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Abstract The traveling car renter problem (CaRS) is an extension of the classical
traveling salesman problem (TSP) where different cars are available for use during
the salesman’s tour. In this study we present three integer programming formulations
for CaRS, of which two have quadratic objective functions and the other has quadratic
constraints. The first model with a quadratic objective function is grounded on the
TSP interpreted as a special case of the quadratic assignment problem in which the
assignment variables refer to visitation orders. The second model with a quadratic
objective function is based on the Gavish and Grave’s formulation for the TSP. The
model with quadratic constraints is based on the Dantzig–Fulkerson–Johnson’s for-
mulation for the TSP. The formulations are linearized and implemented in two solvers.
An experiment with 50 instances is reported.

Keywords Traveling car renter problem · Traveling salesman · Integer programming ·
Combinatorial optimization

1 Introduction

The car rental industry has been growing globally over the last few years and is still
expected to grow at a compound annual growth rate of 5.6% on the next five years
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[22]. Part of this growth results from the expansion of the travel and tourism industry.
Car rental also affects another markets such as the airport industry as pointed out by
Czerny et al. [1] who showed that a one-dollar increase in the daily car rental price
reduced significantly the demand at some US airports. Intense competition in the
car rental industry has led companies to adopt information technologies which have
impacted their results. Researches in this area have been driven under the viewpoint
of the car rental industry. For example, recent studies investigated vehicle reservation
and assignment [11,14,16,17], profit management [13] and optimal selling policies
[4].

Models considering the point of view of car rental customers are still underexplored.
A variant of the traveling salesman problem (TSP), named Traveling Car Renter Prob-
lem (CaRS) was proposed recently [8]. CaRS generalizes the TSP by allowing several
cars with different costs to be available for the salesman. Therefore, different cars
can be used during the salesman’s tour. When a car is delivered to a city different
from the one it was rented, an extra fee must be paid. The objective is to find the
route and the sequence of rented cars that minimizes travel costs and extra fees. Since
the TSP is NP-hard [5] and a special case of CaRS when the set of available cars
has cardinality 1, CaRS is also NP-hard. Heuristic approaches proposed for CaRS
include greedy randomized adaptive search, evolutionary algorithms and local search
[3,8,9,21]. A model and evolutionary algorithms for the quota variant of CaRS were
presented in [10]. Mathematical programming models, on the other hand, have not
been fully explored.

In this study we present integer programming formulations for CaRS. Two formu-
lations have quadratic objective functions and linear constraints. One formulations
has a linear objective function and some quadratic constraints. The first formulation
with a quadratic objective function is grounded on the TSP interpreted as a special
case of the quadratic assignment problem (QAP) in which the assignment variables
refer to visitation orders. The second formulation with a quadratic objective function
is based on the Gavish and Grave’s network flow model for the TSP. A model based on
the Dantzig–Fulkerson–Johnson’s formulation for the TSP is presented with quadratic
constraints. Linearization for practical computational issues concerning the quadratic
formulations are presented. The linearized models were implemented in two solvers.
An experiment with 50 CaRS instances is reported. The integer formulations are pre-
sented in Sect. 2 and the experiments are presented in Sect. 3. Finally, conclusions are
presented in Sect. 4.

2 Integer programs for CaRS

This section presents integer formulations for CaRS. Formulations with quadratic
objective functions and linear constraints are presented in Sects. 2.1 and 2.2. A for-
mulation with a linear objective function and quadratic constraints is presented in
Sect. 2.3.

In this study, we consider a graph G(N , A), where N is a set of n nodes (cities) and
A is a set of arcs (roads). The salesman is considered to travel with rented cars. A set of
cars, C , is available for the salesman’s travel. Specific operational costs are associated
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with each car, including fuel consumption, toll payment and rent costs. When applied
to arc (i, j) ∈ A, most of these specific costs are function of the distance to be traveled
on that arc. There is an extra fee to be paid related to the company cost of taking a
car from where it was delivered back to the city where it was rented. The problem is
to find a minimal cost spanning cycle in G such that the travel costs are minimized,
which includes the extra fees. The parameters of the formulations presented in this
study are defined as follows.
Parameters

|C |: Cardinality of set C
dci j : Total operational cost of driving car c, c = 1, ..., |C |, in arc (i, j) ∈ A
γ c
i j : Fee to return car c from node j to node i, i, j ∈ N , i �= j

2.1 Formulation based on the QAP

The formulation presented in this section is an extension of the TSP viewed as a
QAP. Relationships among the QAP, TSP and CaRS are briefly commented further.
A natural model for CaRS can be conceived as an integer quadratic programming
problem, with a quadratic objective function and linear constraints. The variables of
this formulation are defined as follows.

Variables

xcki : Binary variable indicating whether car c arrives at node i in the k-th visitation
order (xcki = 1) or not (xcki = 0)

yci : Binary variable indicating whether car c is rented in node i (yci = 1) or not
(yci = 0)

zcj : Binary variable indicating whether car c is delivered to node j (zcj = 1) or not
(zcj = 0)

The quadratic car assignment and routing problem is described by objective function
(1) and constraints (2)–(17). The model size depends essentially upon parameters n and
|C |. It has |C | n2+2 |C | n binary variables. A unique visitation order k, k = 1, 2, ..., n,
is assigned to each node i ∈ N . The traveler is allowed to drive exactly one car c ∈ C
from city i to j, i, j ∈ N .

min
∑

c∈C

⎡

⎣
n−1∑

k=1

∑

(i, j)∈A

∑

c′∈C
dci j x

c
ki x

c′
(k+1) j +

∑

(1, j)∈A

∑

c′∈C
dc1 j x

c
n1x

c′
1 j +

∑

i∈N , j∈N
γ c
i j y

c
i z

c
j

⎤

⎦

(1)

subject to

∑

c∈C

n∑

k=1

xcki = 1 ∀ i ∈ N (2)

∑

c∈C

n∑

i=2

xcki = 1 ∀ k = 1, ..., n − 1 (3)
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∑

c∈C
xcn1 = 1 (4)

∑

c∈C
yc1 = 1 (5)

∑

c∈C
zc1 = 1 (6)

∑

c∈C
yci −

∑

c∈C
zci = 0 ∀ i ∈ N\{1} (7)

yc
′

i −
∑

c∈C,c �=c′
zci ≤ 0 ∀ i ∈ N\{1}, ∀ c′ ∈ C (8)

zc
′
i −

∑

c∈C,c �=c′
yci ≤ 0 ∀ i ∈ N\{1}, ∀ c′ ∈ C (9)

∑

j∈N
xc1 j − yc1 = 0 ∀ c ∈ C (10)

∑

c∈C,c �=c′

n−1∑

k=1

xcki − yc
′

i ≥ 0 ∀ i ∈ N\{1}, ∀ c′ ∈ C (11)

xc
′

ki −
∑

j∈N
xc

′
(k+1) j −

∑

c∈C,c �=c′
yci ≤ 0 ∀i ∈ N\{1},∀k = 1, ..., n − 1,∀c′ ∈ C

(12)

xcn1 − zc1 = 0 ∀ c ∈ C (13)
n∑

k=1

xcki − zci ≥ 0 ∀ i ∈ N\{1}, ∀ c ∈ C (14)

xcki −
∑

j∈N
xc(k+1) j − zci ≤ 0 ∀i ∈ N\{1},∀k = 1, ..., n − 1,∀c ∈ C

(15)

xcki ∈ {0, 1} ∀ k = 1, ..., n, ∀ i ∈ N , ∀c ∈ C (16)

yci , z
c
j ∈ {0, 1} ∀ j ∈ N , ∀ c ∈ C (17)

The quadratic objective function (1) sums the operational costs incurred in the node
visitation order plus extra return fees. The second parcel of expression (1) refers to
the operational cost incurred in the first trip, that starts at the origin node, 1. For each
car c, the third parcel of the objective function does not depend upon the path from
node i to j , cities i and j being, respectively, the places where car c was rented and
delivered.

Equations (2)–(4) are assignment constraints. Constraint (2) states that every city
is visited in a unique order and with exactly one car. Constraint (3) states that a
generic visitation order k �= n is assigned to each city different from the origin, 1. In
complement, constraint (4) states that one car arrives at node 1 which is the last node
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to be visited. Equations (4)–(6) are specific to the origin node, 1, thus appearing only
once in the model.

Expressions (5)–(9) refer to logical constraints concerning car rental and delivery
variables y and z. Constraints (5) and (6) force a car rental and a car delivery to the
origin node. Constraint (5) ensures that exactly one car is rented in city 1. Constraint
(6) states that exactly one car is delivered to the origin city, 1. Constraints (7)–(9)
couple variables y and z for the other nodes. If a car is rented in city i, i �= 1, then
some car is delivered there, as stated in (7). For any node i �= 1, constraint (8) states
that if car c′ is rented in i then some other car c, c �= c′, must be delivered to i .
Constraint (9) states that, for any node i �= 1, if a car c′ is delivered to i then some
other car c, c �= c′, must be rented in i to go on the trip.

Constraints (10)–(15) couple variables x and y or x and z. Constraints (10) and (13)
are specific for the starting node 1 and the last visitation order n, for each car c ∈ C .
Constraint (10) ensures that if car c is rented in the starting node 1 then c is used in a
first visitation order to some node j adjacent to 1. Constraint (13) ensures that the car
that arrives at the starting city, closing the Hamiltonian cycle, is delivered to that city.
Constraint (11) couples variables x and y and states that car c′ can be rented in node
i only if a different car c, c �= c′, has arrived in some order at node i . Constraint (12)
ensures that if car c′ arrives in order k at node i then either c′ is used to go on the trip to
an adjacent node j or another car c, c �= c′, is rented in node i . Constraint (14) couples
variables x and z and ensures the delivery of car c to node i only if c has arrived at
i in some order. Constraint (15) ensures that if car c arrives at node i in order k, then
either c is used in a subsequent order to visit an adjacent node j or c is delivered to
node i . At last, constraints (16) and (17) state that vectors x, y and z are binary.

The quadratic formulation presented for CaRS (1-17) is a direct extension of the
TSP viewed as a QAP in the spirit of Koopmans and Beckmann [12]. The original QAP
involves the assignment of industrial plants to locations, with an objective function that
has a linear and a quadratic part. The interest of this study is related to the quadratic part
of the QAP, referred as pure QAP. The input parameters of a pure QAP are restricted
to two square matrices, B and D, of order n. The elements of matrix B = [bkl ] are
interpreted as flows between plants k and l, k, l = 1, ..., n, and the elements of matrix
D = [di j ] are interpreted as distances between locations i and j, i, j = 1, ..., n. Vari-
able pki is binary, k, i = 1, ..., n, and indicates whether plant k is located at i (pki = 1)
or not (pki = 0). When plants k and l, k �= l, are located in i and j, i �= j , respectively,
the unitary cost to transport the flow between k and l (bkl ) is directly proportional to dis-
tance di j . The objective function minimizes the total transportation cost of intermediate
commodities, in such a way that the pure QAP formulation is expressed in (18)–(21).

min
n∑

k=1

n∑

i=1

bkl pki di j pl j (18)

subject to

n∑

k=1

pki = 1 ∀ i = 1, ..., n (19)
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n∑

i=1

pki = 1 ∀ k = 1, ..., n (20)

pki ∈ {0, 1} ∀ k, i = 1, ..., n (21)

The formulation of the TSP as a QAP has the objective function (22) with constraints
(19)–(21) and pn1 = 1.

min
n−1∑

k=1

∑

(i, j)∈A

di j pki p(k+1) j +
∑

(1, j)∈A

d1 j pn1 p1 j (22)

The TSP can be interpreted as a particular case of the QAP [12] when only n
elements of matrix B are not null, with a set of 1s above the main diagonal and a
coefficient 1 in the last position of the first column. In the words of Koopmans and
Beckmann, the one and only intermediate commodity now is a traveling salesman who
is required to call once at each location and return to his point of departure. Plant k of
the original QAP is interpreted as the visitation order k in the TSP. The idea of flows
among plants (orders) is maintained, but flows occur only among subsequent orders
in the TSP. The starting point is node 1, that must be visited in the last order n, while
each other node must be visited at some order k, 1 ≤ k < n.

When the salesman has one car to make the tour, i. e., C = {c}, there is no fee to
return c to its home city since yc1 = 1 and zc1 = 1. By making xcki = pki , CaRS can be
solved by the TSP formulation. The assignment equalities, (19) and (20), and pn1 = 1
ensure that constraints (2), (3) and (4) are satisfied. The other constraints, (5)–(17),
are also trivially satisfied for a minimal cost tour with a single car. It is in this sense
that the CaRS formulation (1-17) is a direct extension of the TSP interpreted as a QAP
as presented by Koopmans and Beckmann [12].

2.1.1 A mixed integer linear program for CaRS

To obtain a linear formulation, the idea is to extend to CaRS a stronger variation of
the linearization suggested by Koopmans and Beckmann for the TSP. Flow balance
equations that enable a linear formulation of the QAP are presented in [12]. Equations
for matrix B of the TSP are rewritten in terms of cars flow balancing. Exactly one car
must arrive at each node and exactly one car must depart from each node. The car that
comes into a node can be the same car that goes out from that node. Otherwise, the
car that arrives at a node can be discarded and a new car must then be rented in this
node to progress on the travel. The cars are driven by the salesman in such a way that
each node is visited exactly once. In this context, the f kchi and wc

i j binary variables are
defined as follows.

Variables

f kchi : Binary variable indicating whether coming from node h, node i is visited in
order k with car c ( f kchi = 1) or not ( f kchi = 0)

wc
i j : Binary variable indicating whether car c is rented in node i and delivered to node

j (wc
i j = 1) or not (wc

i j = 0)
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min
∑

c∈C

⎡

⎣
n∑

k=1

∑

(h,i)∈A

dchi f
kc
hi +

∑

i∈N , j∈N
γ c
i jw

c
i j

⎤

⎦ (23)

∑

c∈C

∑

j∈N
f 1c
1 j =

∑

c∈C
xcn1 ∀ i ∈ N (24)

∑

j∈N
f kci j = xc(k−1)i ∀ k = 2, ..., n, ∀ i ∈ N , ∀ c ∈ C (25)

∑

h∈N
f 1c
hi = xc1i ∀ i ∈ N , ∀ c ∈ C (26)

∑

h∈N
f kchi = xcki ∀ k = 2, ..., n, ∀ i ∈ N , ∀ c ∈ C (27)

∑

j∈N
wc
i j = yci ∀ i ∈ N , ∀ c ∈ C (28)

∑

i∈N
wc
i j = zcj ∀ j ∈ N , ∀ c ∈ C (29)

wc
i j ∈ {0, 1} ∀ i, j ∈ N , ∀ c ∈ C (30)

f kchi ∈ {0, 1} ∀ i, j ∈ N , ∀ k = 1, ..., n, ∀ c ∈ C (31)

The first two parcels of function (1) were replaced by the first parcel of function
(23) where the f kchi variable replaced the quadratic term xc

′
(k−1)hx

c
(k)i . The f kchi variable

can be interpreted as the flow from location h to location i of the commodity supplied
by plant k−1 to plant k. The visitation order index of node h can be suppressed once h
precedes i and if i is visited in the k-th order, then h is visited in the (k−1)-th order. In
addition to the f kchi flow variable, the original formulation (1)–(17) can be linearized
with the introduction of |C | n2 variables wc

i j which replace yci and zcj in the objective
function. In accordance with the previous definitions of the rent and deliver variables,
the equivalence relation wc

i j = yci z
c
j is implicit in a linear model, in such a way that

wc
i j = 1 if and only if yci = 1 and zcj = 1. In summary, the mixed integer linear

program for the traveling car renter problem has the objective function (23) subject
to constraints (2)–(17) and to additional constraints (24)–(31). Constraints (24)–(27)
couple variables f kchi and xci j . Constraints (28) and (29) are due to the linearization.

2.2 Formulation based on network flow

The formulation presented in this section extends the model presented for the TSP in
[6] and uses flow constraints. The problem is formulated in (32)–(43). The variables
are defined as follows.

Variables

f ci j : Binary variable indicating whether car c traverses edge (i, j) from i to j ( f ci j = 1)
or not ( f ci j = 0)

ui j : Arbitrary non-negative integers
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yci : Binary variable indicating whether car c is rented in node i (yci = 1) or not
(yci = 0)

zcj : Binary variable indicating whether car c is delivered to node j (zcj = 1) or not
(zcj = 0)

Constraints (33)–(36) and (43) came from the formulation presented by Gavish
and Graves [6] for the TSP. Constraints (33) and (34) ensure that only one car arrives
in each city, coming from one arc, and only one car leaves each city using one arc.
Constraints (35) and (36) form a network flow problem and were included to prevent
subtours. The ui j variable can be interpreted as the flow of a single commodity to ver-
tex 1 from every other vertex [18]. The proof that these constraints prevent subtours
is presented in [6]. Constraint (37) ensures that if car c left node j but did not arrive
there, then c was rented in city j . The model does not prevent ycj from being set to 1
when car c goes through node j and is not rented there. However, this is never the case
when it comes to the optimal solution. Constraint (38) ensures that a car is rented in
1. Similarly, constraints (39) and (40) ensure the car delivery. At last, constraint (42)
ensures that variable f ci j is binary.

min
∑

c∈C

⎛

⎝
∑

(i, j)∈M
dci j f

c
i j +

∑

c∈C
γ c
i j y

c
i z

c
j

⎞

⎠ (32)

subject to

∑

c∈C

∑

i∈N
f ci j = 1 ∀ j ∈ N (33)

∑

c∈C

∑

j∈N
f ci j = 1 ∀i ∈ N (34)

∑

j∈N
i �= j

ui j −
∑

j∈N\{1}
i �= j

u ji = 1 ∀i ∈ N \ {1} (35)

ui j ≤ (n − 1)
∑

c∈C
f ci j ∀(i, j) ∈ A, i �= 1 (36)

∑

i∈N ,
i �= j

f cj i −
∑

i∈N ,
i �= j

f ci j ≤ ycj ∀ j ∈ N \ {1}, ∀c ∈ C (37)

∑

i∈N
f c1i = yc1 ∀c ∈ C (38)

∑

i∈N ,
i �= j

f ci j −
∑

i∈N ,
i �= j

f cj i ≤ zcj ∀ j ∈ N \ {1}, ∀c ∈ C (39)

∑

i∈N
f ci1 = zc1 ∀c ∈ C (40)

yci , z
c
j ≥ 0 ∀i, j ∈ N , ∀c ∈ C (41)

123



Integer programming models and linearizations for the…

f ci j ∈ {0, 1} ∀(i, j) ∈ A, ∀c ∈ C (42)

ui j ≥ 0 ∀(i, j) ∈ A (43)

A linearized formulation for CaRS can be derived from (32)–(43). The objective
function is described in (44). The wc

i j variable, as defined in Sect. 2.1.1, indicates
whether car c is rented in node i and delivered to node j . The second parcel of func-
tion (32) is replaced by the second parcel of function (44). Constraint (45) is due to
the linearization and constraint (46) ensures that the wc

i j variable is binary.

min
∑

c∈C

⎛

⎝
∑

(i, j)∈M
dci j f

c
i j +

∑

c∈C
γ c
i jw

c
i j

⎞

⎠ (44)

yci + zcj − 1 ≤ wc
i j ∀(i, j) ∈ A, ∀c ∈ C (45)

wc
i j ∈ {0, 1} ∀(i, j) ∈ A, ∀c ∈ C (46)

2.3 A formulation with quadratic constraints

The model presented in this section is based on the Dantzig–Fulkerson–Johnson’s
formulation for the TSP [2]. The mathematical formulation considers variables f ci j
and ui defined as follows. Variable wc

i j is defined as in Sect. 2.1.1.

Variables

f ci j : Binary variable indicating whether car c traverses edge (i, j) from i to j ( f ci j = 1)
or not ( f ci j = 0)

ui : The order in which vertex i is visited on the tour.

min
∑

c∈C

∑

i, j∈N
dci j f

c
i j +

∑

c∈C

∑

i, j∈N
γ c
i jw

c
i j (47)

∑

c∈C

∑

j∈N
f ci j = 1 ∀i ∈ N (48)

∑

c∈C

∑

i∈N
f ci j = 1 ∀ j ∈ N (49)

yci =
⎛

⎝
∑

j∈N
f ci j

⎞

⎠

⎛

⎝
∑

c′∈C,c′ �=c

∑

h∈N
f c

′
hi

⎞

⎠ ∀c ∈ C,∀i ∈ N (50)

zci =
⎛

⎝
∑

j∈N
f cji

⎞

⎠

⎛

⎝
∑

c′∈C,c′ �=c

∑

h∈N
f c

′
ih

⎞

⎠ ∀c ∈ C,∀i ∈ N (51)

wc
i j = ycj z

c
i ∀c ∈ C,∀i, j ∈ N (52)

∑

c∈C
yc1 = 1 (53)

123



M. C. Goldbarg et al.

2 ≤ ui ≤ n ∀i ∈ N \ {1} (54)

ui − u j + 1 ≤ (n − 1)(1 −
∑

c∈C
f ci j ) ∀i, j ∈ N \ {1} (55)

f ci j , y
c
i , z

c
i ∈ {0, 1} ∀c ∈ C,∀i, j ∈ N (56)

ui ∈ ℵ ∀i ∈ N (57)

The linear objective function shown in (47) sums the costs of traversing edges
with different cars and return fees. Equations (48) and (49) are assignment constraints
and state that each vertex is visited once. Constraint (48) guarantees that only 1 car
coming from 1 arc arrives at node i . Constraint (49) guarantees that only 1 car leaves
node j passing by 1 arc. Constraint (50) states that if car c is rented in city i , an
edge (i, j) must be traversed with car c and an edge (h, i) must be traversed with
car, c′, c′ �= c. Constraint (51) couples variables f ci j and zci concerning car c deliv-
ered to node i . Constraint (52) sets variable wc

i j according to the nodes where car
c is rented and delivered. Constraint (53) ensures that one car is rented in node 1.
Constraints (54) and (55) were adapted from the Miller-Tucker-Zemlin formulation
for the TSP presented in [15]. These constraints prevent subtours. Constraint (54)
ensures that vertex i is the ui -th vertex visited on the tour. Since the problem requires
that vertex 1 is visited first, it was removed from the set of nodes considered in con-
straint (54). Constraint (55) couples variables f ci j and ui . Constraint (56) sets the
binary variables and constraint (57) sets variables ui to the range of positive inte-
gers.

In the models presented so far cars can be repeated along the tour. If car repetition
is not allowed, it is necessary to add constraint (58) which ensures that each car can
be rented at most once. ∑

i∈N
yci ≤ 1 ∀c ∈ C (58)

2.3.1 A linearization for quadratic constraints

Constraints (50)–(52) presented in Sect. 2.3 are quadratic and their variables are binary.
To work around this problem, we applied the usual linearization as described in [20]
and reformulated in [7] where a non linear constraint, as in (59), is replaced by the set
of equations (60)–(63).

s = q × r (59)

s ≤ q (60)

s ≤ r (61)

s ≥ r + q − 1 (62)

q, r, s ∈ {0, 1} (63)

123



Integer programming models and linearizations for the…

Constraints (50)–(52) are replaced by (64)–(72).

yci ≤
⎛

⎝
∑

j∈N
f ci j

⎞

⎠ ∀c ∈ C,∀i ∈ N (64)

yci ≤
⎛

⎝
∑

c′∈C,c′ �=c

∑

h∈N
f c

′
hi

⎞

⎠ ∀c ∈ C,∀i ∈ N (65)

yci ≥
⎛

⎝
∑

j∈N
f ci j

⎞

⎠ +
⎛

⎝
∑

c′∈C,c′ �=c

∑

h∈N
f c

′
hi

⎞

⎠ − 1 ∀c ∈ C,∀i ∈ N (66)

zci ≤
⎛

⎝
∑

j∈N
f cji

⎞

⎠ ∀c ∈ C,∀i ∈ N (67)

zci ≤
⎛

⎝
∑

c′∈C,c′ �=c

∑

h∈N
f c

′
ih

⎞

⎠ ∀c ∈ C,∀i ∈ N (68)

zci ≥
⎛

⎝
∑

j∈N
f cji

⎞

⎠ +
⎛

⎝
∑

c′∈C,c′ �=c

∑

h∈N
f c

′
ih

⎞

⎠ − 1 ∀c ∈ C,∀i ∈ N (69)

wc
i j ≤ ycj ∀c ∈ C,∀i, j ∈ N (70)

wc
i j ≤ zci ∀c ∈ C,∀i, j ∈ N (71)

wc
i j ≥ ycj + zci − 1 ∀c ∈ C,∀i ∈ N (72)

wc
i j ∈ {0, 1} ∀c ∈ C,∀i, j ∈ N (73)

3 Experiments

The linear formulations presented in Sects. 2.1.1, 2.2 and 2.3.1 were implemented in
two solvers: CPLEX (version 12.6.3.0) and Gurobi (version 6.5.2). The models were
implemented with constraint (58), i.e., each car can be rented at most once.The tests
were carried out on a PC with an Intel Core i7 3.45GHz x 8 and 32 Gb of RAM which
ran Ubuntu 16.04 64 bits. The processing time was limited to 10,000 s. We present the
results of computational experiments based on 50 CaRS instances, which are available
at http://www.dimap.ufrn.br/lae/en/projects/CaRS.php. The instances are symmetric,
i.e., dci j = dcji for all i, j ∈ V and c ∈ C and the underlying graph is complete.
The instances were divided into two classes: E and NE. Three groups of instances
were created for each class: real, random, and tsplib-like. A primary edge weight
matrix was created for each instance. The three groups differed in terms of the method
used to generate the primary matrices. For the real instances, the edge weights of the
primary matrix were taken from real maps. For the random instances, the weights were
generated uniformly from the range of [10, 500]. For tsplib-like instances, the distance
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Table 3 Summary of the computational results

Gurobi CPLEX

KB DFJ GG KB DFJ GG

E

#solved 15 18 20 15 18 16

min gap 8.13 0.0029 2.07 17.60 1.50 1.91

av gap 22 8.32 9.68 57.65 11.62 20.23

max gap 96.18 30.76 25.97 100 40.89 45.08

av. proc. time 4258.21 3107.59 2459.07 4726.21 2884.80 3640.11

#best 16 19 25 15 25 17

NE

#solved 15 18 11 13 17 12

min gap 11.53 1.17 1.48 4.19 1.17 4.47

av gap 62.42 5.22 13.54 59.04 7.99 15.42

max gap 82.52 11.63 23.43 100 19.38 50.01

av. proc. time 5188.54 3229.91 6654.95 6309.44 3332.16 5876.69

#best 15 24 16 14 25 16

matrices of TSP instances [19] were used as primary matrices. For NE instances, the
weights of edges corresponding to car c, 1 ≤ c ≤ |C |, were generated uniformly from
the range of [1.4ωi j , 2.0ωi j ], where ωi j denotes the element in position (i, j) of the
primary matrix. For E instances, a list of n integers, Lc, was given for each car. The
weights of edges corresponding to car c, 1 ≤ c ≤ |C |, were calculated using equation
(74), where d[i][ j] is the entry in the i-th row and j-th column of the primary matrix.

dci j = 2Lc[i] + 3Lc[ j]
3

+ d[i][ j] (74)

Tables 1 and 2 show the results for E and NE instances, respectively. Each line
shows the name of the instance (Instance), the number of vertices (n), the number of
cars (|C |), and the results obtained with each solver (Gurobi and CPLEX) for each
model. Columns KB, DFJ and GG show, respectively, the results of the formulations
presented in Sects. 2.1.1, 2.3.1 and 2.2. The Sol column shows the cost of the optimal
or best integer solution found by the solver until it reached the processing time limit.
The gap column shows the percentage deviation of the value shown in Sol from the
lower bound implemented in the solver. The percentage deviations were calculated
using equation (75), where LB denotes the value of the lower bound computed by
the solver and Sol is the cost of the best integer solution. The T(s) column shows the
processing time, in seconds, required by the solver.

gap = Sol − LB

LB
× 100 (75)
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The value “0” in column gap indicates that the instance was solved to optimality
with the corresponding model and solver. The value “10000” in column T(s) indicates
that the solver stopped due to the processing time limit.

Table 3 summarizes the computational results presented in Tables 1 and 2. The
lines show the number of problems solved to optimality (#solved), the minimum (min
gap), average (av gap) and maximum percentage deviation (max gap), the average
processing time (av. proc. time) and the number of best solutions obtained with each
model (#best). Instances were counted as “solved to optimality” when the solver
finished its processing before reaching the processing time limit. Therefore, instances
for which optimal solutions were found, but the solver did not finish their processing,
e.g. Canada17n with KB model in CPLEX and China17n with GG model in Gurobi
and CPLEX, were not counted as “solved to optimality”. The best results are shown
in bold.

For the E instances, as shown in Table 3, the GG model implemented in the Gurobi
solved more instances to optimality than the other models implemented in the same
solver, reached the best values of the objective function, the best maximum percentage
deviation and the best average processing time. The DFJ model implemented in the
Gurobi reached the best minimum and average percentage deviation. For the CPLEX,
the best results were produced by the DFJ model.

The DFJ model produced the best results in both solvers for the NE instances. 18
and 17 NE instances were solved to optimality with the DFJ model implementation in
the Gurobi and CPLEX, respectively. The best average processing times, minimum,
average and maximum percentage deviation were obtained with the DFJ model. More
NE instances were solved to optimality when implemented with the KB model than
with the GG model. In average, less processing time was required by the Gurobi to
process the NE instances with the KB model than with the GG model.

The NE instances required, in general, more time to be processed than the E
instances and were harder for the KB and the GG model implemented in the Gurobi.
Although the DFJ model spent more time to process the NE instances than the E
instances in both solvers, the average percent deviations for the NE instances were
lower than for the E instances. We also observed an influence of the solver in the
results for the E instances.

4 Conclusion

This study presented three quadratic formulations and linearizations proposals for
CaRS. The first model was based on the Koopmans and Beckmann’s formulation
(KB) for the QAP. The KB model has a quadratic objective function and linear con-
straints. The second model was based on the Gavish and Graves’ formulation (GG)
for the TSP where flow constraints prevent subtours. The third model was based on
the Dantzig–Fulkerson–Johnson’s (DFJ) formulation for the TSP. The DFJ model
has a linear function and quadratic constraints. Linearizations were presented for the
quadratic models. The linearized models were implemented in two solvers: Gurobi
and CPLEX. An experiment with 50 CaRS instances, divided into 2 classes (E and
NE), was reported.
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The best results for the E instances were obtained with the linearized GG and DFJ
models implemented in the Gurobi and the CPLEX, respectively. The linearized DFJ
model implemented in both solvers produced the best results for the NE instances
regarding number of problems solved to optimality, processing time and percentage
deviation from the lower bound computed by the solvers.
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