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We present results of ring polymer molecular dynamics simulations that shed light on the effects of
nuclear quantum fluctuations on tunneling motions in cyclic [H2O]3 and [D2O]3, at the representative
temperature of T = 75 K. In particular, we focus attention on free energies associated with two key
isomerization processes: The first one corresponds to flipping transitions of dangling OH bonds,
between up and down positions with respect to the O–O–O plane of the cluster; the second involves
the interchange between connecting and dangling hydrogen bond character of the H-atoms in a tagged
water molecule. Zero point energy and tunneling effects lead to sensible reductions of the free energy
barriers. Due to the lighter nature of the H nuclei, these modifications are more marked in [H2O]3 than
in [D2O]3. Estimates of the characteristic time scales describing the flipping transitions are consis-
tent with those predicted based on standard transition-state-approximation arguments. C 2016 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4941701]

The water trimer represents a singular, attractive aggre-
gate for study among the symmetric aqueous nanoclusters
comprising less than ten molecules.1 Structurally speaking,
the overall shape of [H2O]3 can be cast in terms of a cyclic,
quasiplanar ring arrangement, in which water molecules are
bound by three strained (non-linear) H-bonds, articulated
via connective (“c”) hydrogens Hc. Moreover, the O–O–O
plane determines up (“u”) and down (“d”) locations for
the remaining three free (“ f ”) hydrogens H f , in terms of
their out-of-plane (OOP) positions (see Fig. 1(a)). Provided
the connective characteristics of the individual H-atoms are
preserved, global minimum structures of the water trimer
include six equivalent [uud], [udu], [duu], [ddu], [dud], [udd],
OOP isomers.

The analysis of the water trimer is particularly
enlightening since it represents the simplest aqueous cluster
whose collective motions have already incorporated basic
elements that control H-bond dynamics in more complex,
bulk environments. The characteristics of libration and
intramolecular vibrational modes in liquid water turn out
to be insensitive to the local architecture of the intermo-
lecular connectivity prevailing in the vicinity of molecules
undergoing ruptures and subsequent reconstructions of
H-bonds.2

There is a wealth of experimental and theoretical evidence
confirming that interconversions between the manifold of
minimum energy structures in [H2O]3 are controlled by two
main tunneling motions.1,3–30 The first one,

HcOH f

d
→ HcOH f

u, (1)

a)Author to whom correspondence should be addressed. Electronic mail:
dhlaria@cnea.gov.ar

corresponds to rotations of free hydrogens around O–Hc

intramolecular bonds, flipping their positions from one side of
the oxygen plane to the other one (see Fig. 1(a)). In addition,
interconversions between different minima can proceed via
bifurcation pathways (see Fig. 1(b)), along which there is an
interchange between free and connecting character of the two
hydrogen atoms (H1 and H2) in a tagged donor-water molecule
hydrogen bonded to an acceptor (“a”) molecule,

H f
1OdHc

2 · · ·Oa → H f
2OdHc

1 · · ·Oa. (2)

In what follows, we will present results from ring-
polymer-molecular-dynamics31,32 (RPMD) simulations that
describe the magnitude of nuclear quantum effects on the
dynamical characteristics of these two tunneling processes
at a nominal temperature of T = 75 K. The methodology
relies on the path-integral representation of quantum statistical
mechanics, which establishes a correspondence between
the quantum system and a classical one comprised of
a collection of interacting cyclic polymers, each with P
molecular replicas.33 For equilibrium quantities, RPMD
can provide essentially exact quantum results, as does
standard path integral molecular dynamics.34 In addition,
the methodology provides reasonable quantum mechanical
estimates for characteristic time scales via the computation
of appropriate RPMD time correlation functions. In order
to capture the essential elements of the structure of
these clusters, interparticle interactions were modeled using
the MB-pol model, recently developed by Paesani and
collaborators.35–37 Following a similar spirit, Bowman and
collaborators have developed an alternative potential that
has also been successfully implemented in the dynamical
analysis of predissociation channels for the water trimer
following vibrational excitation of the stretching of the

0021-9606/2016/144(6)/061101/5/$30.00 144, 061101-1 © 2016 AIP Publishing LLC
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FIG. 1. [H2O]3. (a) [uud] structure. (b) Transition-state configuration for the
bifurcation isomerization.

OH bond.30 A detailed description of the methodology,
its implementation, and the quality of the MB-pol37 model
predictions for geometrical parameters corresponding to the
potential energy minima of the water trimer are provided as
the supplementary material.38

To move forward in the characterization of the two
isomerization channels described in Eqs. (1) and (2), it will be
useful to first define microscopic order parameters that clearly
distinguish reactant from product stable states. Our choices
are the natural ones, based on geometric characteristics of the
six low-lying stationary points of the water trimer reported in
Ref. 39. For the flipping process, we found it convenient to
define ξflp according to

ξflp =
rHfO · r⊥

|rHfO|
, (3)

where, in the previous equation, rαγ = rα − rγ and rα denotes
the position of the α nucleus in the tagged water molecule
undergoing rotation, whereas r⊥ represents a unit vector
perpendicular to O–O–O plane. Clearly, ξflp changes sign
as a tagged, dangling H moves from one side of the O–O–O
plane to the opposite, while ξ ∼ 0 would identify transition-
state-like configurations, with rHfO in the O–O–O plane. On
the other hand, the interchange between free and connective
characters shown in Eq. (2) can be described in terms of
another order parameter ξbif defined as

ξbif = θH2 − θH1, (4)

with

cos θHi =
rHiOd · rOaOd

|rHiOd| |rOaOd| . (5)

The previous definition establishes a clear correspondence
between positive (negative) values of ξbif and configurations
in which H1(H2) exhibits connective characteristics (see
Fig. 1(b)).

Armed with the latter definitions, one can compute
associated free energy profiles, A(ξ), of the type

βA(ξ ′) ∝ − ln⟨δ(ξ − ξ ′)⟩, (6)

where ⟨· · · ⟩ denotes an equilibrium ensemble average and
δ(x) is the Dirac delta function. Normally, within a path-
integral framework, two alternatives are available to compute
the previous expression: the first one establishes a natural
correspondence between nuclear positions rα and centroid
coordinates40–42 of the isomorphic ring polymers, leading to
centroid free energies of the type

βA(ξ ′) ∝ − ln⟨δ(ξ({rcntN }) − ξ ′)⟩, (7)

where

rcntα =
1
P

P
k=1

r(k)α , (8)

and in the previous equation, r(k)α is the position of particle
α at the imaginary time slice k. As such, centroid free
energies are obtained by collecting statistics for the order
parameters, evaluated in terms of particles centroids, in
a classical-like fashion. The second, more rigorous, route
involves the following “bead average” computation, namely,

βA(ξ ′) ∝ − ln⟨δ(ξ({rN}) − ξ ′)⟩

= − ln


1
P

P
k=1

⟨δ(ξ({r(k)N }) − ξ ′)⟩

. (9)

From a quantitative perspective, the energetics of the
two isomerization channels differ in a sensible fashion. Note
that the bifurcation route requires the partial rupture and
subsequent reconstruction of a H-bond, a process that, in
the gas phase, involves energies typically ∼2 kcal mol−1.1

Consequently, at temperatures of the order of, or below say,
T ∼ 100 K, these episodes can be regarded as rare events. On
the other hand, flipping episodes are articulated by rotations of
non-connecting atoms and involve surmounting much lower
energy barriers that barely surpass a few tenths of kcal mol−1.
In fact, in the course of all trajectories obtained in this work —
lasting ∼2 ns — we found no evidence of spontaneous
bifurcation events whereas flipping episodes were sufficiently
frequent to allow us to harvest meaningful statistics along
standard equilibrium trajectories.

Classical and quantum profiles for centroid free energies
associated to flipping isomerizations in [H2O]3 and [D2O]3
at T = 75 K are presented in Fig. 2(a). The classical profile
presents two minima at |ξ | ∼ 0.75, separated by a ∼2kBT

FIG. 2. Free energy associated with the flipping of a dangling H from one
side of the trimer plane to the other, obtained from (a) centroid and (b) “bead”
samplings (see text). Classical [H2O]3 (black circles), quantum [D2O]3 (red
squares), and quantum [H2O]3 (blue triangles).
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barrier located at ξ = 0 = ξ†. While the locations of the
corresponding minima are practically unchanged for classical
and quantum cases, the magnitudes of the free energy barriers
strongly depend on the masses of the light particles. In
agreement with previous simulations results,41 combined
effects from zero point energy (ZPE) and tunneling lead to
a sensible ∼20% reduction for [D2O]3; moreover, for [H2O]3
isotopomers, the reduction in the activation energy is more
pronounced, about∼50% from the classical value. The profiles
in the lower part of Fig. 2, corresponding to “bead averages”
(see Eq. (9)), reveal even more marked modifications; the
incorporation of quantum fluctuations brings the magnitudes
of barriers down to 60% and 40% of the classical estimate for
[D2O]3 and [H2O]3, respectively.

The differences in the results from the two sampling
procedures are not totally unexpected given the highly non-
linear nature of the order parameter with respect to the particle
coordinates. Note that, in performing classical-like centroid
sampling, effects from quantum fluctuations arising from
the spatial delocalization of the light particles are partially
lost as one collects statistics restricted to mean values of
particle positions. In contrast, at a fixed centroid configuration,
“bead sampling” explicitly explores a wider spectrum of order
parameters. These differences should be amplified in the less
confining vicinity of transition-state-like states, where one
expects more elongated H quantum distributions, stretching
out laterally from reactant to product states.

A more vivid picture of the latter feature can be obtained
by examining the profiles shown in Fig. 3(a), where we
present estimates for the spatial extents of free protons along
the flipping process. The results correspond to conditional
probabilities of the type

⟨O(ξ ′)⟩ = ⟨O({r(k)N }) δ(ξ − ξ ′)⟩
⟨δ(ξ − ξ ′)⟩ , (10)

FIG. 3. (a) Correlation lengths for the proton isomorphic polymers along
flipping transitions (H f to H f identities) in [H2O]3. (b) Correlation lengths
for the isomorphic polymer associated to atom H2 (see Fig. 1(b)), along the
bifurcation pathway taking H2 from Hc to H f identities (see text). R: black,
open squares; R⊥: blue, open circles; R∥: red, open triangles.

for O = R2, R2
∥, and R2

⊥. The first observable R2 represents
the imaginary time mean square displacement of the proton
and provides an estimate for its spatial delocalization;43,44

on the other hand, R2
⊥ and R2

∥ denote the corresponding
decompositions into perpendicular and parallel projections
along directions with respect to the O–H bonds, namely,
R2 = R2

∥ + 2R2
⊥.45–47

The fact that R⊥ looks longer than R ∥ — which,
incidentally, remains practically unchanged along the reactive
pathway — is the consequence of combined effects from
the local intra- and intermolecular interactions and leads to
distributions resembling prolate ellipsoids.44 This interplay
is also responsible for the larger spatial delocalization that
the flipping hydrogens show at the vicinity of transition
states, R⊥(ξ†) ∼ 0.34 Å, compared to stable reactant/product
states, where R⊥(ξflp = ±0.75) ∼ 0.30 Å. Interestingly, the
latter lengthscales are of similar order to the displacements
covered by the proton to reach transition states, δℓ ∼ 0.75 Å,
a fact that alone would imply important tunneling effects in
the free energy barrier.

In Fig. 4, we present plots for free energies associated
with bifurcation events. As mentioned, the energy barrier
is intrinsically higher in this case and required the use of
a biased-sampling technique; we used a standard umbrella
sampling strategy.38,48 At a first sight, the plots reveal that
the incorporation of quantum fluctuations leads to much
milder modifications in the profiles, compared to classical
scenarios. For [H2O]3, the ratio between quantum and classical
centroid free energy barriers for the bifurcation process was
found to be Aqntm(ξ†)/Aclss(ξ†) ∼ 0.85 whereas, for “bead
sampling,” the ratio moved down to ∼0.70. The fact that
classical and quantum calculations look more comparable is,
in part, expected given the more marked disparity between the
magnitudes of the energetic barrier and the zero point energy
of the trimer.

However, a closer examination shows that the absolute
magnitude of the quantum effect expressed in terms of

FIG. 4. Free energy associated with bifurcation transitions. Same labeling as
Fig. 2.
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TABLE I. Characteristic time scales for flipping isomerizations.

τcl
flp (ps) τ

qntm
flp (ps) τcl

flp /τ
qntm
flp e

−β∆A†flp e
−β∆A†

bi f

H2O 0.61 0.21 2.9 2.7a(4.0b) 9.1a(∼200b)
D2O 0.76 0.42 1.8 1.7a(2.4b) 4.6a(∼40b)

aCentroid sampling.
b“Bead” sampling.

∆A† = Aqntm(ξ†) − Aclss(ξ†) is enhanced in the bifurcation
process (see entries in the last two columns, on the right
hand side part of Table I). This case involves a reversal of
identity of each H, between connected (Hc) and free (H f ), so
that the change in the degree of quantum delocalization from
reactant to transition state to product is much larger along
this pathway (see Fig. 3(b)). Correspondingly, the incremental
quantum effect on A(ξ†) is larger. Equivalently, the rate of
the processes would be relatively more impacted by quantum
effects for the bifurcated transition state, albeit a far slow
process than the flipping route.

We will close our analysis with a brief comment on
dynamical aspects related to flipping isomerization processes.
Assuming that such interconversions can be described in
terms of a first-order kinetic model, the RPMD-characteristic
time scale τflp can be extracted from the time integrals of the
normalized time correlation functions CRPMD

flp (t),38,49,50

τRPMD
flp ∼

 ∞

0
CRPMD

flp (t) dt, (11)

where

CRPMD
flp (t) = ⟨δh[{ξi(t)}] · δh[{ξi(0)}]⟩

⟨(δh)2⟩ , (12)

with δh = h − ⟨h⟩. In the previous equation, h[{ξi(t)}] repre-
sents a microscopic characteristic function that depends on
the instantaneous set of order parameters {ξflp

i (t)} (i = 1,2,3),
defined in terms of centroid coordinates. Following previous
studies,51 we adopted the “first-passage” or “continuum” defi-
nition for the characteristic function. As such, h(t) equals unity
if, along the [0, t] time interval, the cluster exhibits continu-
ously one tagged OOP minimum energy configuration — arbi-
trarily chosen out of the six available — and zero otherwise.

In Fig. 5, we present results of classical and quantum
CRPMD

flp (t) for [H2O]3 and [D2O]3, whereas the results for the
corresponding time integrals are listed in Table I. The inset
in the figure shows that all curves exhibit single exponential
decays after initial ∼1 ps transients. The values of τ

qntm
flp

are between two and three times smaller than τclss
flp , with

the difference much more marked for the light water case.
Interestingly, inspection of the third and fourth columns in
Table I reveals that for both clusters, [H2O]3 and [D2O]3, the
ratios between quantum and classical τflp follow closely the
ones predicted by the sole consideration of the differences
in the magnitudes of the corresponding centroid free energy
barriers. This observation brings additional consistency to our
calculations, given the fact that the first passage criterion
used in evaluating the dynamical rate follows closely the
spirit of the transition state approximation, which neglects

FIG. 5. RPMD time correlation function for flipping transitions in aqueous
trimers. [H2O]3: circles; [D2O]3: squares. Classical results: open symbols;
quantum estimates: solid symbols. The thick solid lines in the inset represent
linear regressions for t ≥ 1 ps.

contributions to the rates from trajectories exhibiting multiple
recrossings over free energy barriers.50

The main conclusions of this study can be summarized
as follows: (i) the present contribution represents the first
quantum dynamics study related to the two main tunneling
motions with sufficient sampling to yield actual estimates
for rates, using a potential that is demonstrably accurate
in its structural predictions. Incidentally, one can anticipate
that the results should not differ considerably if they were
computed using the WHBB alternative model;30,39 (ii) our
simulation results show that, in the water trimer at moderately
low temperatures (∼75 K), the explicit incorporation of
nuclear quantum fluctuations leads to sensible significant
reductions in the free energy barriers associated with flipping
and bifurcation isomerization channels; (iii) the relative rate
enhancement for the latter route is larger since there is a
greater increase in proton delocalization in the bifurcated
structure relative to the connected geometry (a hydrogen bond
is partially broken). However, the overall rate for this route
is, in any case, much lower than that for flipping for the same
reason. For the latter pathway, the magnitude of the barrier is
comparable to the variation in the ZPE of the cluster along
the reaction coordinate, leading to reductions in the observed
characteristic time scale describing transitions by factors of
∼2 for [D2O]3 and of ∼3 for [H2O]3. Moreover, these rates
seem to follow those predicted via the consideration of simple
standard transition-state-theory arguments.

We are grateful to Professor F. Paesani for very
helpful discussions regarding the predictive capacity of water
potentials. D.L. is a staff member of CONICET (Argentina).
P.J.R. acknowledges the support of the U.S. National Science
Foundation (No. CHE-1362381).
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