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Assessing the performance of smoothing functions to
estimate land surface phenology on temperate grassland
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ABSTRACT
NDVI (Normalized Difference Vegetation Index) time-series have been
used for permitting a land surface phenology retrieval but these time
series are affectedby clouds and aerosols,which addnoise to the signal
sensor. In this sense, several smoothing functions are used to remove
noise introduced by undetected clouds and poor atmospheric condi-
tions, but a comparison between methods is still necessary due to
disagreements about its performance in the literature. The application
of a smoothing function is a necessarily previous step to describe land
surface phenology in different ecosystems. The aims of this research
were to evaluate the consistencyof different smoothing functions from
TIMESAT software and their impacts on phenological attributes of
temperate grassland – a complex mosaic of land uses with natural
vegetated and agricultural regions using NDVI-MODIS time series. An
adaptive Savitzky–Golay (SG) filter, Asymmetric Gaussian (AG) and
Double Logistic (DL) functions to fitting NDVI data were used and
their performances were assessed using the measures root mean
square error (RMSE), Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC) and bias. Besides, differences on the estima-
tion of the start of the growing season (SOS) and the length of the
growing season (LOS) were obtained. High and low RMSE over crop-
lands and grassland were observed for the three smoothing functions;
in the rest of the region, the SG filter showed more reliable results.
Patterns of difference on the estimation of SOS and LOS between SG
filter and the other two models were randomly distributed, where
differences of 20–50 days were found. This study demonstrated that
methods from TIMESAT software are robust and spatially consistent
but must be carefully used.
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1. Introduction

Land surface phenology responds to climatic drivers and it is key to many earth surface
processes. Remote-sensing methods have been used to study the dynamic and spatial
distribution of vegetation cover at different spatial and temporal scales. In this respect, NDVI
(Normalized Difference Vegetation Index) is one of the most commonly used indices because
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it is a linear estimator of the fraction of photosynthetically active radiation intercepted by
vegetation (fAPAR) (Wang et al. 2004). Radiation interception is the main process controlling
carbon gains (Monteith 1981) and, hence, NDVI has been used to describe and to analyse
regional and local patterns of net primary productivity (NPP) (Paruelo et al. 1997; Paruelo,
Jobbágy, and Sala 2001; Alcaraz-Segura et al. 2009).

NDVI time-series have been widely used to identify ecosystem functional types (Paruelo,
Jobbágy, and Sala 2001; Ivits et al. 2013; Atzberger and Eilers 2011), in themapping landscape
heterogeneity (Ali et al. 2014; Barraza et al. 2013; Li et al. 2012), to evaluate the relationship
between NDVI (or derived metrics of land surface phenology) and climatic drivers (Yang et al.
2012; Melendez-Pastor et al. 2010; van Leeuwen et al. 2013), to predict yield in agriculture
(Atzberger 2013; Rembold et al. 2013; Holzman, Rivas, and Piccolo 2014), to monitor drought
(Tucker and Choudhury 1987; Kogan 1997) and in the use of vegetation anomalies for index-
based insurances (de Leeuw et al. 2014). The use of NDVI time-series allows obtaining
different aspects of the exchange of matter and energy between the biota and the atmo-
sphere, i.e. ecosystems functional attributes (Pettorelli et al. 2005). These ecosystems func-
tional attributes have some advantages over the traditional use of structural variables:
variables describing ecosystem functioning have a faster response to disturbances because
structural inertiamight delay the perception of disturbances, and besides functional attributes
allow the qualitative and quantitative characterization of ecosystems services (e.g. water
cycling, carbon sequestration) (Alcaraz-Segura et al. 2009).

The applications mentioned rely on the reliability and consistency of the analysed time
series. The direct extraction of phenological metrics is difficult because satellite data are noisy
due to atmospheric effects, bidirectional effects, snow/cloud cover and variations in viewing
and illumination geometry. The Constrained View angle–Maximum Value Composite (CV–
MVC) and Maximum Value Composite (MVC) techniques allow reduction of a considerable
amount of noise that is present in different images (Solano et al. 2010) but do not result in
noise-free products. To overcome the problems associated with remaining noise, various
methods have been developed to estimate phenology and production metrics based on
NDVI time-series. Some of them are: principal component analysis (Eastman 2009), Fourier or
harmonic analysis (Jakubauskas, Legates, and Kastens 2001; Moody and Johnson 2001;
Leinenkugel et al. 2013), wavelet decomposition (Yang et al. 2012), the Whitakker smoother
(Atzberger and Eilers 2011), double logistic (DL) function (Beck et al. 2006; Liu et al. 2013), the
asymmetric Gaussian (AG) function fitting (Jönsson and Eklundh 2002), Savitzky–Golay (SG)
filters (Jönsson and Eklundh 2004; Tan et al. 2011), the polynomial splines (Eilers 2003). The
determination of the start of the growing season (SOS) and other phenological attributes over
the time series is often very complex. In this sense, there is currently no agreement within the
scientific community regarding the optimum way of extracting land surface phenology; an
intercomparison and interpretation of many approaches are discussed by White et al. (2009).

Beck et al. (2006) found that the DL function describes NDVI data better than the AG
function over high-latitudes environments, as suggested by root mean square error (RMSE).
However, Zhu and Meng (2015) found that the performance of the AG function in reducing
noise of the NDVI time series is better than the DL function over grasslands of semi-arid
areas. Hird and McDermid (2009) demonstrated the general superiority of AG and DL
functions by comparing to the other alternative filters (including SG filter). AG and DL
functions showed a balanced ability to reduce noise while maintaining the NDVI time series
integrity. Atkinson et al. (2012) analysed four smoothing functions (AG, DL, Fourier and
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Whittaker approaches) and they found that only the Fourier and Whittaker approaches
produced smaller RMSE values over the agricultural as well as natural vegetated regions. The
variety of results and the lack of consensus about those methods need further discussion.
There is insufficient information in the literature to conclude on these issues, and there are
no comparisons in the Southern temperate grasslands.

According to the above mentioned, an assessment of the quality of smoothing functions
should be made over each ecosystem. In this sense, the aims of this article were to evaluate
and to analyse the consistency of different smoothing functions that are available in TIMESAT
software (Jönsson and Eklundh 2004) and their impacts on the estimation of phenological
attributes (SOS and length of the growing season – LOS-) on temperate grassland of Buenos
Aires province, Argentina. This region is an ideal location due to the high heterogeneity of
landscapes and for being one the most productive areas in the country (Matteucci 2012; Lara
and Gandini 2014). The main advantages of TIMESAT program are that the software is both
friendly to use and freely available.

2. Materials and methods

2.1. Study area

Pampa Ecoregion (Figure 1) supports one of the largest temperate grasslands on the globe
and has undergone major changes since the sixteenth century (Vega et al. 2009; Matteucci
2012). This ecoregion has natural subunits where a mosaic of land uses is superimposed.
This mosaic has changed over time increasing at a fast rate in the last two decades (Viglizzo
et al. 2001; Baldi, Guerschman, and Paruelo 2006; Lara and Gandini 2014). The variety of land
cover, natural or semi-natural grassland (Paspalum sp., Stipa sp.,Melica sp., Phyla sp., Cirsium
sp., Cypella sp.), sown pastures (Festuca sp., Agropyron sp.), annual crops (wheat, oats, corn,
soybean, sunflower) provide an appropriate location that allows for the analysis of land
surface phenology in different ecosystems with a very different behaviour.

2.2. Data

We used the MOD13Q1 16-days 250 m NDVI products from Terra’s Moderate Resolution
Imaging Spectroradiometer (MODIS). The imagery covered a one-year time series, from

Figure 1. Pampa ecoregion and ecological complexes by Matteucci (2012).
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July 2001 to June 2002; the scene used was h13v12. Considering that El Niño Southern
Oscillation (ENSO) has a high impact on the ecosystem response (van Leeuwen et al.
2013; Broich et al. 2014), we previously evaluated that growing season was characterized
by an ENSO-phase ‘neutral’ (Wolter and Timlin 2011) resulting 2001–2002 season.

2.3. Smoothing

TIMESAT program implements three processing methods based on least-squares fits to
the upper envelope of the vegetation index data (Eklundh and Jönsson 2009). An
adaptive SG filter (Equation (1)) uses local polynomial functions in the fitting.

Xn
j¼�n

cjyiþj; (1)

where the weights are cj and each data value yi;i ¼ 1; 2; :::;N is replaced by a linear
combination of nearby values in a window (n, defined by the user); these windows are
overlapping. For each data value the following quadratic polynomial,

fðtÞ ¼ c1 þ c2t þ c3t2; (2)

is fitted to all 2n + 1 points in the moving window and the value yi is replaced with the
value of the polynomial at position ti, where t indicates the time. In our case, we used a
window with n = 3.

The other two methods are AG (Equation (3)) and DL functions (Equation (4)), where
data are fitted to non-linear model functions. The basis function of AG is the following:

gðt; x1; x2; :::; x5Þ ¼
exp � t�x1

x2

� �x3h i
if t > x1

exp � x1�t
x4

� �x5h i
if t < x1;

8<
: (3)

where x1 determines the position of the maximum or minimum with respect to the
independent time variable t. x2 and x3 determine the width and flatness (kurtosis) of the
right function half. Similarly, x4 and x5 determine the width and flatness of the left half.

On the other hand, the basis function of the smoothing DL is the following formula,

gðt; x1; :::; x4Þ ¼ 1

1þ exp x1�t
x2

� �� 1

1þ exp x3�t
x4

� � ; (4)

where x1 determines the position of the left inflection point while x2 gives the rate of
change. In the same way, x3 determines the position of the right inflection point while x4
gives the rate of change at this point.

The pixel reliability band (MOD13Q1) was used to weight each pixel in the time series:
value 0 (good data) had full weight (1.0), values 1–2 (marginal data, snow/ice) had half
weight (0.5) and value 3 (cloudy) had low weight (0.1). This procedure was applied to the
three smoothing functions. For SG filter we did not fit the upper envelope, whereas for AG
and DL functions one additional fit was applied where the weights of the values below the
fitted curve is decreased forcing the fitted function towards the upper envelope.
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More details of the algorithms can be found in the work by Jönsson and Eklundh
(2002), Beck et al. (2006) and Chen et al. (2004).

2.4. Assessment of the smoothing functions

The performance of the smoothing functions was assessed using four statistical measures:
RMSE, Bias, Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), pixel to
pixel,

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN
i¼1

ðNDVIobs � NDVIfitÞ2

N

vuuut
; (5)

Bias ¼
PN
i¼1

ðNDVIobs � NDVIfitÞ
N

; (6)

where N is the number of images, NDVIobs and NDVIfit are the observed and fitted NDVI
values, respectively. Negative values of bias indicate an overestimation and positive
values indicate an underestimation. Assuming that the noise in the NDVI imagery is
negatively biased, negative values of bias (overestimation) offer the spatio-temporal
patterns of the removed noise (Atzberger and Eilers 2011). Thus, a comparison between
bias and cloudiness frequency was analysed.

The AIC was used to measure the model performance by penalizing the number of
parameters, whose formula can be written as

AIC ¼ 2k þ n½lnðRSSÞ�; (7)

where k is the number of free parameters in the model, n is the number of input data points
and RSS is the residual sumof squares between the original data and fitted data. A lower value
of AIC would indicate the preferable model. For the AG function, k is equal to 7
(c1; c2; a1; a2; a3; a4; a5), for the DL function, k is equal to 6 (c1; c2; a1; a2; a3; a4) and for the
SG filter used here, k is equal to 4 (a0; a1; a2 and residuals) (Atkinson et al. 2012; Burnham and
Anderson 2002). The BIC, another measure of goodness-of-fit using Bayesian framework, was
calculated as

BIC ¼ n ln σ̂
2� �

þ k lnðnÞ; (8)

where σ̂
2

is the error variance. k and n have a similar meaning to that in the AIC. The BIC
penalizes parameter more strongly than does AIC.

2.5. Extraction of land surface phenology attributes

The SOS and the LOS were extracted from the three models analysed (AG, DL and SG). A
threshold of 20% of the amplitude over the time series to determine the beginning and the
end of the growing season was considered. In this case, theminimumNDVI value is given as
the average of the left and the right minimum values, and themaximumNDVI value is given
by the largest NDVI value on the fitted function during the growing season (Eklundh and
Jönsson 2009).
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2.6. Spatial patterns of difference on the estimation of land surface phenology
attributes

The differences on the estimation of SOS and LOS between smoothing functions were
obtained by subtracting one map from another, pixel to pixel (i.e. SOSAG – SOSDL; SOSSG –
SOSDL; SOSSG – SOSAG, etc.). Thus, the new resultant map shows the spatial patterns of
difference (in days) on the estimation of SOS (or LOS).

3. Results and discussion

The performance of models based on NDVI time-series is shown in Figures 2–4. The
three smoothing functions presented lower RMSE on the region where grasslands are
the dominant land cover (Herrera et al. 2009; Lara and Gandini 2014), and higher RMSE
where annual crops represent the most extensive land cover (Baldi, Guerschman, and
Paruelo 2006). These results suggest that the exchange between active vegetation cover
and bare soil (like in croplands) has certain impact over curve fitting. Similar results were
found by Atkinson et al. (2012), where AG and DL functions provided small RMSE values
over natural vegetated regions and higher RMSE values over agricultural regions.
However, the performance of SG filter has not been assessed by them.

Our results suggest that the adaptive SG filter is more robust than AG and DL
functions, possibly due to the lower sensitivity to great variations on NDVI time-series
(Eklundh and Jönsson 2009), in disagreement with a previous work by Hird and
McDermid (2009). AG and DL functions presented similar results, as expected based
on their definition, in agreement with studies carried out on different ecosystems (Beck
et al. 2006; Hird and McDermid 2009; Atkinson et al. 2012; Zhu and Meng 2015). The
spatial patterns of AIC and BIC values (Figures 3 and 4) are consistent with RMSE values,
where, in comparison, the performance of SG function in reducing noise of NDVI time
series is better than the performance of AG and DL functions in our study area.

On the other hand, a clear correspondence between cloudiness frequency and the
noise removed (negative values of bias) by SG filter was observed (Figure 5). AG and DL
functions overestimate NDVI values on regions without presence of clouds. These results
demonstrate that SG filter effect and cloudiness frequency are strongly correlated. The

Figure 2. Root mean square error (RMSE) between satellite-observed NDVI and fitted NDVI values
using the three smoothing functions from TIMESAT software. (a) Savitzky–Golay filter, (b)
Asymmetric Gaussian and (c) Double Logistic functions.
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Figure 3. Akaike Information Criterion (AIC) between satellite-observed NDVI and fitted NDVI values
using the three smoothing functions. (a) Savitzky–Golay filter, (b) Asymmetric Gaussian and (c)
Double Logistic functions.

Figure 4. Bayesian Information Criterion (BIC) between satellite-observed NDVI and fitted NDVI
values using the three smoothing functions. (a) Savitzky–Golay filter, (b) Asymmetric Gaussian and
(c) Double Logistic functions.

Figure 5. Bias of smoothing functions with respect to satellite-observed NDVI. (a) Savitzky–Golay filter,
(b) Asymmetric Gaussian and (c) Double Logistic functions. Negative values of bias indicate an over-
estimation (noise removed). (d) Cloudiness frequency of the study area based on MODIS data. Notice
how there is a strong correlation between cloudiness frequency and the noise removed by SG filter.
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spatial patterns of the estimated noise by AG and DL functions are random and did not
correspond to the cloudiness frequency, which indicate that AG and DL functions
overestimate the noise from the NDVI time series.

Themaps in Figure 6 show the SOS and the LOS of the differentmethods for the growing
season 2001–2002. Patterns of difference on the estimation of SOS between DL and AG
models did not show a definite spatial pattern, but was randomly distributed in the study
area and the values of difference are low (in days) (Figure 7). These results indicate that both
AG andDL approaches in the TIMESAT software produce similar results when the time-series
data is complete. Similar results were obtained by Gao et al. (2008). Although patterns of
difference on the estimation of SOS between SG filter and the other two functions (DL and
AG models) show a random distribution (without a definite spatial pattern), differences
mainly up to 30 days were found over the entire study area (Figure 7). These results suggest
that both AG and DL models show a delay on the estimation of SOS with respect to SG.

In the same way that patterns of difference on the estimation of SOS, major differences to
estimate LOS between AG andDLmodels were not found (Figure 8). Although a strong spatial
pattern is not observed, the adaptive SG filter tends to overestimate and underestimate LOS
with respect to AG and DL models (mainly between 20 and 50 days) (Figure 8). The obtained
results suggest that the three processing methods from TIMESAT software (Jönsson and
Eklundh 2004) are spatially consistent to estimate phenological attributes such as the SOS
and the LOS but there are differences in results that may be important depending on the
accuracy required (De Castro et al. 2014; Jin and Eklundh 2014; Hmimina et al. 2013). While a
definite spatial pattern of differences (between models) on the estimation of the descriptors
of ecosystem functioning analysed in this paper was not found, the adaptive SG filter showed
a better performance than the other smoothing functions (DL and AG), which were evaluated
using RMSE, AIC and BIC statistics, pixel to pixel. This could strongly impact on other important

Figure 6. Maps of the start of the growing season (SOS; top) and the length of the growing season
(LOS; bottom) of the different methods. (a) Savitzky–Golay filter, (b) Asymmetric Gaussian and (c)
Double Logistic.
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Figure 7. Spatial patterns of the differences (in days) on the estimation of start of the growing
season (SOS) between smoothing functions. (a) Asymmetric Gaussian function (AG) minus Double
Logistic function (DL). (b) Savitzky–Golay filter (SG) minus Double Logistic function (DL). (c) Savitzky–
Golay filter (SG) minus Asymmetric Gaussian function (AG). Frequency distribution, scaled between
−50 and 50 days, of the differences on the SOS for the study area are shown below.

Figure 8. Spatial patterns of the differences (in days) on the estimation of the length of the growing
season (LOS) between smoothing functions. (a) Asymmetric Gaussian function (AG) minus Double
Logistic function (DL). (b) Savitzky–Golay filter (SG) minus Double Logistic function (DL). (c) Savitzky–
Golay filter (SG) minus Asymmetric Gaussian function (AG). Frequency distribution, scaled between
−100 and 100 days, of the differences on the LOS for the study area are shown below.
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attributes not evaluated here: annual integral of NDVI, dates ofmaximumandminimumNDVI,
maximum NDVI and annual relative range.

The current work provides valuable information about the implementation of fitting
techniques, and associated errors in the extraction of phenological attributes. This informa-
tion should be of value for various studies that attempt to characterize land surface
phenology like an input to modelling carbon dynamics or complex climatic models con-
sidering the lack of accurate ground observations of phenological events at regional scale.

4. Conclusion

The methodology used allowed us to evaluate and to analyse the performance of different
smoothing functions of TIMESAT software and their impact on SOS and LOS (descriptors
of ecosystem functioning) on a complex and heterogeneous landscape like the temperate
grassland of Buenos Aires province (Argentina). The three analysed models (AG and DL
functions, SG filter) showed variations with respect to the observed NDVI values, mainly
where annual crops represent the most extensive land cover. Over the entire study area,
SG filter showed a better performance than AG and DL functions, which were evaluated
by using RMSE, AIC, BIC and BIAS statistics. Only SG filter showed a balanced ability to
reduce noise while maintaining the relevant NDVI signal integrity, where a strong correla-
tion between the noise removed and cloudiness frequency was observed.

We found differences of 20 up to 50 days between SG filter and the other two models
on the estimation of SOS and LOS but a spatial pattern was not found. This suggests that
the three processing methods from TIMESAT software are spatially consistent to esti-
mate phenological attributes. However, we found that both AG and DL functions show a
delay on the estimation of SOS (and thus shorter LOS) with respect to SG filter. Hence,
the smoothing functions from TIMESAT software should be carefully used depending on
the accuracy required, as well as on the project aims and the study area.
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