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This paper discusses the aspects relating the geometric discretization of anisotropic wind turbine blade
cross sections via line elements and the calculation of its mechanical properties. The geometrical
reconstruction of the blade is done through an algorithm that reads a table that contains the repre-
sentation of the aerodynamic profile of the blade as a set of connected line segments. The composite
material theoretical background is based on a vector variant of the classical lamination theory embedded
into a geometrically exact large deformation-small strain thin-walled beam formulation; transverse
shear and out of plane warping effects are considered. The impact of the geometric reconstruction in the
accuracy of the mechanical properties is studied using both rectangular and trapezoidal elements. It is
found that a proper geometrical reconstruction of the cross section must be ensured to obtain small
errors in the mechanical properties. It is shown that line based algorithms can give very accurate results
provided the cross section geometry is adequately represented.
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1. Introduction

Renewable energy is increasingly contributing to the global
energy generation; biomass, wind, solar and geothermal energies,
thermoelectricity, etc., are just a few of the many clean sources that
are being used nowadays to obtain energy without affecting the
environment [1—-5]. Among them, wind energy is clearly one the
most exploited sources.

Wind turbines are almost exclusively used to extract energy
from the wind; its study is of paramount importance for increasing
the current global energy production. The performance of a wind
turbine is governed mainly by the rotor; its design involves the
study of a wide variety of subjects; among them, the blade design is
the most important.

Computational modeling of composite wind turbine blades is a
hot research subject [3,6—10]; both 3D, 2D and 1D modeling
techniques have been investigated extensively. Most modern ap-
proaches make use of finite elements, so the response of the blade
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is typically computed after some kind of discretization.

In the most general case, the full blade can be discretized into
solid finite elements; however, this three dimensional modeling
technique is rarely used since the time and computation resources
required to generate such a complex geometry are huge. Besides,
the aeroelastic nature of the blade dynamics makes a full fluid-
structure 3D simulation using solid elements very difficult to
execute. This opens the possibility for a wide variety of the so-
called “reduced theories”, which make use of various hypotheses
to model the structural behavior of the blade; they simplify the
geometrical representation blade and also the description of its
mechanical behavior.

Currently, three approaches are predominantly used to simulate
the mechanics of composite wind turbine blades:

i) 3D shell approaches, where the outer surface of the blade is
discretized into tridimensional surface elements of com-
posite material that deform arbitrarily in space [11]. This
approach is often used in serial with a method to extract the
cross sectional properties of the blade at a certain span
location via static loading [10—13]. The geometrical errors
arising from the definition of the cross section as a set of shell
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elements cannot be avoided; although, the accuracy of the
method is generally good [12].

ii) Coupled surface-line algorithms (SLAs), where the blade is
conceived as a set of cross sections modeled as 2D continuum
elements; the group of cross sections move solidary to a
reference 3D curve that deforms in space following the ki-
nematic laws imposed by certain beam theory [14—16]. This
is probably the most accurate approach to describe the me-
chanic behavior of the blade since the cross sectional
modeling with 2D elements permits a fine description of the
blade geometric constructive details; also, the cross sectional
algorithm can be coupled with almost any beam theory.

iii) Coupled line-line algorithms (LLAs), where the blade is
conceived as a set of cross sections modeled as 2D line ele-
ments; the group of cross sections move solidary to a refer-
ence 3D curve that deforms in space following the kinematic
laws imposed by certain beam theory [14—16]. The accuracy
of the LLAs is dependent on the geometrical reconstruction
algorithm and the composite material formulation. The ac-
curacy of modern LLAs is very good; for certain cross sections
LLA can give more accurate results than 3D shell approaches
[12].

Although SLAs are more accurate than LLAs, the survival of LLAs
is favored by the following important factors: i) the high time
consumption for the creation and execution of a SLA model, ii) the
difficulty of SLAs to handle very small thickness layers of paint and
coating and iii) the impossibility to use LLAs coupled with
geometrical optimization software without implying the genera-
tion of a new mesh and the interaction with a user.

Both LLs and SLAs are structured such that a beam theory is fed
with a matrix of cross sectional stiffness coefficients, which are
individually obtained a priori. However, in SLAs the coefficients are
obtained through finite element modeling of the cross sectional
shape with 2D continuum elements.

In LLAs, thin-walled beam theory is used in linear and nonlinear
variants [10,15—18]. Researchers have dedicated thirty years of ef-
forts to formulate thin-walled beam theories; almost every work
found in the literature concludes that refinements in the consti-
tutive and kinematic aspects of the formulations lead to significant
improvements in the theory. Static displacements, stresses, natural
frequencies and frequency response of the beam have been used to
test the effects of the proposed theoretical improvements. The
impact of the geometric description of the cross section in the ac-
curacy of the thin-walled theory has been addressed very rarely; in
this paper this will be shown to be of paramount importance for
obtaining accurate results.

Nowadays LLAs are widely used in rotor design to determine the
cross sectional stiffness of blades. Chen et al. [15] presented a
detailed assessment of computational tools for calculating wind
turbine blade cross sectional stiffness. This study includes numer-
ical comparisons between: thin walled beam theory, the SLA VABS
(the most renowned algorithm for the determination of cross
sectional properties, developed by Prof. Hodges and coworkers
[14,16,19]) and the LLAs: FAROB [20] (developed at the Dutch
Knowledge Center of Wind Energy Materials and Construction),
PreComp [21] (developed at National Renewable Energy Laboratory
in USA) and CROSTAB [22] (Cross Sectional Stability of Anisotropic
Blades, developed at the Energy Research Center of the
Netherlands). The study concludes that the LLAs are inconsistent
and therefore its applicability to modeling realistic blades is ques-
tionable; the present paper will show that this conclusion is
misleading.

Resor et al. [23] compared results obtained with PreComp and
BPE (Blade Property Extraction, a 3D shell approach developed by

Global Energy Concepts and Sandia National Laboratories [24]), to
those obtained in experimental testing of the BSDS blade; accord-
ing to this paper the overall difference between PreComp and BPE is
in the range of 15—25% and the difference between the experi-
mental results and BPE are in the range of 5—20%. In a later study,
Resor and Paquette also included VABS in the assessment of cross
sectional stiffness calculations [25]. The paper reproduced the same
results of [15] for a particular wind turbine cross section, only the
diagonal terms of the stiffness matrix were presented. For the CX-
100 blade, discrepancies were found between VABS and BPE,
especially in sections near the blade’s root. These discrepancies
were attributed to local straining.

In a previous work, the authors have presented LL formulation
to obtain the cross sectional properties of composite cross sections;
the work showed that a LLA can be very accurate provided it is
correctly implemented [12]. In the present paper, an improved
version of the previously presented LLA is used to analyze the
impact of the discretization aspects on the accuracy of the results.
The composite material theoretical background is based on a vector
variant of the classical lamination theory embedded into a
geometrically exact large deformation-small strain thin-walled
beam formulation; transverse shear and out of plane warping ef-
fects are considered. The geometrical reconstruction of the cross
section is performed with two types of segments: classical thin-
walled beam theory rectangular segments and a variable layer
length trapezoidal segments. The influence of the number of layers
in the laminate also studied. It is shown that the choice of the
reconstruction technique greatly affects the prediction of the cross
sectional parameters. The 1D nature of the approach permits its use
in optimization studies, when variation of parameters must be
executed without requiring user interaction. The approach gives
excellent results with minimal modeling time; results are often
better than 3D approaches.

2. Theoretical aspects
2.1. Beam formulation

The cross sectional parameters are dependent on the beam
formulation; they are uniquely defined for a particular strain en-
ergy function. As a consequence, a particular cross sectional stiff-
ness measure is strictly consistent only with the kinematic
formulation from which it was derived. A detailed derivation of the
composite beam formulation used in this paper can be found in
Refs. [12,26]; hereafter, only relevant details are reproduced.

It is assumed that the blade is moderately slender; so its me-
chanic behavior can be reasonably approximated by beam theory.

The position vectors of a point in the blade in the undeformed
and deformed configuration can respectively be expressed as [12]:

3
X(x,£2,63) = Xo(x) + Y _&iE;,
i=2 5 (l)
X(X./ §27€3a t) = Xo(X, t) + Z Eiei + wey.
i=2
In both above equations Xj is the position of the pole in the
reference configuration, xy is the position of the pole in the
deformed configuration and the coordinates £, and &3 are the
components of the position vector of a point in the cross section in
E;, see Fig. 1. The variable w accounts for the displacements in the
cross section due to torsional warping.
Three frames of reference attached to the cross section are
introduced: a) a reference material frame {E1, E;, E3 }, b) a sectional
frame {E;, n,s} and c) a layer individual frame {1, 2, 3}, see Fig. 2.
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Fig. 1. Wind turbine blade finite kinematic description.

The Green-Lagrange strain tensor is defined as a function of the
deformation gradient F as

E:%(FTF—I); 2)

this expression can measure arbitrary straining. It can be shown
that the deformation gradient has de following expression [12]

F=A+ (X,Ofﬁ +Eaezx> ®E;, (3)

where A is the finite rotation tensor of the cross section. The GL
strain tensor is then

1 28'@1 €€ ¢-€3

E = 5 €€ 0 0 |. (4)
€-€3 0 0

where

£=2X)— e +£q.8, (5)

The Small Green Strain Tensor (SGS) can now be written in
vector form as [12]

Fig. 2. Blade local reference systems.

Xo-e1—1+ E(}ea&ﬁ
e=| xye+ie;e | (6)
Xp-e3+&re,-e3

The SGS tensor can be split into a geometrical part and a
generalized strain part

e=Dx, (7)

being D a cross sectional matrix such that

El r
D= Ez rx E2 s (8)
E; rxE;

and ¢ the generalized strain vector.

xy-e; — 1
Xp-€
Xy-e
£ = 0= | (9)
€€
e, e
e3-eq

For simplicity and without implying a simplification it has been
assumed that E; = a;.

Lastly, the curvature and axial-shear strain vectors are defined
for future use as

Y=1[¢ 72 YB}T:[X,'91*1 X)-e X"e3]T
) ) ) : (10)

T

T ’ ’ ’
K=[K1 Ky K3] = [e2~e3 e,-e; e3~e1} .
Then the generalized strain vector can be written in the form

e=[yT KT}T, (11)

2.2. The sectional strain measures

The SGS vector expresses the strain state of the blade in the
reference frame. In order to write the constitutive equations
together with the cross sectional hypotheses it is necessary to ex-
press the SGS in the cross sectional frame {E;, 11,s}.

Recall that the origin of the cross sectional system moves along
the cross section contour (placed half a thickness inward from the
outer contour) in anticlockwise direction; then the tangent unit
vector can be found as the derivative of the mid-contour position
vector F = £,E; + £5E3. This is
s=0 Gk TEs (12)

s
where ; represents derivatives of mid-contour cross sectional co-
ordinates with respect to s. The normal unit vector can be obtained
invoking the orthogonality condition of the coordinate system

n=5xE; =%E;, —&E;. (13)

Then the position vector of a point in the cross section expressed
in the sectional coordinate system is

rs = (T + N)N + TS, (14)

where the mid-contour components are obtained as
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Fn:FS'ﬁ:gZE37'E3527 (15)
Ts =Ts-8 = 556, +£365.

Another needed relation is the position of a point in the cross
section as a function of the mid-contour coordinates, this is

r=r+nn-= (§2+n§’3)E2+ <§3fn§’2)E3. (16)

Now, a sectional frame transformation tensor Q; is introduced
(see Ref. [12]). Q, operates over the SGS tensor to give the strains in
the sectional system as

e=QEQ; (17)
Thus, the vector form of the sectional strain is
€+ &k + E3K3
&x - - = -
e— l%(s] — | &v2 +Esr3 + (§253 - 5352)K1 . (18)
Txn E3yy —Eyy3 — (Ezgz + 53E3>’<1

From the above expression, expansion of the terms &; gives

e+ (B nEs Yo + (B — nEy )is
e= |G+ Byvs+ (B2 +n)E - (B —nky)B)i |- (19)
e R ( CR R N (A A AP
Now, arranging some terms in the last equation and using Eq.

(15) the following compact expression for the sectional SGS is
found

£+ <K3gz + K2§3> + n<'<3§3 - KzEz)
&x 7, K
e = lm] (Ezvz + 5373) + K1 . (20)
Yxn 7 = _
(3372 - *‘5273) —K1Ts
Finally, the last equation can be written as a function of the
generalized strains as

"
e; — Dy — rnl m (21)
71

=) @») =

where r, =7, +n.

3. Composite material modeling
3.1. Constitutive relations

A wide variety of formulations can be derived from the different
hypotheses that can be made about the constitutive behavior of the
cross. It was shown in Ref. [12] that even the simplest constitutive
formulation can give accurate results for most cross sections.

Following [12], the layer frame of reference {i,i,i} will be
used to derive the constitutive equations; it will serve to describe
locally the mechanical behavior of the layer. Every layer of com-
posite material is assumed to lie in the {E;,s} plane and thus the
normal direction 7 of the sectional frame is coincident with 2 in the
layer frame.

Assuming orthotropic layers the constitutive equations are
written as

01 C1 G G3 0 0 O €1

02 Cp G G3 0 0 O )

o3 | _|Gs G G3 0 0 O €3 (22)
023 0 0 0 Gg O 0|73

031 0 0 0 0 Gs 0 ||rs

012 0 0 0 0 0 Ge]lr2

where ¢; and ; are the layer stress and strains and Cj; are the layer
stiffness coefficients [12].

It must be noted that the orthotropicity assumption at the layer
level does not imply that the laminate is also orthotropic; ortho-
tropic layers can be stacked in arbitrary angle sequences to give a
generally anisotropic laminate. Although the layer orthotropictiy
assumption does not generate a significant simplification to the
theory and certainly could be avoided, most materials used in wind
turbine blade design are locally orthotropic and thus it is conve-
nient to retain it to ease the computational implementation.

Invoking the constraints imposed by the kinematic hypotheses
in section would require to set ey = v,3 = 71 = 0. To avoid the over
stiffening of the beam it is chosen to set g, = g3 = 01 = 0, which
gives the flexibility equation

€1 Si1 Si3 O a1
3 | =(S13 S3 O 03 (23)
Y13 0 0 Sss]|o13

being Sq; the stiffness coefficients.
The last expression is now transformed to the sectional frame to
obtain the following compliance equations

£x Qi Q2 Q3| [ ox
£ | = Qx Q3 || 0s (24)
Yxs Q33 Txs

where ¢; and g; are the strains and stresses in the sectional frame
and Q; are the transformed stiffness coefficients.

By hypothesis of the beam cross section, it is possible to set
& = 0, then the compliance equations could be corrected accord-
ingly, but it is well known that for composite beams the assumption
& = 0 leads to a significant overstiffening [18,27,28]. Therefore, it
convenient to use the mildly inconsistent hypothesis o5 = 0, thus
reaching the following constitutive equation

e | _ | Q1 Q|| ox

{sz} B {Q]B Q33} {sz} (25)
Inversion gives
ox | _ |Ann Az || &

{sz} B {AlE} A33] [YXJ (26)

Recalling Eq. (21) the constitutive equations can be expressed in
matrix form as

Os = CDsf. (27)
where

_ | ox _ |An Az _|{1 r
7= |:sz:|’ €= |:A]3 A33:|7 Ds B |:§ rnl} (28)

The expression (27) is the constitutive equation that will be used
for the calculation of the cross sectional properties of the composite
blade. It must be noted that this expression could be considered
equivalent to the uniaxial stress assumption.
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3.2. Virtual work principle

The derivation of the blade cross sectional stiffness requires the
definition of the virtual work of the elastic forces; the tridimen-
sional version of the virtual work of the internal forces is given by

oW, = / seTadV. (29)
\%4

Recalling Eq. (27) the internal virtual work of the composite
blade is expanded as
oW, = / 8(Ds &) CDgedV
v

(30)
- / 5T DT CDyedV
%

Since the generalized strain vector is only a function of the
running length coordinate of the blade, i.e. x the above equation can
be recast in the following form

oW, — /}sJ ( /DSTCDSdA)adx. (31)
L A

From the above equation, the term in parentheses is the cross
sectional stiffness of the blade

D= / DICDdA. (32)
A
Explicitly
1T st [An AlsHl "}
D= o~ dA. 33
,A/[rT rf{lT} Az Asz]|s iyl 33)

where 19 = 1y + w;.

3.3. Mass and inertia tensors

For the present formulation the mass and inertia tensors are
given by Ref. [12]

M = / / pdnds, J = / / #idn ds (34)
s n s n

The computation of the mass tensor is straightforward since the
density is layerwise constant. This is also the case of the inertia
tensor; although, it admits computation in either the sectional or
the global frames. Computation in the sectional frame is often
simpler so it is the approach followed in the present paper. So, the
inertia tensor is obtained through

r24+r2 0
JJS://i'Ti'dnds:// 2
< <

where r is the skew symmetric matrix of the position vector r.
Lastly, the transformation to the global frame is done through
the sectional transformation tensor as

0
—rats | dnds (35)
2

n

J = Q4 UsQs. (36)

4. Blade geometrical modeling

From the structural point of view, the blade is built with two
kinds of materials: the ones which contribute with mass, the ones
which contribute with both mass and stiffness. The former includes
coating, painting and filling materials; filling materials have very
low stiffness and are mainly used to increase the local buckling
stiffness at specific locations. The latter includes composites, fab-
rics, etc.

In the computational implementation of the theory the mate-
rials not contributing to stiffness do not pass through the stiffness
algorithm. This is convenient not only because the stiffness matrix
computation is faster but also because the problems arising from
poor local vector conditioning due to the extremely small thick-
nesses of paint and coating are avoided.

Commonly, filling materials such as foam or balsa are used in a
sandwich-like configuration. This improves the local stiffness of the
laminate at the expense of a minor decrease in the global stiffness
and a major increase in thickness. The latter often renders the cross
section thick-walled; this have two consequences: i) the normal
stresses in the thick-walled segment are not necessarily small and
ii) the layers of the laminate are shorter than the outer layers.

Since the stiffness of the core material is low, the normal forces
transferred through its thickness can be assumed to be small, then
point i) can be disregarded. The consequence in ii) will be
addressed in the following subsections.

Note that the assumptions of the present theory are:

a) the cross section can undergo finite displacements and finite
rotations.

the cross section behaves as rigid in its own plane.

the cross section is free to warp out of its planes.

the warping elastic energy is small.

the normal stresses in the plane of the cross sections are
negligible.

f) all strains are small.

b
c
d
e

—_

4.1. Discretization and segment reconstruction

In the design of a wind turbine cross sectional shape, the outer
contour is fixed by aerodynamic requirements as a set of points in
the two dimensional space. This aerodynamic profile is converted
to lines and then imported into a meshing software to generate a
set of two dimensional line segments.

A LLA takes as input the line-discretized aerodynamic profile of
the blade and the shear web locations together with a material
mapping table. The material table contains the definition of the
material constants, the lamination sequences and the thickness
distribution.

In order to reconstruct the actual blade geometry, after the
discretization process, each segment must be projected inwards in
the direction of the surface normal. To perform this operation
several possibilities can be devised; in this paper, reconstruction
with rectangles and trapezoids will be studied. Surprisingly, the
impact of this choice in the accuracy of the thin-walled theory has
not been addressed before; this will be shown to be of key
importance for obtaining accurate results.

As already said, the outer contour of the cross section is given a
priori by the aerodynamic design of the blade. From the geometric
point of view, it is relevant the fact that the inner layers of a
laminate segment are shorter than the outer layers. This may result
trivial, but this point is rarely considered in thin-walled beam
theory. Of course, the effect of the curvature variation disappears as
the thickness of the laminate tends to zero; but as stated, at various
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locations of the cross section the wall is very thick due to attend the
local buckling strength requirements.

The reconstruction of the blade geometry must be done via
projection of the inward normal of the outer contour according to
the information given in the lamination table. This opens the pos-
sibility for a reconstruction with three segment types: i)
unmatching rectangles, ii) matching trapezoids and iii) unmatching
trapezoids; see Fig. 3.

Unmatching rectangles are constructed through normal pro-
jection in the direction of the segment normal; matching trape-
zoids are constructed using the intersection point of the inner
layers, thus avoiding thickness discontinuity; finally, unmatching
trapezoids are obtained through projection in the direction of the
average nodal normal.

There are two important observations that can be made from
the visual inspection of Fig. 3. Firstly, option a) should overestimate
the cross section properties; this is a fact since the reconstruction
clearly duplicate the intersection area. Secondly, option b) should
give the most accurate representation of an actual thickness tran-
sition; although it would be dependent on the local geometric
details of the joint between the segments, which cannot be uni-
versally defined. This is one of the drawbacks that makes the
matching trapezoid not suitable for the geometric reconstruction of
unmatching thickness joints; the next paragraphs clarify this.

Firstly, the geometrical aspects of a joint constructed with
matching trapezoids are analyzed. Although it may seem trivial to
construct a matching trapezoidal joint from the one dimensional
mesh of segments, it takes some effort to derive the location of the
intersection point of the inner contours of two contiguous seg-
ments. Fig. 4 shows a typical case where the mid-contours of ele-
ments 1 and 2 meet at an undetermined point p.

The unknown is the vector t, which locates the mid-contours
intersection point. Surprisingly, there is no simple vectorial
expression to obtain t; therefore, posing the problem in non-
orthogonal coordinates cannot be avoided. The relative location
of the intersection of the mid-contours can be found as

t=tg'+6g’ (37)
where g' is a non-orthogonal basis with unit vectors that are
defined from the segment perpendicular vectors. Then, t; are the
covariant components of t in the base g'. The definition of a

reciprocal basis such that g;-g/ = (5{ allows to write the covariant
components as [29]

t; :igl (38)

where t is the Cartesian expression of t, i.e. t = (¢; ]V + CZE). Then it
is possible to obtain

ti = <C17 + Czi) 8i; (39)

which gives the following algebraic equation

a) Unmatching rectangles

c¢) Matching trapezoids

Fig. 4. Non-orthogonal description of the matching trapezoid joint.

m: ig kg {cl] (40)
f2 jg kgl

This can be written as
ti = JiijCj, (41)
and finally find the Cartesian components of t as

Ci = ./Iéﬁl'j. (42)

Once the coefficients are determined, both the inner and mid-
contour intersections are easily calculated.

However, .« is singular when g, and g, are linear combination
of each other. Geometrically, this is equivalent to both segments
being collinear (or almost collinear); a very common situation for
most aerodynamic discrete profiles. In this case, there will no so-
lution for ¢;, and thus the algorithmic version of the above formu-
lation will crash.

If the two segments have the same thickness, the situation can
be saved since the calculation of the vector can be bypassed
through the simple formula

_ 1 —
t= —5 em, (43)
where e is the thickness of the laminate and n is the outward
normal.

On the contrary, if the thicknesses of the parallel elements are
not equal, then there is no way to find c;, then the mid-point cannot
be determined. This situation is depicted in Fig. 5, where clearly at

b) Unmatching trapezoids

Fig. 3. LLA segment types.
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locations A and B the matching trapezoid formulation would fail to
give a joint intersection point.

In consequence, although a joint that avoid thickness disconti-
nuity may seem attractive at first sight, it is not always a good
alternative to represent the laminate transitions. Note that this is
not only because the intersection point between the neighbor
segments cannot exist, but also because although it exists, it is no
guaranteed that the represented joint is similar to the real one. In
virtue of the above comments, it is concluded that the matching
trapezoid is not a good choice to reconstruct blade cross sections
with large thickness changes.

The last conclusion leaves two alternatives for the reconstruc-
tion of the sectional geometry, the unmatching rectangles and the
unmatching trapezoids. The next sections show how this two types
of discretization perform.

4.2. Shear webs and trailing edge reconstruction

The geometric reconstruction of the shear webs and the trailing
edge is crucial. Since the shear webs stiffness is very large and the
trailing edge is away from the section centroid, the error in the
stiffness is likely to be large if the reconstruction is not accurate.

The shear webs are not part of the airfoil profile, so they must be
added to the mesh of segments. Shear web segments can be defined
by the midline, the left edge or the right edge; any definition is valid
as long as the resulting segment is exactly coincident in dimension
and location with the actual web.

Algorithmically, the simplest way to reconstruct the shear web
is to leave the web segments unconnected with the upper and
lower camber segments; thus, defining a convenient offset from the
outer contour, the shear web can be reconstructed, see Fig. 6.

5. Numerical tests

This section presents the performance of the formulation in
several benchmark tests. They were carefully designed by re-
searchers to compare the modeling capabilities of cross sectional
stiffness calculation codes [15]. The presented formulation was
implemented computationally in a Python code called CXS.

All comparisons are made assuming that the results obtained
with the SLA VABS [14] are the baseline; this is justified by the fact
that both its formulation and implementation have been exten-
sively proven [14—16]. For the sake of brevity, in the following ex-
amples only the relevant geometric and material data of each
example are presented, the reader can refer to [15] for further de-
tails. In some examples, results obtained with the LLA PreComp are
presented; PreComp was chosen to compare the present formula-
tion mainly because it is the most used LLA [12,15].

Fig. 5. Discontinuous joint geometry.

5.1. Thick-walled isotropic tube

The first example is set to test the performance of the algorithm
to handle thick segments; an isotropic circular aluminum tube with
a thickness to diameter ratio of 1/3 is chosen. VABS and PreComp
results are used to benchmark the present algorithm.

The results are presented in Table 1; they show an excellent
agreement between VABS and the CXS trapezoidal element; both
the stiffness and mass coefficients agree with an error less than 1%.

To increase the accuracy of CXS a layering scheme can be used;
this can be easily done in the input file by adding more layers of
material in the thickness direction (maintaining the total thickens
of the wall). Normally this is of importance when the thickness of
the wall is large, a thickness analysis can executed to determine the
optimum number of layers.

There are some important conclusions that can be drawn from
this experiment; i) the trapezoidal segment can reconstruct very
effectively the geometry, ii) layering do not improve significatively
the accuracy, iii) the rectangular element do not predict well
neither of the cross sectional parameters, iv) the PreComp results
agree exactly with those of the CXS rectangles. The latter suggests
that PreComp errors are very likely due inaccurate geometry
reconstruction.

In virtue of the above, it must be strongly remarked that for the
problem at hand the source of error of the LLAs is purely geometric;
when the geometry is modeled correctly, as done by CXS trape-
zoids, the errors tend to zero. The CXS geometric reconstruction
with trapezoidal elements of the thick-walled tube can be seen in
Fig. 7.

5.2. Isotropic blade-like section

In the previous example the material was isotropic and the cross
section was bisymmetric, then no stiffness or mass coupling terms
appear in the stiffness matrix. In order to test the influence of the
geometrical coupling a monosymmetric isotropic section proposed
by Chen et al. [15] is studied.

Inspecting Table 2 the same behavior as the previous example is
observed. The following comments can be made: i) the accuracy of
CXS trapezoids is excellent, ii) the CXS rectangles overestimate the
parameters due to duplication of the segment intersection, iii) the
CXS rectangles and PreComp give very similar results, iv) the lag
stiffness and inertia results of PreComp do not show the classical
overestimation; it is suspected that a modeling error is present in
the results presented in Ref. [15], v) PreComp is not very consistent,
some variables are over-predicted and others are under-predicted,
vi) again, the CXS trapezoids are more flexible than VABS only in
torsion. The latter is expected since the present formulation ne-
glects hoop moments [18]. The CXS geometric reconstruction of the
blade-like section with trapezoidal elements can be seen in Fig. 8.

5.3. Anisotropic oval pipe

This example consist on a multi-layer composite pipe with oval
shape [12], see Fig. 9. The pipe is thick-walled and anisotropic; the
lamination stacking sequence is unsymmetrical and unbalanced.

Besides VABS results, the PreComp data presented in Ref. [15]
will be used to benchmark the present formulation. It must be
noted that in Ref. [15], dimensioning of the inner and middle ra-
diuses of the oval is incorrectly reported; the total thickness of the
cross section is 5.08 mm instead of 2.54 mm. Also the material
properties were wrongly informed, the constants used in the cal-
culations are: Ei; = 141.963 GPa, Ey; = E33 = 9.79056 GPa,
G12 = G123 = Gy3 = 5.9984 GPa.

This is a very unfavorable section for the present formulation
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Fig. 6. Reconstructed wind turbine blade. Note that the reconstruction of the trailing edge with unmatching trapezoids requires that the trailing edge joint elements to be long
enough to allow the existence the inner contours intersection point without causing annihilation of the quadrilateral segments.

Table 1
Thick-walled tube cross sectional properties.

VABS PreComp [15] CXS trapezoids 10 layers CXS trapezoids 5 layers CXS rectangles 10 layers
Axial 1.834 x 100 2.750 x 10'° 1.834 x 10'° 1.834 x 10'° 2.751 x 10'°
Bending 4,587 x 108 5.936 x 10° 4575 x 108 4556 x 108 5.958 x 10°
Torsion 3.449 x 108 4115 x 108 3.439 x 108 3.424 x 108 4.476 x 108
Mass 7.037 x 10? 1.055 x 10° 7.034 x 10? 7.034 x 10? 1.055 x 10°
1 3.519 x 10' - 3.509 x 10" 3.495 x 10' 4570 x 10"
2-13 1.759 x 10! 2.280 x 10" 1.755 x 10! 1.747 x 10! 2.285 x 10"
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Fig. 8. Bending stiffness density colormap of the blade-like section.
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Fig. 7. Bending stiffness density colormap of the thick-walled tube.

Table 2
—Isotropic blade-like section cross sectional properties.
VABS PreComp [15] CXS trapezoids CXS rectangles CXS error

Axial 3.551 x 107 3.794 x 107 3.551 x 107 3.778 x 107 0.0%
Flap bending 2.088 x 10° 2.178 x 10° 2.088 x 10° 2.161 x 10° 0.0%
Lag bending 1.108 x 10'° 9.100 x 10° 1.108 x 10'° 1.292 x 10'° 0.0%
Torsion 2.006 x 10° 1.696 x 10° 1.951 x 10° 2.070 x 10° 2.7%
Ext-bend —3.381 x 10% —3.238 x 108 —-3.381 x 108 —3.821 x 108 0.0%
Mass 1.841 x 1077 1.960 x 107 1.843 x 1077 1.960 x 1077 0.1%
1 6.826 x 107> - 6.831 x 107> 7.828 x 107° 0.1%
12 1.082 x 107 1.125 x 107 1.083 x 10 1.121 x 10°° 0.1%
3 5.743 x 107> 4702 x 1073 5.747 x 107> 6.707 x 107> 0.0%
Tension center 9.521 10.000 9.521 10.114 0.0%

because the lamination sequence is unbalanced and circum-
ferentially asymmetric, then the errors that arise from the neglect
of the circumferential curvature are maximized.

Despite this Table 3 shows that the trapezoidal element still has
a very good performance; for the most critical terms, the
extensional-bending and the extensional-torsional couplings, the
results are acceptable.

The maximum error (16%) is that of the extensional-torsional
coupling; this far below the error reported in Ref. [15] for other
one dimensional codes. There, the best results are given by is Pre-
Comp, predicting an extensional torsional coupling
of —1.2 x 10~2. This represents an error of six orders of magnitude.

Again, the CXS rectangle element is not as accurate as the
trapezoid; although, the results are consistent; both CXS elements
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Fig. 9. Bending stiffness density of the anisotropic oval pipe.

Table 3
Anisotropic oval pipe cross sectional properties.

of the rectangular element is smaller than that the trapezoidal
element; this is caused by the stiffening caused by the duplication
of areas of the rectangle element, iv) all coupling terms are very
well predicted, v) the mass and inertia parameters predicted by the
trapezoidal elements agree very closely to that of VABS.

Observing the results presented in Refs. [15] and [12] and
comparing them with the present results it can be seen that they
are very sensitive to modeling details. In order to alleviate this issue
the above calculations were generated with exactly the same
geometrical data.

5.5. Sandia SNL100-3 blade

Sandia National Laboratories have been working intensively in

VABS PreComp CXS trapezoids CXS rectangles Error CXS trapezoids Error CXS rectangles
Axial 4,606 x 107 7.833 x 107 4.580 x 107 4.760 x 107 0.5% 3.3%
Bending 1 5.378 x 10° 7.074 x 107 5.355 x 10° 5.444 x 10° 0.4% 1.2%
Bending 2 1.532 x 10* 4.857 x 10* 1.530 x 10* 1.704 x 10* 0.1% 11%
Torsion 1.959 x 10° 8.628 x 10° 1.722 x 10° 2132 x 10° 12% 8.8%
Ext-Bend 2 2.088 — 1.856 —~3.028 x 107! 11% 12%
Ext-Bend 1 —4.117 — —3.856 -1314 6% 6%
Ext-Tors 1.079 x 10* —~1.205 x 1072 1.258 x 10* 4.420 x 103 16% 16.5%
Mass 8.957 x 10! - 8.957 x 10! 8.830 x 10! 0.0% 0.0%
1 5.499 x 1074 - 5.498 x 1074 5599 x 1074 0.0% 0.0%
12 7.661 x 107> — 7.660 x 107> 8.046 x 107° 0.0% 0.0%
13 4733 x 1074 - 4732 x 1074 0.0%

give better results than PreComp.

From the observation of the torsional values an important
remark can be made. Compared to VABS, the trapezoidal element
predicts a lower torsional stiffness (12% error) while the rectan-
gular element predicts a higher stiffness (8.8% error). Although at
first glance it could be said that the rectangular element has a better
performance, this is not so. The prediction of the torsional stiffness
of a CAS laminated cross section done by an algorithm without
significant geometrical errors should be below the real value; this is
because the zero hoop moment assumption flexibilizes the cross
section [18]. This flexibilization is also present in the rectangular
element; however, the rectangular element overestimates the areas
and thus overcompensates the flexibilization caused by the zero
hoop moment assumption. Therefore, it is very important to note
that although the torsional stiffness error is lower in the rectan-
gular element, the prediction is worse.

5.4. The MH104 wind turbine blade [15]

In this example a real wind turbine cross section is analyzed; the
cross section is presented in Ref. [15]. Geometrical and material
data details can be found in the mentioned reference. To facilitate
the VABS modeling, both the Gelcoat and the Nexus layers were
removed from the model. This affects slightly the mass and inertia
constants, but otherwise the VABS model would be very difficult to
generate. Fig. 10 shows the geometry of the MH104 blade recon-
structed by CXS.

The stiffness and mass results are presented in Table 4.; again, it
can be seen that the trapezoids give a better prediction than the
rectangles. The following comments can be made: i) the axial, flap
and lag stiffness is overpredicted by both CXS elements, ii) the
torsional stiffness is underpredicted by both CXS elements; this is
due to disregarding hoop moments iii) the torsional stiffness error

the design of a 100 m wind turbine blade [30,31]; up to date, this is
the largest blade design in the world. The last design, named
SNL100-3, incorporates carbon fiber and flat-back airfoils to the
original all-glass blade. In this example the results of the blade
stiffness and mass parameters at the maximum chord station of the
Sandia SNL100-3 blade are presented. The blade geometry recon-
structed with CXS is shown in Fig. 11.

As before, the benchmark is done taking the VABS results as
baseline. Both the VABS and the CXS models were generated using
the geometric and material data published by Sandia [31]. Also, the
Pre-Comp results are taken from the cited Sandia report.

From the results presented in Table 5 the following comments
can be made: i) as usually, the CXS trapezoids give better results
than CXS rectangles and PreComp, ii) CXS is consistent in the sense
that it overpredicts the stiffness and mass parameters, except for
the torsional stiffness. The torsional stiffness is, as expected,
underpredicted; this is because the formulation neglects the hoop
moments, iii) PreComp is not consistent, parameters are over-
predicted or underpredicted randomly.

As a closing remark, it is noted that VABS computing time was
309 s while CXS computing time was 0.1 s. Besides, generation of
the VABS model took approximately 6 h, while the CXS model took
20 min.

6. Conclusions

The presented approach has proven to be very effective in
computing the cross sectional stiffness and inertia properties of
realistic composite blades. Different benchmark tests were per-
formed and a detailed comparison of several inertia and stiffness
terms was done. It was shown that the simplest version of the
classical lamination theory can yield accurate results if the cross
section is properly modeled.
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Fig. 10. Bending stiffness density of the MH104 wind turbine blade.

Table 4
MH104 blade cross sectional properties.

VABS CXS trapezoids CXS rectangles Error trapezoids Error rectangles
Axial 2.443 x 10° 2.547 x 10° 2,616 x 10° 4.2% 7.1%
Flap 2.164 x 107 2.301 x 107 2.330 x 107 6.3% 7.6%
Lag 4.683 x 108 4.887 x 108 5338 x 10° 4.3% 13.9%
Torsion 2.693 x 107 2.24 x 107 2.344 x 107 —16.8% —12.9%
Ext-flap 7.006 x 107 7.263 x 107 7.411 x 107 3.6% 5.7%
Ext-lag —4.695 x 108 —4.900 x 108 —4.631 x 108 4.3% ~1.3%
Ext-tors —3.293 x 107 —2.986 x 107 —2.937 x 107 -9.3% -10.8%
Mass 2.601 x 102 2.603 x 10? 2.693 x 10? 0.0% 3.5%
1§ 5.620 x 10! 5.619 x 10! 6.255 x 10! —0.0% 11.2%
12 5381 x 10! 5.380 x 10! 6.013 x 10! —0.0% 11.7%
13 2.381 2.385 2.415 0.1% 1.4%
Fig. 11. Geometrical reconstruction of the station 18 of the SNL100-8 blade.
Table 5
—Sandia SNL100-3 blade cross sectional properties.
VABS Pre-Comp [31] CXS rectangles CXS trapezoids Error (%)
PreComp CXS Rect. CXS Trap.
Axial 2.349 x 10'° 2425 x 10'° 2.427 x 10'° 2375 x 10'° 3.2 3.3 1.1
Flap 2.109 x 10'° 2.193 x 10'° 2.160 x 10'° 2.128 x 10'° 4.0 24 0.9
Lag 3.685 x 10" 3.390 x 10" 3.951 x 10'° 3.700 x 10'° -8.0 7.2 0.4
Torsion 1.526 x 10'° 1.342 x 10° 1.551 x 10° 1.507 x 10° -12.1 16 -1.2
Mass 6.534 x 10? 6.803 x 102 6.793 x 10? 6.627 x 10? 4.1 4.0 1.4
Flap inertia 3.708 x 10? 3.908 x 10? 3.823 x 10% 3.789 x 102 5.4 3.1 22
Lag inertia 2.118 x 10° 1.617 x 10° 2.269 x 10° 2127 x 10° —23.7 7.1 0.4
Xtc 0.473 0.485 0.488 0.468 25 3.2 -1.1

The structural requirements of modern wind turbine blades are
such that both discontinuous thickness distribution and rein-
forcement via shear webs is unavoidable. As a consequence, the
geometric reconstruction of the cross section from the aero-
dynamic profile of the blade is not a trivial task. The proposed

algorithm can reconstruct the full blade as a group of rectangles or
trapezoids using solely a thickness distribution table and a dis-
cretized version of the blade aerodynamic profile.

Two types of segments, unmatching rectangles and unmatching
trapezoids, have been implemented in an algorithm called CXS. The
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unmatching trapezoid has shown an excellent performance, being
very accurate and algorithmically stable. This element can recon-
struct effectively extremely thick-walled sections as well as sec-
tions with discontinuous thickness distributions.

All stiffness and mass matrices have shown an excellent
agreement with VABS, including the coupling stiffness terms and
the tension centers. The torsional stiffness terms are the most
inaccurate, the maximum error found for the torsional stiffness was
12%.

The numerical results show that provided the cross section is
geometrically well represented, the proposed LLA can give results
very close to a good SLA without losing any of the very well-known
advantages of LLAs; i.e.: reduced modeling and execution times and
algorithmic flexibility.
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