and subsequently that of twisted light(TL) —light car-
rying orbital angular momentum(OAM) [8]. These have
motivated studies of inhomogeneous light-matter interac-
tion in several fields [9], and likely part of the work in semi-
conductors cited above. In particular, theoretical work
by myself and collaborators show the need to include the

OAM of TL in above-bandgap excitation of semiconductor
structures. [10–12]

From the point of view of applications, the tendency to
miniaturization requires the manipulation of states having
few particles, and the consideration of small quantities.
Thus, what has been judgicioulsly neglected in the past,
may acquire relevance in present-days technology.

The present work is motivated by the combination of
the current interest in optical vortices, the long-standing
attention to the light-matter interaction problem, and fi-
nally the intention to gain control on the quantum level
in semiconductor structures. In the following I explain
the modifications introduced in a standard model of light-
semiconductors interaction, to account for the linear mo-
mentum or OAM of the light. Using this extended model
I work out the familiar situation of excitation of excitons
by plane waves. I have in mind two aims; first, I in-
tend to further support —in addition to the aforemention
literature— the idea that the inclusion of the momentum
of light is a must, for certain situations. Second, some
simple new results and connection to other theories will
emerge. The main part of the article treats the below-
bandgap coherent excitation by TL; here I predict that
the excitation may be understood as generating a super-
position of states, that differ slightly from excitons, and
undergo a complex center-of-mass 3D motion. In addition,
other effects are described and compared to the excitation
by plane waves.
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The theory of optical excitation of semiconductors in
the VT limit is well developed and known. An excellent
treatment is given by Haug et al [1], for the cases without
(inter-band transitions) and with (excitonic transitions)
Coulomb interaction. In the following, this formalism will
be extended to include the momentum of light.

The dynamics of electrons in a semiconductor having a
valence(v) and a conduction(c) bands may be described
by Heisenberg equations of motion [12] for intraband co-
herences (and populations) in each band plus the inter-
band coherence between them; these equations form a
coupled system. Under the condition of low excitation
(low light field intensity/large detuning), the equations
can be treated perturbatively and can be decoupled. 1

The interband coherence ρvi,cj = 〈a†viacj〉 is first order in
the light field strength —a†bk/abk are creation/annihilation
operators of electrons in a Bloch state k and band b:
ψbk(r) = 〈r| bk〉 = L−3/2eikrub(r), with system’s length L,
energy εbk, and periodic Bloch function ub(r)— whereas
intraband coherences (and populations) are second order
in the light field strength. Then, the linear response of
the unexcited system (zero conduction band population)
is obtained from

(
ih̄
d

dt
−∆ck,vk′

)
ρvk′,ck(t) = 〈ck|hI(t) |vk′〉 −

∑

q 6=0

Vq ρvk′−q,ck−q(t) , (1)

where ∆ck,vk′ = εck − εvk′ and the self-energy correc-
tion has been neglected. The first term in the RHS is
the matrix element of the light-matter interaction, mod-
eled by “minimal coupling” (for the case of TL see Quin-
teiro et al. [10]). The second term on the RHS is the
Coulomb potential in the random phase approximation. I
first note that, due to the conservation of the momentum
of light, 〈ck|hI(t) |vk′〉 vanishes unless k′ = k − q0 for
some vector q0. In the case of plane waves propagating
along the z-axis q0 = q0ẑ is a constant or parameter —
the linear momentum of the photon—, while for twisted
light q0 = qr cos θ x̂ + qr sin θ ŷ + qz ẑ with θ a variable
and {qr, qz} parameters (see below for details). There-
fore, to capture the relevant physics of the light-matter
interaction I specialize and study Eq. (1) at k′ = k−q0. I
will treat the case of TL, since that of plane waves can be
easily deduced from the former. The main contribution
to the light-matter interaction arises from the transverse
component A(r, t) = εσ A0(t)Jl(qr r) exp[i(qzz + lφ)] +
c.c. of the vector potential, with Jl(x) a Bessel func-
tion, h̄l the OAM, εσ the vector for circular polariza-
tion σ = +/−, and qr < qz. A Fourier transform
in k-space {f(r) = [L/(2π)]3

∫
d3k e−ikrf(k)} and time

1Perturbation theory breaks down when the quantization volumes
for electrons and photons is the same and no additional dissipation
channel exists. [2] On the other hand, the conservation of momentum
requires that the system is larger than the wavelength λ of light; thus,
for a system smaller that the photon’s quantization box and larger
than λ perturbation theory can be used.

[f(t) = 1/(2π)
∫
dω e−iωtf(ω)] is applied to simplify

each term: The light-matter interaction 〈ck|hI(t) |vk′〉 =
ξ(t) δ(k−k′)rqr

δ(k−k′)zqz
exp (iθl)/(Lqr) becomes

〈ck|hI(t) |vk− q0〉 → L3 ξ(ω)
eiθl

Lqr
δ(r)

with ξ(t) = −(−i)l (ε · pcv)QA0(t)/m, pcv = 〈uc|p |uc〉
the momentum-operator matrix element, Q the electron’s
charge, and m the electron’s mass. Then,

∆ck,vk−q0 ρvk−q0,ck(ω) →
[(
Eg +

h̄2 q2
0

2|m∗
v|

)
−

i
h̄2 q0

|m∗
v|
· ∇ − h̄2

2µ
∇2

]
ρq0(ω, r) (2)

with 1/µ = 1/|m∗
v| + 1/|m∗

c |, and the subscript v/c from
ρ was eliminated to ease the notation. Finally,

L3

(2π)3

∫
d3j Vk−j ρvj−q0,cj(ω) → V (r) ρq0(ω, r) . (3)

Assembling all terms, the transformed version of Eq. (1)
becomes

[
h̄ω −

(
Eg +

h̄2 q2
0

2|m∗
v|

)
+ i

h̄2 q0

|m∗
v|
· ∇+

h̄2

2µ
∇2+

V (r)
]
ρq0(ω, r) = L3 ξ(ω)

1
Lqr

eiθl δ(r) . (4)

To solve it one may first find the solutions ψν(r) of the
corresponding homogeneous equation (RHS set to zero),
and then express the solution ρq0(ω, r) to the complete
equation as an expansion in terms of ψν(r). In the VT
model (q0 = 0) the homogeneous equation is the Wannier
equation, and its solutions are the wave-functions for the
relative motion of excitons having energy Eν and spatial
extent a∗B . In the general case, Eq. (4) exhibits two new
terms: (1) h̄2 q2

0/(2|m∗
v|), and (2) ih̄2/|m∗

v|q0 · ∇. Term
(1) needs no special treatment, since it is a renormaliza-
tion of the energy. Term (2) can be handled by either
i) perturbation theory, or ii) completing squares and ap-
plying a unitary transformation (displacement in k-space
space) U(r) = exp [i(µ/|m∗

v|)q0 · r]. By method ii Eq. (4)
becomes

[
h̄ ω − Eg − h̄2q2

0

2M
− p2

2µ
+ V (r)

]
ρ̃q0(ω, r) =

L3 ξ(ω)
eiθl

Lqr
U(r) δ(r) , (5)

where ρ̃q0(ω, r) = U(r)ρq0(ω, r), and M = |m∗
v| + |m∗

c |.
Redefining E′g = Eg + h̄2q2

0/(2M) the homogeneous part
adquires the form of the equation for the relative motion
of an exciton, where the renormalization of the energy sig-
nals its center-of-mass motion with momentum q0. One
should keep in mind, that this resemblance to the Wannier
equation does not imply, though, that the original states
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[solutions to Eq. (1) without the light term] are exact exci-
tons ψν(r), since the inverse transformation U(r) remains
to be applied; this point will be clarified when discussing
the perturbation theory solution. Back to k-space 2

ρvk−q0,ck(ω) = L3 ξ(ω)
eiθl

Lqr
×

∑
ν

ψ∗ν(r = 0)

h̄ ω − Eg − h̄2q2
0

2M − Eν

ψν

(
k− µ

|m∗
v|

q0

)
.(6)

It is instructive to apply perturbation theory [method
i above)] to the homogeneous equation of Eq. (4). First,
I show that the perturbation term ih̄2/|m∗

v|q0 · ∇ is in-
deed small compared to the rest. The action of the
perturbation onto the unperturbed solutions ψν(r) yields
h̄2/|m∗

v|q0 · ∇ψν(r) ' h̄2q0/(a∗B |m∗
v|)φν(r), with φν(r) a

function of roughly the same magnitude as ψν(r). Typi-
cally (e.g. GaAs) a∗B ' 10 nm and q0 ' 10−2 nm−1, so
h̄2q0/(a∗B |m∗

v|) ' 0.1 meV which is smaller than Eν '
1 meV, as required. In addition, the ratio of terms
(2)/(1) ' 8; thus, an analysis that includes the renor-
malization term (1), should not neglect term (2). From
perturbation theory a solution η(r) to the homogeneous
equation is built up by a superposition of unperturbed
wave-functions ηα(r) = ψα(r)+

∑
ν a

(1)
ν ψν(r)+ . . ., where

a
(1)
ν is linear in the perturbation and the dots stand for

higher order corrections. Besides, a Taylor expansion of
ψν(k−µq0/|m∗

v|) is possible, since each term is of the or-
der of ψν(k)(q0a∗Bµ/|m∗

v|)n, with q0a
∗
Bµ/|m∗

v| < 1. The
correspondence between this expansion and the pertur-
bation theory approach, helps to clarify what was antic-
ipated above, that the solutions to the original homoge-
neous equation are not excitons.

Equation (6) is the building-block of several quantities
describing both the electrons’ kinetics/dynamics and the
effect that electrons have on the EM-field. Next, I provide
the expectation values of the polarization, the electric cur-
rent density, and the OAM.

As a consequence of the conservation of photon momen-
tum, the global polarization of the system is zero; thus, a
more correct quantity is a local or space-dependent polar-
ization

P(R, t) = 2
(
LR
L

)3∑

kq0

<{
eiq0·R dvc ρvk−q0,ck(t)

}
,(7)

with <{. . .} the real part, dvc the dipole matrix element,
and R (with coordinates {R,Φ, Z}) pointing to a macro-
scopic cell of linear size LR small compared to the scale
of variation of the EM-field, but larger than the unit cell
of the semiconductor.

In addition, a TL-field induces electric currents [10–12]

j(R, t) = 2
Q

m

1
L3

∑

kq0

<{
eiq0·R pvc ρvk−q0,ck(t)

}
.(8)

2To account phenomenologically for decoherence ω may be re-
placed by ω + iγ in the denominator.

The similarity between the polarization and current is not
surprising; the theory of macroscopic media relates the
polarization charge to the electric current by the continu-
ity equation [13]. Either one or the other may be used to
study the effect that the interband coherence Eq. (6) has
on the EM-field.

Due to the fact that the light beam carries OAM, it is
of interest to calculate the OAM acquired by the electrons
as a result of the interaction. For reasons similar to those
that cause the global polarization to vanish, only an OAM
in slices perpendicular to the propagation direction of light
yields a non-zero result

Lz(Z, t) = β eiqzZ
∑

kq0

<{
(p−,b′b e

iθ + p+,b′b e
−iθ)×

ρvk−q0,ck(t)} , (9)

where β = −(4π/qr) J2(qrL), and p±,b′b = px,b′b ± py,b′b.
Some general comments are in order: i) Because of their
local character, all quantities exhibit spatial dependence;
ii) to obtain explicit expressions, it only remains to insert
the time-domain version of ρvk−q0,ck(ω) into Eqs. (7)-(9),
or to transform all quantities to the frequency domain and
use ρvk−q0,ck(ω) directly; iii) for plane waves all sums
over {k,q0} simplify to {k}, while for TL they simplify to
{k, θ}.

With the tools developed so far, I analyze the cases of
plane waves and twisted light.

Plane waves: I set l = 0 and eiθl/(Lqr) = 1. The
simplest situation is that of q0 = 0, i.e. VT. By noting that∑

k ψν(k) ∝ ψν(r = 0) the expressions for the interband
coherence and the polarization boil down to those of the
standard result, that is the polarization is homogeneous
and new absorption lines below the conduction-band edge
appear due to the exciton’s binding energy Eν . Let us
now turn to the general case q0 = q0ẑ, and examine Eq.
(6) after expanding ψν(k− µq0/|m∗

v|)

ρvk−q0,ck(ω) = L3ξ(ω)
eiθl

Lqr

∑
ν

ψ∗ν(r = 0)

h̄ω − Eg − h̄2q2
0

2M − Eν

×
[
ψν(k) +

∞∑
n=1

1
n!

(
µq0
|m∗

v|
)n

∂n
kz
ψν(k)

]
. (10)

The first term on the RHS is similar to what was obtained
for the case of VTs; nevertheless, the presence of the ki-
netic energy term h̄2q20/(2M) in the denominator signals
the center-of-mass (COM) motion of the exciton, as has
been known for long time. The next terms in Eq. (10) may
be considered the result of the displacement in momentum
space of the excitonic relative-motion wave-function, as
the argument of ψν(k−µq0/|m∗

v|) reflects. From the point
of view of perturbation theory, the term ih̄2/|m∗

v|q0 ·∇ in
Eq. (4) causes the eigenstates to be a superposition of un-
perturbed excitonic wave-functions. Both standpoints tell
us that this correction affects the internal degree of free-
dom, in contrast to the effect h̄2 q2

0/(2|m∗
v|) has. Shifting
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to the analysis of derived quantities, we see that the po-
larization presents spatial dependency on the coordinate
Z; from this expression an electric susceptibility in the
direction of the electric field can be deduced. Expanding
the real part in Eq. (7) and after some calculation

χ(ω) = −|dvc|2
∑

ν

ψ∗ν(r = 0)

h̄ ω − Eg − h̄2q2
0

2M − Eν

[ψν (r = 0) +

∞∑
n=1

1
n!

(
µq0
|m∗

v|
)n (

L

2π

)3 ∫
d3k ∂n

kz
ψν (k)

]
+ . . . ,(11)

where the dots indicate an extra term arising from{
eiq0·R dvc ρvk−q0,ck(t)

}∗. The susceptibility shows the
expected features, i.e. no spatial dependence 3 but “spa-
tial dispersion” (q0 dependence). The COM-motion cor-
rection in the denominator introduces a tiny shift in the
absorption line. Used in conjunction with Maxwell’s equa-
tions, the susceptibility yields information about the effect
that electrons has on the EM field, e.g. attenuation of the
beam. I finally note that the effects introduced by a finite
wave-vector q0 is negligible when the semiconductor’s z-
length is smaller than 2π/q0, e.g. thin samples/quantum
wells.

Twisted light: The full solution Eq. (6) having
eiθl/(Lqr) 6= 0, and variable θ is used. Let us first fo-
cus on the term h̄2q20/(2M). Regarded as the COM ki-
netic energy of excitons, it indicates a complex motion
connected to both parameters qz and qr. Although qr is
not a momentum (it relates to the inverse of the beam
waist), its presence may be understood by thinking on
the linear momentum (P(TL) = ε0E × B) at each point
in space carried by the TL field: A preliminary calcula-
tion, under the assumption qr < qz, shows that the ra-
dial and angular components of P(TL) are proportional to
qr, while —as expected— its z component is proportional
to qz. Despite this tells that qr participates in the mo-
mentum, a deeper analysis remains to be done in order
to confirm and expand this result. Once again, the ar-
gument of ψν(k − µq0/|m∗

v|) indicates that the TL-field
excites states which are not exactly but slightly perturbed
excitonic states. Additionally, the presence of the factor
eiθl signals that a superposition of states —differing in
their θ variable and thus having different phases— is cre-
ated, in contrast to the case of the one-state excitation by
plane waves. As for the macroscopic description of the sys-
tem, the states contribute, by the term Eν + h̄2q20/(2M),
absorption lines below the band gap; the shift due to the
COM kinetic energy is about 10µeV. The absorption could
be studied more carefully by either calculating the local
polarization or the electric current, and if possible deriv-
ing a susceptibility or conductivity (through Ohm’s law)
respectively. It is of interest to look at the electric current
produced by the interband coherence; using Eq. (6) and

3The exp(iq0Z) was used to reconstruct the electric field in a
formula of the type P (Z) = χE(Z).

defining ρvk−q0,ck(t) = eiθlρ0(t) Eq. (8) becomes

j(Z,Φ; t) =
Q

m

4π
L3

∑

k

<{
ileiqzZJl(qrR)eilΦpvc ρ0(t)

}
.

The current perpendicular to the z-axis exhibits complex
flow patterns: for l = 1 one observes circular flows around
the beam axis, for l = 2 two electric current vortices ap-
pear at both sides of the beam axis, for l > 2 the com-
plexity increases and several vortices show up (see Fig. 2
in Quinteiro et al [10]), suggesting a transfer of the opti-
cal vortices to the solid. As a consequence, the OAM in
z-direction only exists for the case of l = ±1. To conclude,
it is my believe that the the correct physical description of
the TL-semiconductor interaction requires the inclusion of
q0; this is simply because common semiconductor struc-
tures are not shaped to avoid the angular inhomogeneity
of a TL beam. 4

In conclusion, a modified version of a well-established
model has been presented and used to explain the below-
bandgap excitation of semiconductors by inhomogeneous
light beams, with special emphasis on twisted light. First,
I show how the standard results for the case of vertical
transitions induced by plane waves are obtained in the
appropriate limit; this attests for the robustness of the
extended model. Next, the case of plane waves when the
wave vector of the light beam is taken into account is an-
alyzed; I show how to recover the exciton’s COM motion,
and an additional correction to the relative-motion wave-
function is found. Then, the theory is applied to the case
of twisted light. I predict that the optical excitation pro-
duces a superposition of states that differ slightly from
excitons and undergo complex center-of-mass motion. In
addition, I show that the absorption energy is modified
by the center-of-mass motion, and that the polarization
and electric current induced by the transition present a
complex spatial pattern. Given the current interest in the
interaction of inhomogeneous EM-fields with semiconduc-
tors, and in particular the work in exciton-polaritons, fur-
ther research on the generation of exciton-like states and
their complex motion due to twisted light excitation may
significantly impact the basic research and applications in
these areas.
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4An exception would be an arc-section sample, subtending a small
angle, whose origin coincides with the the beam axis.
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