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a b s t r a c t 

We propose a new family of abstract argumentation frameworks which we refer to as generalized (iden- 

tified through the acronym GenAF ), due to its ability of adapting to different representation languages. 

GenAF s are formalized upon an unspecified representation language L but enriched with some inner 

structure which allows relating formulæ from the underlying knowledge base with primitive elements 

of arguments. The well-known Dung’s standard semantics are adapted to construct the GenAF ’s reasoning 

machinery. As an application, we reify the GenAF ’s abstract language for arguments with the basic ALC 
flexibility of the presented formalism and a way of applying argumentation for reasoning over inconsis- 

tent ontologies. Finally, a detailed study is performed on the matter of argumentation rationality. The 

GenAF when concretized into a generalized argumentation system ( GenAS ) is studied under specific con- 

ditions which turn it into a standard logic-based argumentation system. This brings the opportunity to 

verify the scope of widely accepted postulates for logic-based argumentation to control the well behavior 

of the GenAS and to relate it to other argumentation systems. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

The Generalized argumentation framework ( GenAF ) 1 is another

lternative for bridging the gap between argumentation frame-

orks ( AF s ) of extreme abstraction like Dung’s ( Dung, 1995 ) and

ogic-based argumentation systems which are constructed upon

n underlying knowledge base (KB). However, the GenAF is an

rgumentation framework of high versatility obtained from the

eneralization of the representational logic L upon which it is con-

tructed. Thus, for an abstract GenAF , L will remain unspecified.

his decision comes from a main motivation: implement a com-

uter system dedicated to reason about inconsistent knowledge

ases (KBs), where both its logic L and the underlying KB could be

elected at will by a simple redeployment. Thus, the deployment

f the inconsistency-tolerant GenAF -reasoner for a specific logic L
ould require three different modules: 1) the abstract GenAF mod-

le, 2) an L instantiation module, and 3) a (consistency-based) L -

easoner. With a little more detail, the first module specifies the
∗ Corresponding author. 

E-mail addresses: mom@cs.uns.edu.ar (M.O. Moguillansky), grs@cs.uns.edu.ar 

G.R. Simari). 
1 Preliminary approaches to a GenAF were given in Moguillansky, Rotstein, and 

alappa (2010a) ; Moguillansky, Rotstein, Falappa, and Simari (2009) ; (Rotstein, 

oguillansky, García, & Simari, 2010) . 

a  

o  

t  

e  

r  

t  

e  

ttp://dx.doi.org/10.1016/j.eswa.2016.07.027 

957-4174/© 2016 Elsevier Ltd. All rights reserved. 
nteraction with the second module for instantiating L and, with

he third module for constructing arguments and attacks. The sec-

nd module specifies the concretization of certain GenAF ’s funda-

ental elements for manipulating L formulæ. This is referred as

eneralized argumentation theory ( GenAT ). Finally, the third mod-

le refers to any yet implemented reasoner for consistent KBs ex-

ressed through an specific logic L . Afterwards, the deployed L -

enAF reasoner could be consulted about the acceptability of a L - 

uery wrt. a given KB � ⊆ L . This would be done through the

nteraction with a run time constructed Generalized argumentation

ystem ( GenAS ) which would provide argumentation semantics for

easoning upon conflicting arguments constructed from �. 

Keeping a practical approach in mind requires caring about

ow construction of arguments would take place in practice. While

urely theoretical approaches do not even consider such matters,

ule-based approaches like ABA ( Bondarenko, Dung, Kowalski, &

oni, 1997; Bondarenko, Toni, & Kowalski, 1993 ), ASPIC+ ( Prakken,

010 ), or DELP ( García & Simari, 2004 ) are defined only upon

 specific representation language. In consequence, the challenge

f this article is twofold: to bring versatility on the logic L ( ex-

ernal versatility ) and to bring versatility for structuring knowl-

dge upon the logic L ( internal versatility ). External versatility is

equired for providing reasoning services for several logics. On

he other hand, internal versatility is motivated by the pursue of

fficient reasoning services. Reducing the computational cost of

http://dx.doi.org/10.1016/j.eswa.2016.07.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2016.07.027&domain=pdf
mailto:mom@cs.uns.edu.ar
mailto:grs@cs.uns.edu.ar
http://dx.doi.org/10.1016/j.eswa.2016.07.027
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reasoning usually requires manipulating formulæ of the KB. This is

usually done through the use of techniques of knowledge compila-

tion (like Darwiche & Marquis, 2002 , among others) which turns

the knowledge base into a normal form. With the same objec-

tive, many description logics bring alternatives for compiling its

formulæ. For instance, ALC ontologies can be unfolded ( Schlobach,

Huang, Cornet, & van Harmelen, 2007 ) or turned into the Bien-

venu’s ALC prime implicate normal form ( Bienvenu, 2008 ), and

also EL ontologies can be normalized according to Baader, Brandt,

and Lutz (2005) and Brandt (2004) with polynomial results. 

With this regards, some description logics (DLs) for ontology

reasoning, present different restrictions on their description lan-

guages with the objective of improving the computational com-

plexity of reasoning about the ontology they describe. Hence, the

computational cost is reduced in detriment of expressivity. It is

for that reason that negation of axioms in DLs is a well-known

problem and in general is not possible, which makes the defini-

tion of a generalized argumentation machinery more particular;

e.g. , the DL-Lite A ( Calvanese, De Giacomo, Lembo, Lenzerini, &

Rosati, 2007 ) description language does not accept conjunctions.

For a concept inclusion axiom like A � B 2 , its negation ¬( A � B ) –in

accordance to Flouris, Huang, Pan, Plexousakis, and Wache (2006) –

would have two possibilities: consistency-negation , which ends up

with an assertion like ∃ ( A �¬B )( x ) ( i.e. , existence of some individ-

ual corresponding both to A and B ), and coherence-negation , which

leads to an axiom like A � ¬B . Clearly, the former case falls out of

the scope of the language; however, having two assertions like A ( a )

and ¬B ( a ), would be equivalent to the consistency-negation of the

original axiom. This inconvenience –which is just one particularity

of one of the various existing DLs– will affect how a generalized

argumentation framework defines its notion of counterargument

which usually relies upon some form of negation of formulæ for

identifying conflicts. For this purpose, DL reasoners usually bring

(un)satisfiability checking reasoning services. A GenAF can take ad-

vantage of such situation by fundamenting its machinery upon

satisfiability checking, for instance, for configuring conflicts. This

would allow the usage of such reasoning service through the in-

teraction with a DL reasoner (third module) for the construction of

the GenAS . 

Internal versatility will be achieved through an argument lan-

guage framework ( AL-framework ), which structures arguments in

accordance to the normalization method for compiling formulæ.

An AL-framework defines a tuple containing L as a general unspec-

ified fragment of FOL along with the sublanguages for represent-

ing claims (or right-hand sides of formulæ), premises (or left-hand

sides of formulæ), and assertional knowledge, according to the DL

terminology (or ground formulæ). The AL-framework is rational-

ized through legality conditions for ensuring an appropriate inter-

relation between its sublanguages. This allows the formalization

of an argument (representation) language for providing some struc-

ture to the still abstract notion of argument. As a consequence,

this generalization renders a less abstract form of argumentation

which serves to develop the necessary theoretical elements to give

form to the structures in which arguments may aggregate to sup-

port a query, or even to attack other structures. A nice property

of the GenAF is that it shares the same primitive elements from

the normalized KB: an argumental atom (or just, atom ) stands for

a single formula from the underlying KB. A resulting advantage is

that a GenAF may be straightforwardly adapted to deal with dy-

namics of knowledge as done in Moguillansky, Wassermann, and

Falappa (2012) : removing an argument from the framework would

mean deleting a single minimal piece of it, i.e. , an atom, which im-
2 The DL-axiom A � B can be seen as a FOL formula p ( x ) → q ( x ), where p and q 

stand for concepts A and B , respectively. 

d  

d  

p  

A

lies the deletion of a formula from the KB. Additionally, specifying

he inner components of arguments allows to establish the general

orm of the minimal portion of a formula which could be removed

rom a KB. 

The GenAT appears as the result of the concretization of the fun-

amental elements of the GenAF including the AL-framework, an

nderlying KB, a pre-argumental normalization function for turning

he KB into a repository of argumental atoms, and others. This al-

ows the construction of arguments and attacks for building the

enAS . Thus, a GenAS can be seen as a non-standard logic-based ar-

umentation system due to its additional qualities and versatilities.

owever, a GenAS under certain conditions behaves as a standard

ogic-based system. This allows the possibility to rely upon well

nown advances in the area of rationality for logic-based argu-

entation systems. Argumentation postulates proposed in Amgoud

2014) allows this theoretic study for clarifying the different alter-

atives in the behavior of a GenAS . As a consequence of this analy-

is, an alternative notion of admissibility for logic-based argumen-

ation is given as an essential for the formalization of logic-based

rgumentation semantics based upon Dung’s standard semantics.

he conditions under which a GenAS guarantees the five argumen-

ation postulates proposed are established through corresponding

heorems. 

In summary, Section 2 briefly introduces the different varia-

ions of abstract argumentation and how we start from them to

btain the specification of a generalized argumentation framework.

ection 3 presents the fundamental elements for an abstract spec-

fication of the framework. Those elements, once concretized, con-

orm the GenAT which allows the construction of the repository of

toms for the GenAF . Section 4 details the construction of argu-

ents upon atoms and identify attack relations upon conflicting

rguments. In Section 5 , the GenAS is constructed upon a GenAF ,

 set of argumental structures related to the GenAF , and an at-

ack relation between pairs of argumental structures. Argumenta-

ion semantics applies over GenAS s as a standard way of reason-

ng upon conflicting arguments. Section 6 studies the application

f the GenAF to reason over inconsistent ALC ontologies through

 concrete specialized GenAS . Section 7 proposes a reduction of a

enAS into a classical logic-based system for studying postulates

nd properties as proposed by Amgoud in Amgoud (2014) . This

llows to understand the behavior of GenAS s under usual circum-

tances and to relate our proposal with others. Section 8 discusses

elated and future work. Finally, Section 9 presents a final discus-

ion on the proposed theory. The proofs of the proposed properties

re included in the Appendix . 

. Abstract frameworks and our way towards generalized 

rameworks 

Abstract frameworks, like Dung’s AF s ( Dung, 1995 ), are defined

y a pair 〈 A, R 〉 , where A is a set of abstract arguments A , and R

s the set of pairs (A 1 , A 2 ) denoting relations A 1 R A 2 to indicate

 1 ∈ A defeats A 2 ∈ A . Dung refers to the defeat relation through

he term attack . Nothing is said about what arguments are, nor

bout its inner structure. The defeat relation is used for describ-

ng conflicting arguments. 

Bipolarity ( Amgoud, Cayrol, Lagasquie-Schiex, & Livet, 2008 ) in-

roduced the notion of support as a new sort of relation among

rguments. This brought to light the idea that arguments are nat-

rally interrelated by two diametrically opposed forces: a positive

ne or support , and a negative one or defeat . Informally, an argu-

ent A 1 supports a second argument A 2 if A 1 provides some ad-

itional justification for a premise in A 2 . A bipolar framework is

efined as a triple 〈 A, R d , R s 〉 , where R d ( R s ) is the defeat (sup-

ort) relation, such that A 1 R d A 2 ( A 1 R s A 2 ) implies that argument

 ∈ A defeats (supports) argument A ∈ A . 
1 2 
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Subargumentation ( Martínez, García, & Simari, 2007 ) was intro-

uced with the objective of identifying the minimal portion of an

rgument that is defeated by another argument through the re-

ation R , and thereafter avoid the reintroduction of the defeated

ortion in the reasoning process. These frameworks usually in-

orporate a set � containing relations A 2 � A 1 , indicating A 2 ∈ A

s a subargument of A 1 ∈ A , where 〈 A, R , �〉 is the new frame-

orks’ definition. In this manner, an abstract argument can be bro-

en into pieces, namely its subarguments which are abstract argu-

ents themselves. This argument-unfolding process may continue

ntil we obtain a subargument that is atomic, that is, an argument

hose only subargument is itself. 

When considering subargumentation along with a support re-

ation (see Moguillansky et al., 2009; Rotstein et al., 2010 ), it is

ossible to think an argument either as a “black box of knowl-

dge” or as a tree of inner subarguments whose links are a sup-

ort relation between a child and its parent. Hence, the support

elation turns to be exclusive: an argument A can only be consid-

red when each of its premises is supported by other arguments.

his allows to consider certain dependency among arguments in

he sense that some arguments may depend on the existence of

thers to take place. These sort of frameworks are defined by a

uartet 〈 A, R d , R s , �〉 , and their purpose is to keep certain level of

bstraction while getting closer to a concrete argumentation sys-

em allowing the study of properties corresponding to a specific

omain, e.g. , reasoning over inconsistency in knowledge bases. 

Our proposal of generalized frameworks has the objective of in-

roducing a new form of abstract AF s which is capable of being

dapted to different representation languages for handling a wide

ange of inconsistent knowledge bases represented in these lan-

uages; for that reason, a generalized framework gets closer to a

oncrete argumentation system while still keeping a certain level

f abstraction. To this end, we will consider an abstract represen-

ation language L which, when instantiated will determine every

elation in the system; that is, a generalized argumentation frame-

ork, or GenAF , will be defined by a set A of argumental atoms and

 logical system considering the language L and its entailment “�”

rom which it will be possible to construct the support ( R s ), defeat

 R d ), and subargument ( �) relations altogether. Thus, a GenAF will

e given through a pair 〈 π , A 〉 , where π stands for an argument

anguage framework containing specifications for the obtention of

he aforementioned relations and for constructing L -arguments by

elying upon atoms from A . One of the most remarkable advan-

ages of GenAF s is their application to description logics for reason-

ng over inconsistent ontologies. For that reason, in Section 6 we

ave presented an example in that important area of real world

pplications. 

. Fundamentals for logic-Generalized AFs 

This section is devoted to the introduction of those basic el-

ments upon which our logic-generalized frameworks will be

ormalized. In Section 3.1 we introduce the elementary concep-

ual backgrounds on logics and the use of interpretation models

hrough the well known set theoretic Tarskian semantics. After-

ards, in Section 3.2 , we introduce the GenAF basic elements by

bstracting away from any possible repository of knowledge. Fi-

ally, in Section 3.3 , we introduce the construction of GenAF s from

nderlying knowledge bases. We discuss an appropriate construc-

ion of GenAF s through knowledge base normalization methods. 

.1. Backgrounds 

The maximum expressive power of a GenAF is imposed by re-

tricting its inner components to correspond to some logic L 

κ ,

ith κ ∈ N (where N is the set of natural numbers including
0 0 
ero). Formulæ in L 

κ are those of FOL that can be built with the

elp of predicate symbols of arity ≤ κ , including equality and con-

tant symbols, but without function symbols. In particular, L 

2 has

een shown to be decidable in Mortimer (1975) ; an example of an

 

2 -compliant logic is the ALC DL used to describe basic ontologies

 Baader, 1999; Borgida, 1996 ). 

For L 

κ , we use p, p 1 , p 2 , . . . and q, q 1 , q 2 , . . . to denote monadic

redicate letters, r, r 1 , r 2 , . . . for dyadic (or higher order) predicate

etters, x, y for free variable objects, and a, b, c, d for constants

individual names). We use Greek lowercase letters like ϑ to re-

er to formulæ like p 1 ( x ) ∧ p 2 ( x ) → q 1 ( x ) and Greek capital letters

ike � to refer to sets containing formulæ like ϑ. We may also

ake explicit the usage of variables (or constants) by writing ϑ( x )
or ϑ( a )) to refer to any formula which considers a free variable

 (a constant a ). To identify formulæ using predicates of arity >

 we will write ϑ( ̄x ) , where x̄ = 〈 x 1 , . . . , x n 〉 is a vector assum-

ng each x i in x̄ is a free variable; ϑ( ̄a ) , where ā = 〈 a 1 , . . . , a n 〉
s a vector assuming each a i in ā is a constant; and ϑ( ̄x )( ̄a ) ,

or a formula considering a combination of free variables x i in

¯ = 〈 x 1 , . . . , x n 〉 and constants a j in ā = 〈 a 1 , . . . , a m 

〉 . For instance,

 1 ( x 1 ) ∧ p 2 ( a ) ∧ r 1 ( x 1 , a, x 2 ) → p 3 ( a ) can be abstracted away by writ-

ng ϑ( ̄x )( ̄a ) , where x̄ = 〈 x 1 , x 2 〉 and ā = 〈 a 〉 , or also for making the

bstraction a little more specific, by writing ϑ 1 ( ̄x )( ̄a ) → ϑ 2 ( ̄a ) . For

implicity, we will omit universal quantifiers writing (∃ ̄y ) ϑ( ̄x )( ̄y )

o refer to (∀ x 1 , . . . , x n )(∃ y 1 , . . . , y m 

)(ϑ(x 1 , . . . , x n , y 1 , . . . , y m 

)) . 

A substitution v = x̄ / ̄a = { x 1 /a 1 , . . . , x n /a n } is referred for map-

ing free variables x i in x̄ = 〈 x 1 , . . . , x n 〉 to constants a i in ā =
 a 1 , . . . , a n 〉 . Thus, ϑ( ̄x )[ v ] = ϑ( ̄a ) holds whenever vector x̄ is

ubstituted through v = x̄ / ̄a by vector ā . For instance, (p 1 (x 1 ) ∧
p 2 (x 2 ) → r(x 1 , y 2 ))[ v ] = p 1 (a 1 ) ∧ p 2 (a 2 ) → r(a 1 , a 2 ) given the sub-

titution v = { x 1 /a 1 , x 2 /a 2 } . Substitutions may also be applied over

ets � of formulæ. For instance, �( ̄x )[ v ] = �( ̄a ) holds through a

ubstitution v = x̄ / ̄a . Moreover, whenever an explicit reference to

ariables and/or constants is not necessary, we may write �[ v ]

or identifying a set whose formulæ are those in � substituted

hrough v . 

We interpret L 

κ in terms of the standard set the-

retic Tarskian semantics, through interpretations I =
 �I , p I , p I 

1 
, . . . , q I , q I 

1 
, . . . , r I , r I 

1 
, . . . 〉 , where �I is the inter-

retation domain, and p I , p I 1 , . . . , q 
I , q I 1 , . . . , r 

I , r I 1 , . . . interpret

p, p 1 , . . . , q, q 1 , . . . , r, r 1 , . . . , respectively. We say that the interpre-

ation I is a model of a formula ϑ ⊆ L 

κ , by writing I | ϑ, if

is true according to I, or equivalently when ϑ 

I � = ∅ holds. By

riting ϑ1 �ϑ2 we mean that ϑ2 holds in all the cases that ϑ1 holds,

r equivalently, ϑ 

I 
1 

⊆ ϑ 

I 
2 

holds. The same intuition is extended for

ets of formulæ, for instance, by writing � | ϑ, for any � ⊆ L 

κ ,

e mean that �I ⊆ ϑ 

I , or equivalently that ϑ holds in the context

f �, or what it the same, that ϑ is true for every model I of

. When an interpretation I is a model of the knowledge base

⊆ L 

κ , we write I | �, implying I | ϑ, for every formula ϑ ∈
. A knowledge base � logically implies (or entails ) a formula ϑ,
ritten ��ϑ, if for every model I of KB, I | ϑ . As usual, a KB is

aid satisfiable or consistent , if it admits at least one model. For an

nterpretation I, some { a, b} ⊆ �I , and a formula θ ( x, y ), we write

 | θ (a, b) if I, v | θ (x, y ) , for the substitution v = { x/a, y/b}
apping x to a and y to b . We also write ϑ 

′ (x, y ) |(I, v ) ϑ(x, y )

henever there is an interpretation I and a substitution v sat-

sfying ϑ 

′ (x, y ) |I ϑ(a, b) . Moreover, given � ⊆ L 

κ , we write

|(I, v ) ϑ(x, y ) whenever we need to make explicit the inter-

retation I and substitution v through which � |I ϑ(a, b) is

atisfied. 

Sometimes, it may be the case that a knowledge base � con-

ains a formula ϑ of the form ρ1 ∧ . . . ∧ ρn → α which is satisfiable

iven that there is a model I of KB uch that ρI 
1 

∩ . . . ∩ ρI 
n ⊆ αI 

olds, but then it may happen that ρI 
1 

∩ . . . ∩ ρI 
n = ∅ holds for ev-

ry such model I . This is the case of an unsatisfiable left hand-
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Table 1 

Mathematical domain sets used throughout the article. 

Symbol Domain name/Usage Definition 

N 0 Natural numbers (zero included) Page 5 

L FOL fragment 3.1 

L κ General Logic L with arity ≤ κ 3.1 

L cl Language for claims 3.1 

L pr Language for premises 3.1 

L a Assertional language 3.1 

L Argument language (AL) frameworks 3.1 

A π Atoms from an AL-framework π ∈ L 3.2 

F Generalized argumentation frameworks 3.7 

T Generalized argumentation theories 3.14 

G Generalized argumentation systems 5.1 

ALC Standard description logic 6.1 

L T π- pANF ALC axiom 6.1 

B Logic-based arguments 7.1 

S Logic-based argumentation systems 7.2 
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side of a formula wrt. �. Athough satisfiability/consistency does

still hold in � thi condition renders a “kind of inconsistency” at

non-assertional level. That is, the inconsistency appears only when

the necessary assertions (ground formulæ) are incorporated to the

knowledge base. Such a situation provokes the support of the left-

hand side ρ1 , . . . , ρn and afterwards, the right-hand side α is also

inferred, triggering the inconsistency. This is a usual discussion in

ontology engineering, referred as incoherence ( Flouris et al., 2006 ),

which we will attend opportunely. 

We will also use some additional notational conventions: Black-

board bold ( aka Mathematical Double-struck) capital letters like

L , A , F , T , and others, are referred to identify mathematical do-

main sets; Gothic ( aka Mathematical Fraktur) lowercase letters (or

words) like pr , cl , and genaf , for identifying functions; the Mathe-

matical Calligraphic capital letters 3 for identifying elements of the

GenAF , for instance A identifies argumental atoms, C for coalitions

of argumental atoms, S for argumental structures composed by

argumental atoms, and L (generally with subscripts) for identify-

ing (representation) languages, were L pr refers to the language for

premises, L cl for claims, and L a for assertions; some special Greek

lowercase letters identify concrete instances like, π for the argu-

ment language framework, δ for a specific GenAF , τ for a GenAT ,

or σ for a GenAS ; bold capital letters will identify sets containing

elements expressed through Mathematical Calligraphic capital let-

ters, for instance, A is a set of atoms A , S δ is a set of argumen-

tal structures S, R and C identify attack relations between pairs

(S 1 , S 2 ) of conflicting structures S 1 and S 2 . Thus, for instance, we

may write: given a GenAF δ ∈ F st. δ = 〈 π, A 〉 , where π ∈ L is the

legal AL-framework constructed from the domain L , and A ⊆ A π is

the set of atoms A from the domain A π st. for each atom A ∈ A it

follows . . . Tables 1-5 show in detail the notations used throughout

the article. 

3.2. Elementary GenAF elements: argument language, argumental 

atoms and generalized framework 

In abstract argumentation à la Dung, an argument is considered

an indivisible piece of knowledge. When some structure is incorpo-

rated to the notion of argument, such indivisible condition is given

up. In the case of GenAF s, an argument will be seen as a piece of

knowledge whose claim is reachable from premises that are sup-

ported via argumental atoms . This means that GenAF arguments can

be informally seen as minimal sets of argumental atoms support-

ing a claim. 
3 Do not confuse with series of capital letters like ALC and EL , whose typogra- 

phy is usually used to identify DLs’ families. 
Although this is a not so abstract vision of arguments as Dung’s,

t keeps certain level of abstraction given that it allows to prescind

rom specific logic constructions in order to study the GenAF frame-

ork and the interrelation of its inner parts. By establishing an

nalogy to argumentation systems where arguments are minimal

ets of formulæ inferring a claim, we can think of atoms as a way

or representing formulæ, where a formula’s consequent stands for

he atom’s claim and the antecedent for a conjunction of premises.

hat is, for an atom, the conjunction of its premises implies the

laim. However the correct logical meaning of an atom will require

o keep unbreakable the interrelation between its claim and set of

remises. Hence, in GenAF s, the indivisible condition of Dung’s ab-

tract arguments is shifted to atoms, which in turn will serve as

uilding blocks for GenAF ’s arguments. 

The purpose of dismembering atoms in claims and premises, as

heir fundamental entities, is to give a formal instrumentation for

anipulating knowledge in which premises may have syntactical

ifferences wrt. claims. From an etymological viewpoint, a premise

s one of a set of requirements for drawing a conclusion, or claim.

remises can not be necessarily thought (or represented) in the

ame manner that a claim is done. A variety of situations can be

entioned in which the decision of dismembering premises and

laims from formulæ results benefiting. The justification has to do,

n general, with the need for conforming certain properties to-

ards efficiency advances in specialized reasoning services. For in-

tance, a horn clause is a disjunction of literals with at most one

ositive (unnegated) literal, like p ∨ ¬ p 1 ∨ ¬ p 2 ∨ . . . ∨ ¬ p n . In logic

rogramming this is essential for writing clauses in the form of

aterial implications as p ← p 1 ∧ p 2 ∧ . . . ∧ p n , which is the ba-

is for the SLD-resolution inference rule used to implement logic

rogramming in Prolog. In fact, a goal-reduction procedure is done

rom this kind of syntax. For instance, the Horn clause written be-

aves as the procedure: to show p, firstly show p 1 and show p 2 and

 . . and show p n . 

In description logics (DLs) this kind of reduction is quite com-

on. In some cases, the description languages have specific re-

trictions for constructing DL rules (known as general concept in-

lusion axioms, or just GCIs), by specifying different syntaxes for

ntecedents and consequents. For instance, DL-Lite A ( Calvanese

t al., 2007 ) specifies A for atomic concepts, B for basic concepts

ith the form of either A or ∃ r (where r stands for a relation), and

 for general concepts as either B or ¬B ; and specifies DL-Lite A 
xioms through the form B � C , admitting the use of negative basic

oncepts only on the right hand side of the axiom. In other cases,

xplicit syntax differences between antecedent and consequent are

ade to obtain normal forms. There is a wide range of DLs for

hich specific normal forms are proposed in order to provide new

lgorithms for proof procedure. The objective in such cases is to

chieve optimizations for reasoning services, lowering its compu-

ational complexity without loosing expressivity. For instance, the

L EL ( Baader et al., 2005 ), has no restrictions for using a con-

ept format on one side or the other of a GCI C � D , where C and D

re general (non-atomic) concepts C : := A | C �C | ∃ r.C . For example, its

s possible to write Pericardium � Tissue � ∃ containedIn.Heart to
pecify that the pericardium is a tissue contained in the heart.

n FOL this can be interpreted through a formula like p 1 ( x ) →
 2 ( x ) ∧ ( ∃ y )( r ( x, y ) ∧ p 3 ( y )), where p 1 stands for Pericardium , p 2 for

issue , p 3 for Heart , and the relation r , for containedIn . In order

o decide subsumption 

4 C � D , a decision procedure would be to ap-

ly the ALC -tableaux algorithm for deciding consistency of ALC -
oncepts. Such procedure would take exponentially many steps in

he worst case. However, a normal form could be used to refor-
4 Subsumption is a DLs’ reasoning service which consist of analysing if there is 

an interpretation model I verifying C I ⊆ D I . 
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Table 2 

Individuals and constants used throughout the article. 

Symbol Domain Name/Usage Definition 

κ N 0 Predicate’s arity Page 5 

π L Argument language framework 3.1 

A A π Argumental atom 3.3 

δ F Generalized argumentation framework ( GenAF ) 3.7 

ε ε = 〈∅ , ⊥〉 Escape atom 3.12 

τ T Generalized argumentation theory ( GenAT ) 3.15 

C ℘(L pr ) ×℘(A π ) × L cl Claiming-coalition 4.2 

S ℘(L pr ) ×℘(A π ) × L cl Argumental structure 4.5 

σ G Generalized argumentation system ( GenAS ) 5.1 

σ C G Consistency based GenAS 5.11 

s Argumentation semantics 5.11 

B B Logic-based argument 7.1 

Table 3 

Sets used throughout the article. 

Symbol Domain Set name Definition 

� L κ Knowledge base Page 6 

A A π Argumental atoms 3.7 

� Atom constraints 3.11 

S δ ℘(L pr ) ×℘(A π ) × L cl δ-structures 4.7 

E ℘( ℘( S δ )) Extension 5.10 

O L κ × L a Ontology 6.1 

O L T × L a π- pANF ALC ontology 6.1 

T L T TBox 6.1 

A L a ABox 6.1 

E ℘(℘(B )) Logic-based s -extension 7.3 

B ℘(B ) ( GenAF -Translated) logic-based arguments 7.7 

Table 4 

Relations used throughout the article. 

Symbol Domain Relation name Definition 

� S δ × S δ Substructure 4.6 

� S δ × S δ Strict substructure 4.6 

� A × A Atom comparison Page 21 

� S δ × S δ Structure comparison Page 21 

R δ S δ × S δ Attack 4.9 

C δ S δ × S δ Consistency attack 4.10 

C b 
δ

S δ × S δ Base consistency attack 4.10 

|≈[ τ, s ] ℘(L κ ) × L κ Warranted 5.12 

|≈C 
[ τ, s ] 

℘(L κ ) × L κ Consistently warranted 5.12 

R B × B (Maximal) Logic-based attack 7.2 

T B × B ( GenAF -Translated) Logic-based attack 7.7 
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at EL -axioms restricting them to basic concept inclusions like

 1 � . . . � A n � B, A �∃ r.B and ∃ r.A � B , where A and B are atomic

oncepts and n ≥ 1. Such normal form can be computed in poly-

omial time and does not increase the size of the TBox more

han polynomially ( Brandt, 2004 ). For the example given above, the

ormalization would render two concept inclusions Pericardium �
issue and Pericardium � ∃ containedIn.Heart . Moreover, there is

n extensive amount of bibliography on the consideration of ir-

estrictive GCIs for reasoning in DLs, including the quite sugges-

ive title of Baader and Peñaloza’s work “GCIs Make Reasoning [...]

ndecidable” (Baader & Peñaloza, 2011) . 

An alternative for claims that should be modelled in argumen-

al atoms is the knowledge that represents factual information, i.e. ,

round formulæ (no variables objects). Inspired by its usage in De-

cription Logics, we refer to this kind of formulæ as assertions . The

ssertional knowledge describes what is true in the modelled do-

ain and usually defines situation-specific knowledge. Since asser-

ions represent factual information that is considered uncondition-

lly, it is natural to think that they will appear as claims in argu-

ental atoms that will be free of premises. 
In addition, splitting the general argument language in two

ndependent languages for premises and claims allows to spec-

fy as small as possible argumental atoms which will be benefit-

ng for recognizing the minimal portions of arguments that be-

ome defeated in a graph; and, this is important for both a) avoid-

ng cyclic paths of reasoning (argumentation lines when using di-

lectical trees) without unnecessary loss of knowledge ( García &

imari, 2004 ) and b) handling argumentation dynamics by apply-

ng change operations like revisions or contractions for which it is

mportant to perform minimal deletions of argumental knowledge

 Moguillansky et al., 2012 ). 

At the moment we will concentrate on specifying the sub-

anguages that will be involved in the construction of an argu-

ent language . To such end, we propose an argument language

ramework which will identify the sublanguages for claims ( L cl ),

remises ( L pr ), and assertions ( L a ), within a given logic L 

κ . 

efinition 3.1 (Argument language framework) . A tuple

L 

κ , L cl , L pr , L a 〉 is identified as an argument language frame-

ork (or AL-framework , for short), where L 

κ is the language of

n underlying general logic, L cl ⊆ L 

κ is a language for claims,

 pr ⊆ L 

κ is a language for premises, and L a ⊆ L cl is an assertional

anguage (ground formulæ). The set L will identify the domain of

ll possible AL-frameworks. 

An argument (representation) language will be defined by estab-

ishing the interrelation between the sublanguages L pr and L cl of

 

κ . The idea here is to formalize the intuition given before for the

onfiguration of atoms: a set of premises for drawing a claim. An

rgument language built from an AL-framework will later identify

he domain of GenAF s argumental atoms. 

efinition 3.2 (Argument language) . Given an AL-framework π ∈
 (where π = 〈L 

κ , L cl , L pr , L a 〉 ), the argument language A π will

e referred for identifying the set ℘(L pr ) × L cl obtained from π . 

The following example shows in an intuitive manner, how sim-

le formulæ expressed in two different logics can be represented
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Table 5 

Functions used throughout the article. 

Function Id Mathematical definition Function name Definition 

panf π ℘(L κ ) −→ ℘(L κ ) Pre-argumental normalization 3.9 

cl A π −→ L cl Claim Page 14 

pr A π −→ ℘(L pr ) Premises Page 14 

ω π L κ −→ { true , false } Atom constraint 3.10 

atom 

[ π, �] 
L κ −→ A π ∪ { ε} Atom translation 3.12 

genaf T −→ F Theory function 3.15 
− L κ −→ L κ Contrapositive formula Page 16 

clset ℘(A π ) −→ ℘(L cl ) Set of claims 4.1 

prset ℘(A π ) −→ ℘(L pr ) Set of premises 4.1 

pr ℘(L pr ) ×℘(A π ) × L cl −→ ℘(L pr ) Coalition’s premises 4.2 

bd ℘(L pr ) ×℘(A π ) × L cl −→ ℘(A π ) Coalition’s body 4.2 

cl ℘(L pr ) ×℘(A π ) × L cl −→ L cl Coalition’s claim 4.2 

pr S δ −→ ℘(L pr ) Structure’s premises 4.5 

bd S δ −→ ℘(A π ) Structure’s body 4.5 

cl S δ −→ L cl Structure’s claim 4.5 

genas T −→ G GenAS constructor 5.2 

base ℘(S δ ) −→ ℘(L κ ) Base function 5.3 

F ℘(S δ ) −→ ℘(S δ ) Characteristic function 5.10 

ext s G −→ ℘(℘(S δ )) Set of s -extensions 5.11 

ext C s G −→ ℘(℘(S δ )) Set of consistency s -extensions 5.11 

warrant [ τ, s ] ℘(L κ ) −→ ℘(℘(L κ )) Warrant function d 

warrant C 
[ τ, s ] 

℘(L κ ) −→ ℘(℘(L κ )) Warrant consistent function 5.15 

plausible [ τ, s ] ℘(L κ ) −→ ℘(L κ ) Plausible function 5.16 

plausible 
C 
[ τ, s ] ℘(L κ ) −→ ℘(L κ ) Plausible consistent function 5.16 

AS ℘(L κ ) −→ S Logic-based argumentation system 7.2 

Args ℘(L κ ) −→ ℘(B ) Maximal set of logic-based arguments 7.2 

Ext s S −→ ℘(℘(B )) Set of logic-based s -extensions 7.3 

lbarg S δ −→ B Logic-based argument function 7.4 

lbas G −→ S Logic-based AS function 7.7 
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5 Self conclusive atoms appear from tautological implications like p ∨ q → p . In 

such a case, the atom would be 〈 { p ∨ q }, p 〉 , which can be seen as self conclu- 

sive given that the claim can be inferred straightforwardly from its premises, i.e. , 

{ p ∨ q } �p . 
through argumental atoms. Note the correlation between the for-

mat of formulæ and the configuration of atoms: a conjunctive an-

tecedent implies atom’s premises. Observe also that argumental

atoms (and later on, argumental structures) are graphically repre-

sented as triangles. 

Example 1. “An alien who is son of an Argentinian is an Argen-

tinian.”

For its representation, we use unary predicates p 1 for “alien”

and p 2 for “Argentinian”, and a binary predicate r 1 for the relation

“is son of”. 

In FOL this would be: 

p 1 ( x ) ∧ ( ∃ y )( r 1 ( x, y ) ∧ p 2 ( y )) → p 2 ( x ) 

The argumental atom A 1 that would arise is depicted on the

right. Note that premises p 1 ( x ) and ( ∃ y )( r 1 ( x, y ) ∧ p 2 ( y )) arise as the

conjunctive terms conforming the antecedent of the formula while

p 2 ( x ) stands for the atom’s claim. 

In logic programming (Horn logic), this would be: 

argentinian(X) :- alien(X), isSonOf(X,Y), argentinian(Y).

For the argumental atom depicted on the right, due to space

matters, premises were written as ρ1 , ρ2 , and ρ3 , and the claim

as α. 

It is important to mention that the configuration of atoms will

depend on the specification of the argument language –and thus,

on the AL-framework. Notice that, in Example 1 , for representing

the same knowledge expressed in two different logics, the config-
ration of atoms may vary: atom A 1 has only two premises while

tom A 2 has three. The reason is that the specification of the lan-

uage L 

κ , and in particular the one for premises L pr , determines

he construction of terms (clauses) on the antecedent of a formula

hich ends up determining the premises of atoms. It is clear that

here exists a syntactical dependency for the construction of argu-

ental atoms on the argument language A π throughout the AL-

ramework π . 

efinition 3.3 (Argumental atom) . Given an AL-framework π ∈ L ,

n argumental atom (or atom , for short) A ∈ A π is a pair 〈 �, α〉 ,
here � ⊆ L pr is a finite (possibly empty) set of premises, α ∈ L cl 

ts claim, and it holds � ∪ { α} �| ⊥ (consistency). 

The consistency condition is natural to avoid constructing falla-

ious atoms. Note that we have formalized the notion of argumen-

al atom by abstracting away from an epistemic source from which

t may arise; however, it is necessary to recall that GenAF ’s atoms

ill be ultimately constructed from an underlying KB. For instance,

 1 = 〈{ p} , q 〉 is an atom according to Definition 3.3 that could ap-

ear from a formula like ( p → q ) ∈ �, where � is the underlying

B. Note that unlike arguments, where the claim is inferred from

n argument’s body –or support set– atoms are in general not self

onclusive 5 , i.e. , for A 1 , { p} �| q holds, and thus, it will be neces-

ary to infer p in order to reach the claim q . Hence, we can say that

n atom maintains the essential meaning of the formula it stands

or. 

Now, let us consider the case of atoms that are built with an

mpty set of premises. Usually, evidence ( Walton, 2002 ), once ad-

itted as such, is considered a basic irrefutable piece of knowl-

dge. This means that evidence does not count with premises that

eed to be supported given that it is self-justified by definition.
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6 Referring to a syntax of conjunctive premises for the antecedent and a claim as 

the consequent. For instance, in DLs, the corresponding syntax would be ( ��) � α. 
e can mention two different options for specifying evidence: as a

eparate entity in the framework, as done in Rotstein et al. (2010) ;

r as evidential atoms : atoms with no premises to be satisfied. In

his article we assume the latter posture. 

efinition 3.4 (Evidence) . Given an AL-framework π ∈ L , an atom

 ∈ A π is an evidential atom (or evidence ) iff A = 〈∅ , α〉 and α ∈
 a (assertional formula). 

Evidential atoms have an empty set of premises, however,

toms with no premises can also be non-evidential if they have

on-assertional formulæ as claims. For instance, an atom like 〈 {},

 ( x ) 〉 . We refer to such non-evidential atoms as primitive . 

efinition 3.5 (Primitive atom) . Given an AL-framework π ∈ L , an

tom A ∈ A π is a primitive atom iff A = 〈∅ , α〉 and α / ∈ L a (non-

ssertional). 

Premises can be thought as statements, or even assumptions,

roposed for justifying a conclusion or claim. Therefore, it seems

atural to expect more information, knowledge, or ultimately ev-

dence, supporting each premise given. This action is performed

hrough the interrelation with other argumental atoms which pro-

ide their claims for supporting an atom’s premises. This is usually

eferred to as support relation . Whenever all premises are satisfied,

he atom can finally draw its claim. The following example illus-

rates such relation in an intuitive manner. 

xample 2. (Continues from Example 1 ). The argumental atoms il-

ustrated before would be formally represented through the follow-

ng structures: 

A 1 = 〈{ p 1 (x ) , (∃ y )(r 1 (x, y ) ∧ p 2 (y )) } , p 2 (x ) 〉 
A 2 = 〈{ alien(X) , isSonOf(X,Y) , argentinian(Y) } , 

rgentinian(X) 〉 
On the other hand, the same knowledge can be also expressed

n the DL EL as follows: 

Alien � ∃ isSonOf.Argentinian � Argentinian 

Note that similar to A 1 , in this case, the EL atom resulting from

he formula above would contain two premises: 

A 3 = 〈{ Alien , ∃ isSonOf.Argentinian } , Argentinian 〉 
However, once again, the configuration of atoms will depend on

he specification of the argument language. As aforementioned, in

rder to take full advantage of the efficiency benefits for reason-

ng brought by the design of EL , it is necessary to normalise the

ormula given above. The normalisation rules ( Baader, 2003 ) bring

bout the following EL -axioms: 

Alien � SonOfArgentinian � Argentinian 

∃ isSonOf.Argentinian � SonOfArgentinian 

In the figure depicted on the right we have one atom for each

ormalized rule: 

A 4 = 〈{ Alien , SonOfArgentinian } , Argentinian 〉 
A 5 = 〈{∃ isSonOf.Argentinian } , SonOfArgentinian 〉 
The idea of argumental atom A 5 bringing its claim for support-

ng one of the premises of atom A 4 is to provide probative reason

or A 4 to effectively draw its claim. This interplay between pairs of

toms shows an intuition of their interrelation for a further con-

truction of GenAF -arguments. 

Since a premise is supported through the claim of other ar-

ument/s, both languages L pr and L cl should be interrelated and

heir expressivity controlled. In this sense, Definition 3.6 provides
 characterization of the argument language A π throughout re-

trictions on π in such a way that: 1) the interrelation between

 pr and L cl could be modeled for ensuring that every describ-

ble premise would eventually be supported by formulæ express-

ble through the language for claims, and 2) rules of L 

κ can be

ormatted to preserve an appropriate configuration for building ar-

umental atoms. The objective of the second condition is to make

ure that any formula ϕ ∈ L 

κ can be expressed through a set of

atom like” formulæ. That is, since an atom is built from a set of

remises for drawing a claim, we specify the pattern of formulæ as

( 
∧ 

�) → α, where α ∈ L cl and � is a finite set such that � ⊆ L pr .

ote that the left-hand side of the pattern ends up describing a

onjunction of premises while the right-hand side corresponds to

he claim. Additionally, we need to make sure that any formula in

 

κ can be represented through a set of “atom like” formulæ and

ice versa in order to ensure a sane and complete argument rep-

esentation language. 

From now on, we will use the (usually subindexed) greek letters

to represent claims, ρ for premises, � for sets of premises, and

 for formulæ from L 

κ . 

efinition 3.6 (Legal argument language) . Given an AL-framework

= 〈L 

κ , L cl , L pr , L a 〉 ∈ L , and assuming “ �” as the semantic en-

ailment for L 

κ ; the set A π is a legal argument language iff π
atisfies the following conditions: 

1. for any ρ ∈ L pr , there is a set � ⊆ L cl such that ��ρ
2. for any ϕ ∈ L 

κ , there is a set � ⊆ L 

κ of formulæ ( 
∧ 

�) → α6 ,

where � ⊆ L pr and α ∈ L cl , st. ��ϕ 

An argumental atom requires a set of premises to be sat-

sfied –by considering the claims of other atoms– in order to

each its own claim. This interrelation among atoms is part of

he GenAF ’s proof procedure, which relates to the proof pro-

edures of the logical systems of natural deduction ( Barker-

lummer, Barwise, & Etchemendy, 2011; Prawitz, 1965 ). Notice that

e give the possibility to support a premise through a set of

laims. The following example justifies this decision in an intuitive

anner. 

xample 3. (Continues from Example 1 ). We will consider also the

ollowing knowledge: 

“Alien is everyone who was not born in Argentina”. 

For its representation, we additionally use the unary predi-

ate p 3 standing for “not born in Argentina”. We will also con-

ider the assertional knowledge r 1 ( TOMAS, LUIS ) and p 2 ( LUIS ) to

ogically represent that “Tomas is son of Luis” and that “Luis is

rgentinian”. 

Note that argumental atom A 6 = 〈{ p 3 (x ) } , p 1 (x ) 〉 , standing for

he FOL formula p 3 ( x ) → p 1 ( x ), supports through its claim to A 1 ’s

remise p 1 ( x ). On the other hand, for the second A 1 ’s premise,

t is necessary to provide more than a single atom to be sup-

orted. This kind of “collective” support will be formalized later

n. 

Note also that atoms A 7 = 〈{} , r 1 (T OMAS, LUIS) 〉 and A 8 =
{} , p 2 (LUIS) 〉 are evidential since they have empty sets of
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premises and ground claims standing for assertional knowledge

from the KB. 

Now we have a formal instrument to represent knowledge in an

“atom like” format in order to construct an argumentation frame-

work whose fundamental elements, i.e. , argumental atoms, coin-

cide with the fundamental knowledge structures from the under-

lying knowledge base (KB), i.e. , its formulæ. This allows to think

each formula in the KB, as an argumental atom in the GenAF , which

turns a KB into a repository of argumental atoms available for the

consideration of the GenAF reasoning machinery. 

Since a premise (or claim) of an atom is part of the left-hand

side 
∧ 

� (or right-hand side α) of a statement in the KB, the

languages L pr for premises and L cl for claims should be flexible

enough to be able to model different alternative underlying gen-

eral logics, identified as L 

κ . The need for such a flexibility becomes

clearer when thinking of the several description logics (DLs) avail-

able to express ontologies. Recall that usually in DLs, description

languages are specified through the definition of different sublan-

guages for left-hand and right-hand side formulæ with the goal

of controlling expressivity in favor of the efficiency of reasoning.

For handling these particular logics, the GenAF shows its full po-

tential by providing the possibility to specify and interrelate the

languages for premises and claims through a legal argument lan-

guage. The following example illustrates an instantiation for the

AL-framework which triggers a legal argument language according

to Definition 3.6 . Such an instantiation would allow the construc-

tion of the argumental atoms given in Example 3 . 

Example 4. (Continues from Example 3 ). In order to formally con-

struct the argumental atoms given before, we need an instantia-

tion for the AL-framework 〈L 

κ , L cl , L pr , L a 〉 ∈ L . A possibility is to

assume L 

κ as a logic L 

2 (arity ≤ 2), where the language L a con-

tains only ground atoms and their negations, and the languages

L cl and L pr are instantiated in a way that L cl allows disjunctions

but prohibits conjunctions, while L pr avoids both conjunctions and

disjunctions. For L pr , it will be also possible to existentially quan-

tify premises. In such a case, L pr will only admit a conjunction

between a unary predicate and a relation (binary predicate). For

simplicity, on absence of quantifier in a formula, universal quan-

tification “ ∀ ” is assumed. 

L a ::= L | L (a ) | L (a, b) 

L cl ::= L a | P | L cl ∨ L cl 

L pr ::= L a | P | EDom | EImg

L : := p | ¬p 

P : := L ( x ) | L ( x, a ) | L ( a, x ) | L ( x, y ) 

EDom : := ( ∃ x )( L ( x ) ∧ L ( x, y )) | ( ∃ x )( L ( x ) ∧ L ( x, a )) 

EImg : := ( ∃ y )( L ( y ) ∧ L ( x, y )) | ( ∃ y )( L ( y ) ∧ L ( a, y )) 

Now we can formally define the GenAF which will be con-

structed from an AL-framework π determining a legal argument

language A π , and a set of argumental atoms. 

Definition 3.7 ( GenAF ) . A generalized abstract argumentation

framework (or GenAF , for short) is a pair 〈 π , A 〉 , where the AL-

framework π ∈ L determines a legal argument language A π , and
 ⊆ A π is a finite set of argumental atoms. The domain of GenAF s

s identified through the set F . 

The set of arguments as well as the support, subargument, and

ttack relation sets are not made explicit in the abstract frame-

ork, but implicit in the light of the AL-framework through the

ppropriate constructions. When an underlying KB is specified and

he logic L 

κ (along with its entailment “�”) and a related AL-

ramework are concretized, an argumentation system can be built,

here the set of arguments and the attack relation set will be

ade explicit, whereas the subargument and support will be im-

lied by the construction of the set of arguments. This will be for-

alized later in Section 5 through the notion of Generalized Argu-

entation System ( GenAS ). 

.3. GenAF formal construction 

A simple alternative for reasoning over inconsistent KBs –by re-

ying upon argumentation theory is to build an argumentation sys-

em from the corresponding KB. This would involve the recogni-

ion of elementary pieces of knowledge from the KB for building

rgumental atoms. Such process could be computationally expen-

ive not only regarding time, but also space. Complex axioms from

he KB could imply the construction of several atoms for a fur-

her construction of arguments (and recognition of their interac-

ion through a conflict relation). Moreover, when thinking of a dy-

amic environment, in which changes could affect the correspond-

ng argumentation, avoiding to consider an argument for reasoning

ould imply the removal of an atom which would also involve re-

oving some minimal piece of knowledge from the KB. 

A better alternative would be to propose a meta-normalization

or KBs in such a way that the normalized KB turns out being con-

idered the main GenAF repository of argumental atoms. We refer

o this process as meta-normalization given that we do not expect

o give the formal proceeding for obtaining a normalized KB, but

ome general rules for validating the verification of such property

y formulæ and KBs. The main idea is to translate formulæ into an

atom like” form such that considering a single normalized formula

ould make no practical distinction regarding the consideration of

he structure of its related argumental atom. For that reason, we

eferred to such normalization form as pre-Argumental . 

efinition 3.8 (pre-Argumental normal form) . Given a knowledge

ase � ⊆ L 

κ and an AL-frame-work π ∈ L ; � conforms to the ( π )-

re-argumental normal form ( π- pANF ) iff every formula ϕ ∈ �

orresponds to the form ( 
∧ 

�) → α, where α ∈ L cl and � ⊆ L pr .

n such a case, each ϕ ∈ � as well as the whole �, are said to be

n π- pANF . In addition, we say L 

κ is a π- pANF logic iff every ϑ ∈ L 

κ

s in π- pANF . 

The usage of a normalization function aims at abstracting away

rom any particular procedure for normalizing a knowledge base

nto its pre-argumental normal form. The normalization function

anf π applied to a KB � will be used for referring to a normalized

B panf π (�) . Such kind of functionality will be syntax-dependant

pon a concrete AL-framework π . 

efinition 3.9 (Normalization) . Given an AL-framework π ∈ L ; a

unction panf π : ℘(L 

κ ) −→ ℘(L 

κ ) is a pre-argumental normaliza-

ion function iff it translates any knowledge base � ⊆ L 

κ into a

ogically equivalent π- pANF knowledge base panf π (�) . 

Observe that formulæ like α ∈ L a or α ∈ L cl , are in π- pANF

iven that they correspond to the form ( 
∧ 

�) → α, with � = ∅ . 
xample 5. Let � = { (p 1 (x ) ∧ p 2 (x )) ∨ (p 3 (x ) ∧ p 4 (x )) → q 1 (x ) ∧

(q 2 (x ) ∨ q 3 (x )) , (p 1 (x ) → ¬ p 1 (x )) , (p 1 (x ) ∨ ¬ r(x, y )) , r(a, b) } be an

 

κ knowledge base. Its normalization (according to the AL-

ramework π ∈ L from Example 4 ) renders the π- pANF knowledge
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ase: 

anf π (�) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

ϕ 1 : (p 1 (x ) ∧ p 2 (x ) → q 1 (x )) 
ϕ 2 : (p 1 (x ) ∧ p 2 (x ) → q 2 (x ) ∨ q 3 (x )) 
ϕ 3 : (p 3 (x ) ∧ p 4 (x ) → q 1 (x )) 
ϕ 4 : (p 3 (x ) ∧ p 4 (x ) → q 2 (x ) ∨ q 3 (x )) 
ϕ 5 : (p 1 (x ) → ¬ p 1 (x )) 
ϕ 6 : (p 1 (x ) ∨ ¬ r(x, y )) 
ϕ 7 : r(a, b) 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

Note that formula ( p 1 ( x ) ∨ ¬r ( x, y )) in Example 5 might be trans-

ormed into a formula ( ¬p 1 ( x ) → ¬r ( x, y )), however this will de-

end on the conventions adopted by the normalization algorithm.

e will abstract away from this kind of matters. Given an AL-

ramework π ∈ L , for any atom A ∈ A π , its claim and set of

remises are identified by the functions cl : A π −→ L cl , and pr :

 π −→ ℘(L pr ) , respectively. For instance, given A = 〈{ ρ1 , ρ2 } , α〉 ,
ts premises are pr (A ) = { ρ1 , ρ2 } , and its claim, cl (A ) = α. 

We will refer as atom constraints to the logical conditions de-

ned upon π- pANF formulæ ϕ ∈ L 

κ for restricting the construction

f ϕ-related argumental atoms A ϕ ∈ A π . 

efinition 3.10 (Atom constraint) . Given an AL-framework π ∈ L ;

n atom constraint ( AC ) is a logical condition upon π- pANF for-

ulæ asserted through the use of any atom constraint function

 π : L 

κ −→ { true , false } , such that a formula ϕ ∈ L 

κ satisfies a spe-

ific AC whenever its associated atom constraint function “ω π ”

s such that ω π (ϕ) = true . For any π- pANF formula ( 
∧ 

�) → α
or, ( 

∧ 

�)( ̄y ) → α( ̄x ) , for making reference to variables), a non-

xhaustive list of atom constraints is detailed next: 

AC 1 . � ∪ { α} �| ⊥ (consistency) 

AC 2 . � �| α (non-circularity) 

AC 3 . If x̄ = 〈 x 1 , . . . , x n 〉 then ȳ = 〈 x 1 , . . . , x n , y 1 , . . . , y m 

〉 (safeness)

AC 4 . for any subset of premises �′ ⊆�, if �′ �� then �′ = �

(premise minimality) 

As aforementioned, the list of atom constraints given in

efinition 3.10 is not exhaustive. However, it brings the possibil-

ty of studying the different alternatives for constructing argumen-

al atoms which will serve for building GenAF -arguments. For in-

tance, formulæ like p 1 ( x ) → ¬p 1 ( x ), p 1 ( x ) → p 1 ( x ), p 1 ( x ) ∧ p 2 ( x )

 r ( x, y ), and p 1 ( x ) ∧ ( p 1 ( x ) ∨ p 2 ( x )) → p 3 ( x ) –assuming L pr admits

isjunctions– would violate AC 1 , AC 2 , AC 3 , and AC 4 , respectively.

his shows that atom constraints might be useful for discovering

nowledge representation errors: for instance, we can suppose that

ailures of AC 3 and AC 4 are due to erroneous representations of

ormulæ like p 1 ( x ) ∧ p 2 ( y ) → r ( x, y ) and p 1 ( x ) ∨ p 2 ( x ) → p 3 ( x ), re-

pectively. Besides, atom constraints are interesting for capturing

he desired behavior of the theory, whichever it would be in any

articular case, given that the user can define his own atom con-

traints functions. An atom constraints set is a structure containing

tom constraints for the construction of atoms. 

efinition 3.11 (Atom constraints set) . Given an AL-framework π ∈
 ; an atom constraints set � is any set of atom constraint func-

ions ω π . Given a π- pANF formula ϕ ∈ L 

κ , we say that ϕ satis-

es � iff ϕ satisfies every AC modelled in �, i.e. , for any ω π ∈ �,

 π (ϕ) = true . 

We build atoms from π- pANF formulæ through an atom transla-

ion function “atom 

[ π, �] 
” defined as follows. 

efinition 3.12 (Atom translation function) . Given an AL-

ramework π ∈ L and an atom constraints set �; an atom

ranslation function is a function atom 

[ π, �] 
: L 

κ −→ A π ∪ { ε}
here atom 

[ π, �] 
(ϕ) = 〈 �, α〉 iff ϕ ∈ L 

κ is a π- pANF formula

( 
∧ 

�) → α satisfying �. Otherwise, atom 

[ π, �] 
(ϕ) = 〈∅ , ⊥〉 = ε. 
We use an escape atom ε = 〈∅ , ⊥〉 to identify those cases in

hich the atom translation function fails in the construction of an

rgumental atom due to either a non- π- pANF formula or a formula

hich does not satisfy the atom constraints set �. Observe that,

lthough the special atom ε verifies the formatting syntax of an

rgumental atom, it falls outside of the scope of the argumental

tom’s domain, i.e. , ε / ∈ A π . The reason is that ε does not satisfy

he consistency property from Definition 3.3 . 

xample 6. (Continues from Example 5 . Assuming a constraint set

modeling AC 1 , the results of the function “atom 

[ π, �] 
” for ob-

aining argumental atoms from the formulæ contained in panf π (�)

s: 

 1 = atom 

[ π, �] 
(ϕ 1 ) = 〈{ p 1 (x ) , p 2 (x ) } , q 1 (x ) 〉 

 2 = atom 

[ π, �] 
(ϕ 2 ) = 〈{ p 1 (x ) , p 2 (x ) } , q 2 (x ) ∨ q 3 (x ) 〉 

 3 = atom 

[ π, �] 
(ϕ 3 ) = 〈{ p 3 (x ) , p 4 (x ) } , q 1 (x ) 〉 

 4 = atom 

[ π, �] 
(ϕ 4 ) = 〈{ p 3 (x ) , p 4 (x ) } , q 2 (x ) ∨ q 3 (x ) 〉 

 5 = atom 

[ π, �] 
(ϕ 5 ) = 〈{} , ⊥〉 = ε

 6 = atom 

[ π, �] 
(ϕ 6 ) = 〈{} , p 1 (x ) ∨ ¬ r (x, y ) 〉 (pr imiti v e ) 

 7 = atom 

[ π, �] 
(ϕ 7 ) = 〈{} , r(a, b) 〉 (e v idence ) 

For the previous example, if we would not that assume AC 1 

s modeled by �, then atom 

[ π, �] 
(ϕ 5 ) would trigger the structure

 { p 1 ( x )}, ¬p 1 ( x ) 〉 , however it would still not be an atom given that

t fails verifying consistency from Definition 3.3 . This shows that

C 1 is not necessary for ensuring the well behavior of the theory.

evertheless, for completeness purposes AC 1 has been specified. 

Atoms appear in a GenAF as a consequence of an existing piece

f knowledge from the underlying KB. This establishes a relation

etween premises and claims wrt. the KB. 

emark 3.13. Given an AL-framework π ∈ L and a π- pANF KB

⊆ L 

κ , a formula ϕ ∈ �, and its associated atom atom 

[ π, �] 
(ϕ) =

 �, α〉 ; it follows � | ( 
∧ 

�) → α, but ��α does not necessarily

old. 

The remark above makes explicit that –given a π- pANF knowl-

dge base � ⊆ L 

κ– having a formula like (ρ1 ∧ . . . ∧ ρn → α) ∈
means that � | (ρ1 ∧ . . . ∧ ρn → α) but it does not necessar-

ly mean that { ρ1 , . . . , ρn } | α holds. This shows that the use of

toms is slightly different from the natural meaning of argument

or which its support set (or body) is a minimal set for inferring

he claim. 

Next we introduce the notion of generalized argumentation the-

ry ( GenAT ) which describes a tuple enclosing the fundamental the-

retic elements for the construction of a related GenAF . That is, the

 

κ -KB from where the set of argumental atoms will be obtained, a

oncrete AL-framework specifying a legal argument language along

ith the general logic L 

κ and the languages for claims, premises,

nd assertions for specifying the inner structure of atoms, the con-

retization of a pre-argumental normalization function for obtain-

ng a π- pANF KB as a repository of argumental atoms, an atom

onstraint set for making explicit the conditions required for the

btention of atoms, and the atom translation function. 

efinition 3.14 (Generalized argumentation theory) . We say τ ∈ T

s a generalized argumentation theory (or GenAT , for short) iff

= 〈 �, π, panf π , �, atom 

[ π, �] 
〉 is a tuple consisting of a KB � ⊆

 

κ , an AL-framework π ∈ L , a pre-argumental normalization func-

ion panf π , an atom constraints set �, and an atom translation

unction atom 

[ π, �] 
. For such a GenAT , we say that τ is associated

o �. The set T identifies the formal domain of GenAT s. 
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Definition 3.15 (Theory function) . Given a GenAT τ ∈ T , a function

genaf : T −→ F is a theory function iff genaf (τ ) = 〈 π, A 〉 where for

every ϕ ∈ panf π (�) , if atom 

[ π, �] 
(ϕ) ∈ A π then atom 

[ π, �] 
(ϕ) ∈ A . 

Upon a specific GenAT τ ∈ T we defined above the theory func-

tion “genaf ” to construct the GenAF associated to a knowledge base

� ⊆ L 

κ . Note that, in addition, it could be also necessary to con-

sider contrapositive formulæ for building atoms. This is natural

since contrapositive formulæ are implicitly considered for reason-

ing in L 

κ through modus tollens . Nonetheless, in a GenAF , this

needs to be made explicit due to the nature of the notion of atom

and the way they interrelate with each other for building argu-

ments –as we will see later in Section 4 . From now on, we identify

the contrapositive of any formula ϕ ∈ L 

κ , by writing ϕ 

−. Note how-

ever that it may happen for a given formula ϕ ∈ panf π (�) that its

contrapositive ϕ 

− falls outside the logic L 

κ . Thus, we should verify

if atom 

[ π, �] 
(ϕ 

−) ∈ A π holds for incorporating atom 

[ π, �] 
(ϕ 

−) into

A , not only for avoiding violation of atom constraints but also for

verifying that the resulting atom corresponds to the argument lan-

guage A π . Consequently, we define the closure under transposition

as an alternative for theory functions considering contrapositive

formulæ. 

Definition 3.16 (Closure under transposition) . Given a GenAT τ ∈ T

and the related GenAF δ ∈ F obtained through a theory function

δ = genaf (τ ) = 〈 π, A 〉 , we say that “genaf ” is a transpositive theory

function iff for every ϕ ∈ panf π (�) , if atom 

[ π, �] 
(ϕ 

−) ∈ A π then

atom 

[ π, �] 
(ϕ 

−) ∈ A . Finally, a GenAF δ ∈ F is referred as closed un-

der transposition iff δ is obtained through a transpositive theory

function. 

The idea of building atoms in pairs is to make sure that, when-

ever it is possible, for any formula ϕ ∈ panf π (�) we will have

two related atoms A (ϕ) ∈ A π and A (ϕ −) ∈ A π , such that A (ϕ −) has

premises (claim) constructed from the claim (set of premises) of

A (ϕ) . In this sense, the construction of contrapositive formulæ is

disambiguated by constructing the left-hand (right-hand) side of

ϕ 

− uniquely from the right-hand (left-hand) side of ϕ. For in-

stance, given a formula ϕ: p 1 ( x ) ∧ p 2 ( x ) → q 1 ( x ), we will consider

ϕ 

− : ¬ q 1 (x ) → ¬ p 1 (x ) ∨ ¬ p 2 (x ) as its unique contrapositive for-

mula. 

Example 7. (Continues from Example 6 ). Constituted the

corresponding GenAT τ ∈ T , a transpositive theory func-

tion renders the GenAF genaf (τ ) = 〈 π, A 〉 , where A =
{A 1 , A 2 , A 3 , A 4 , A 6 , A 7 , A 

′ 
1 
, A 

′ 
2 
, A 

′ 
3 
, A 

′ 
4 
} . 

A 

′ 
1 

= 〈{¬ q 1 (x ) } , ¬ p 1 (x ) ∨ ¬ p 2 (x ) 〉 
A 

′ 
2 = 〈{¬ q 2 (x ) , ¬ q 3 (x ) } , ¬ p 1 (x ) ∨ ¬ p 2 (x ) 〉 

A 

′ 
3 = 〈{¬ q 1 (x ) } , ¬ p 3 (x ) ∨ ¬ p 4 (x ) 〉 

A 

′ 
4 

= 〈{¬ q 2 (x ) , ¬ q 3 (x ) } , ¬ p 3 (x ) ∨ ¬ p 4 (x ) 〉 

Note that the results of atom 

[ π, �] 
(ϕ 5 ) , atom 

[ π, �] 
((ϕ 5 ) 

−) ,

atom 

[ π, �] 
((ϕ 6 ) 

−) , and atom 

[ π, �] 
((ϕ 7 ) 

−) , are always the escape

atom ε given that each of them does not verify AC 1 and after-

wards, ε �∈ A π , i.e. , they are not atoms since consistency from

Definition 3.3 is violated. 

4. The GenAF argumentation machinery 

In this section we provide the fundamentals for building GenAF -

arguments and further recognizing conflicts between pairs of ar-

guments. These two constructions give rise to the generalized argu-

mentation system ( GenAS ) that will be specified later in Section 5 . 
.1. Argument construction 

The idea of generalizing an abstract argumentation framework

rises from the need of managing different ar gument languages

pecified through FOL fragments. The main purpose is the for-

alization of a framework which would be capable of handling

 wide range of description languages for inconsistency-tolerant

ntology reasoning. Thus, assuming an AL-framework π ∈ L , for

he argument language A π , several possibilities may arise; for in-

tance, the language for claims may accept disjunction of formulæ.

n such a case, it would be possible to infer a formula in L cl –

.e. , a new claim– through considering together the claims of sev-

ral argumental atoms in the GenAF . For instance, given two argu-

ental atoms 〈 { p 1 ( x )}, q 1 ( x ) ∨ q 2 ( x ) 〉 and 〈 { p 2 ( x )}, ¬q 2 ( x ) 〉 , the claim

 1 ( x ) may be inferred. This sort of construction that we referred

s claim-coalition , will be included in the construction of GenAF -

rguments, for bringing the argument’s claim. 

Before formalizing the notion of claim-coalition, we will discuss

he inconveniences that may arise as a result of bringing together

toms in a coalition for a collaborative purpose. We need to make

ure that the atoms which will compose a coalition could not trig-

er inconsistencies by themselves, independently of the way they

nterrelate each other, or even, independently of the way the coali-

ion could be related with other atoms outside of the coalition.

ven more, we need to make sure that the coalition does not stand

or an incoherent set of formulæ (see Section 3.1 ). This will be im-

ortant for ensuring that the construction of arguments will be

ossible given that an argument must be a consistent structure. 

Three types of clashes may arise in a set of atoms: clashes be-

ween 1) claims, 2) claims and premises, and 3) premises. For the

ormer case, it is clear that contradictory claims should not be con-

idered together since the construction of an argument will re-

uire supporting all the atoms involved in it, which means sup-

orting their premises and thus, ultimately drawing every atom’s

laim. The second case has two alternatives: a) considering two

toms like 〈 { p }, q 〉 and 〈 { ¬q }, p ′ 〉 , supporting one of them implies

he impossibility of supporting the second atom (having p implies

 and therefore, ¬q cannot be supported; and for the other way

round, having ¬q implies that p could not be supported since this

ould infer q ). For the second alternative within type 2, b) hav-

ng a pair of atoms like 〈 { p }, q 〉 and 〈 { q }, ¬p 〉 , where the former

tom supports the second one, implies that premise p could never

e supported since this would infer also ¬p . For the latter type of

nconsistency, 3) a clash of premises in a pair of atoms like 〈 { ¬p },

 〉 and 〈 { p }, q ′ 〉 implies once again that supporting one of them

akes impossible to support the second one. Hence, it is natural

o think that a set of atoms should ensure consistency among the

laims and premises of all its elements in order to be safe for a

ater construction of arguments. 

efinition 4.1 (Consistent set of argumental atoms) . Given a

enAF 〈 π, A 〉 ∈ F ; a set of argumental atoms A 

′ ⊆A is con-

istent iff prset ( A 

′ ) ∪ clset ( A 

′ ) �| ⊥ holds, where the functions

lset : ℘(A π ) −→ ℘(L cl ) and prset : ℘(A π ) −→ ℘(L pr ) are defined as

lset ( A 

′ ) = { cl (A ) |A ∈ A 

′ } and prset ( A 

′ ) = 

⋃ 

A∈ A ′ pr (A ) , to respec-

ively identify the set of claims and premises from atoms in A 

′ . 

Intuitively, a claim-coalition is a structure that might be seen as

 consistent set of argumental atoms which is minimal for inferring a

iven claim . 

efinition 4.2 (Claim-Coalition) . Given a GenAF 〈 π, A 〉 ∈ F , a triple

 = 〈 �, A 

′ , α〉 is a claim-coalition for α iff � ⊆ L pr is its set of

remises, A 

′ ⊆A its body, and α ∈ L cl its claim; and the following

onditions are verified by assuming an interpretation model I and
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7 Note that this relation is reflexive, i.e. , for any structure S, it follows S � S . 
 substitution v : 

1. clset ( A 

′ ) |(I, v ) α (claim) 

2. � = prset ( A 

′ )[ v ] (premises) 

3. A 

′ is a consistent set of argumental atoms (consistency) 

4. there is no claim-coalition C ′ = 〈 �, A 

′′ , α〉 such that A 

′ ′ ⊂ A 

′ 
(minimality) 

Functions pr , bd , and cl are overloaded to identify the coalition’s

remises, body and claim, respectively. A claim-coalition C is re-

erred as primitive iff it contains a single atom, i.e. , | bd (C) | = 1 . 

It is important to note that given a coalition C for α, the inter-

retation model I and substitution v are built in order to ensure

hat clset ( A 

′ ) | α holds, i.e. , clset ( A 

′ ) |(I, v ) α. As a result, the set

f premises of the coalition ends up substituted through v . Next,

e exemplify such a situation. 

xample 8. Given two argumental atoms A 1 = 〈{ p 1 (x ) } , q 1 (x ) ∨
 2 (x ) 〉 and A 2 = 〈{} , ¬ q 2 (a ) 〉 , a claim-coalition C for q 1 ( a ) can be

onstructed, where bd (C) = {A 1 , A 2 } . It is easy to see that this

ill be possible only through a substitution [{ x / a }]. Observe that

n such a case, the premise p 1 ( x ) of A 1 turns to p 1 ( a ) in C, i.e. ,

hile pr (A 1 ) = { p 1 (x ) } holds, we also have that pr (C) = ( pr (A 1 ) ∪
r (A 2 ))[ { x/a } ] = { p 1 (x ) } [ { x/a } ] = { p 1 (a ) } hold. Afterwards, C =
{ p 1 (a ) } , {A 1 , A 2 } , q 1 (a ) 〉 holds. 

efinition 4.3 (Supporter) . Given an AL-framework π ∈ L , a

remise ρ ∈ L pr , an interpretation model I, and a substitution v ;

 set of claims � ⊆ L cl is a supporter of ρ through (I, v ) iff

|(I, v ) ρ, � �|(I, v ) ⊥ (consistency), and there is no �′ ⊂� such

hat �′ |(I, v ) ρ (minimality). 

We will refer to an unsupported premise as free . 

efinition 4.4 (Free premises) . Given a GenAF 〈 π, A 〉 ∈ F , a consis-

ent set of argumental atoms A 

′ ⊆A , a premise ρ ∈ L pr , an interpre-

ation model I, and a substitution v ; we say ρ is a free premise

hrough (I, v ) wrt. A 

′ iff there is no supporter � ⊆ clset ( A 

′ ) of ρ
hrough (I, v ) . 

Next we formalize the notion of GenAF -argument through a

ecursive definition. Intuitively, a GenAF -argument is constructed

hrough a claim-coalition, which provides the argument’s claim,

nd a set of GenAF -arguments for supporting each of the premises

f the claim-coalition. However, sometimes it will not be possible

o support each of the coalition’s premises. This will render a sort

f “incomplete arguments” which we will refer as potential argu-

ents since they could easily turn to full arguments if we would

dmit a dynamic environment in which new atoms could be intro-

uced. Moreover, the identification of conflicting pairs of potential

rguments will be useful for detecting sources of incoherences in

he underlying knowledge base (see Section 3.1 ). Next, we formal-

ze the notion of argumental structure , as the formal construction

rom which GenAF -arguments and potential arguments will arise. 

efinition 4.5 (Argumental structure) . Given a GenAF 〈 π, A 〉 ∈ F ,

 triple S = 〈 �, A 

′ , α〉 is an argumental structure (or just, struc-

ure ) for α iff � ⊆ L pr is its set of premises, A 

′ ⊆A its body, and

∈ L cl its claim; and the following conditions are verified by as-

uming a common interpretation model I and a substitution v : 

1. there is a claim-coalition C for α st. bd (C) ⊆ A 

′ (claim) 

2. there is �C ⊆ pr (C) st. for each ρ ∈ �C there are structures

S 1 , . . . , S n ( supporting structures ) st. : 

(a) � = { cl (S 1 ) , . . . , cl (S n ) } is a supporter of ρ through (I, v )
(support) 

(b) A ρ = bd (S 1 ) ∪ . . . ∪ bd (S n ) 
(c) �ρ = pr (S 1 ) ∪ . . . ∪ pr (S n ) 

3. A 

′ = bd (C) ∪ 

⋃ 

ρ∈ � A ρ (body) 
C 
4. � = (( pr (C) \ �C ) ∪ 

⋃ 

ρ∈ �C �ρ)[ v ] (premises) 

5. every ρ ∈ � is a free premise through (I, v ) wrt. A 

′ (free-

premises) 

6. A 

′ is a consistent set of argumental atoms (consistency) 

7. there is no argumental structure S ′ = 〈 �, A 

′′ , α〉 such that

A 

′ ′ ⊂ A 

′ (minimality) 

8. A ρ ⊂ A 

′ , for every ρ ∈ �C (non-circularity) 

unctions pr , bd , and cl are overloaded to identify the structure’s

remises, body and claim, respectively. An argumental structure S
s a full argument (or just, argument ) iff pr (S) = ∅ . Whereas S
s a potential argument iff pr (S) � = ∅ . A structure S is referred as

rimitive iff | bd (S) | = 1 . 

The construction of argumental structures relies on the spec-

fication of its corresponding triple, where the claim α is pro-

ided by the claim-coalition constructed for α, the body is con-

ormed by the argumental atoms conforming both the coalition

nd the supporting structures, and a set of premises composed

y the coalition’s unsupported premises and the premises corre-

ponding to the supporting structures. The set of premises must

e ensured to be free wrt. the body of the structure (see con-

ition 5 referred as free-premises) given that this guarantees the

omplete determination of roles played by the atoms of the struc-

ure. In addition, an argumental structure must satisfy the prop-

rties of consistency, minimality, and non-circularity. Consistency

nsures that the argumental structure will be free of inner con-

icts, minimality ensures that each atom included in the struc-

ure plays a unique and specific role for its construction, and fi-

ally, non-circularity ensures that there is possible construction of

 structure relying on a cyclic support. For a deep understanding

f this latter property, suppose we have two argumental atoms

 1 = 〈{ p} , q 〉 and A 2 = 〈{ q } , p〉 , and suppose condition 8 (non-

ircularity) is not available. In such a case, a pair of –malformed–

tructures S 1 = 〈{} , {A 1 , A 2 } , p〉 and S 2 = 〈{} , {A 1 , A 2 } , q 〉 would

e constructed given that for S 1 , a primitive claim-coalition C =
{ q } , {A 2 } , p〉 would provide the claim and pr (C) would not be free

rt. bd (S 1 ) = {A 1 , A 2 } given that S 2 would support it. Afterwards,

t is easy to see that the properties of consistency, and minimality

re verified. Observe that, structure S 2 would be constructed anal-

gously. Non-circularity avoids supporting a premise of the claim-

oalition through a set of structures whose bodies are constructed

hrough exactly the same body of the main structure. Thus, for

he case of S 1 , structure S 2 could not support pr (C) given that

d (S 2 ) �⊂ bd (S 1 ) , violating non-circularity. 

Note that a primitive structure S contains a single argumental

tom A in its body, and both pr (A ) = pr (S) and cl (A ) = cl (S) hold.

owever, not every argumental atom has an associated primitive

tructure; for instance, no primitive structure could contain an ar-

umental atom like 〈 { p }, p 〉 given that it would be impossible to

atisfy condition 8 (non-circularity). Moreover, such an atom can-

ot be part of any structure, given that it would also violate con-

ition 7 (minimality), given that it will not provide any advance

o the support process. Observe however, that whenever an atom

onstraint function ω π ∈ � models AC 2 , such kind of argumental

toms would not even be part of the GenAF , given that they would

ot arise from the application of the translation function atom 

[ π, �] 
.

efinition 4.6 (Substructure) . Given a GenAF 〈 π, A 〉 ∈ F and two

tructures S 1 and S 2 , S 1 is a substructure of S 2 , noted as S 1 � S 2 
ff bd (S 1 ) ⊆ bd (S 2 ) holds. 7 Similarly, S 1 is a proper substructure

f S 2 , i.e. , S 1 � S 2 iff bd (S 1 ) ⊂ bd (S 2 ) holds. 

xample 9. (Continues from Example 3 ). Depicted in Fig. 1 ,

e show the construction of an argumental structure stand-
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Fig. 1. Structure S from Example 9 . 
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ing for TOMAS is Argentinian, i.e. , a structure S for p 2 ( TOMAS ).

Following Definition 4.5 in detail, we have a claim-coalition

C = 〈{ p 1 (T OMAS) , (∃ y )(r 1 (T OMAS, y ) ∧ p 2 (y )) } , {A 1 } , p 2 (T OMAS) 〉 , 
which provides its claim for the main structure S . Premise

ρ1 = p 1 (T OMAS) ∈ pr (C) is supported by structure S 6 =
〈{ p 3 (x ) } , {A 6 } , p 1 (x ) 〉 given that { p 1 (x ) } |(I, v ) p 1 (T OMAS) , where

{ x / TOMAS } ⊆v , and on the other hand, ρ2 = (∃ y )(r 1 (T OMAS, y ) ∧
p 2 (y )) ∈ pr (C) is supported by the primitive structures S 7 =
〈{} , {A 7 } , r 1 (T OMAS, LUIS) 〉 and S 8 = 〈{} , {A 8 } , p 2 (LUIS) 〉 given that

{ cl (S 7 ) , cl (S 8 ) } |(I, v ) ρ2 , considering { y / LUIS } ⊆v . Observe that

structure S = 〈{ p 3 (T OMAS) } , {A 1 , A 6 , A 7 , A 8 } , p 2 (T OMAS) 〉 is built

through a substitution v = { x/T OMAS, y/LUIS} , and that S ends

up being a potential argument since it has one free-premise, i.e.,

p 3 ( TOMAS ) cannot be supported considering atoms from bd (S) . It

is easy to see that consistency, minimality, and non-circularity are

also verified. 

Afterwards, if we assume a new piece of evidence standing for

TOMAS was not born in Argentina , we would need to consider the

additional atom A 9 = 〈{} , p 3 (T OMAS) 〉 where A 9 ∈ A . The resulting

argument S ′ = 〈{} , {A 1 , A 6 , A 7 , A 8 , A 9 } , p 2 (T OMAS) 〉 is depicted in

Fig. 2 . The structure S 10 = 〈{} , {A 6 , A 9 } , p 1 (T OMAS) 〉 will be sup-

porting ρ1 in the context of S ′ . 

Example 10 illustrates the formation of structures where an

atom plays more than a particular role. That is, atom A 1 is used

as part of a claim-coalition C 2 for the main structure S 2 given the

corresponding substitution v , and a supporting structure S 1 con-

tained in the main one also makes usage of the same atom for its

own purpose through its own substitution. This example is inter-

esting for showing how variable instantiations may take place in

the construction of structures. 

Example 10. Given GenAF 〈 π, A 〉 ∈ F , {A 1 , A 2 , A 3 , A 4 } ⊆ A

where A 1 = 〈{ p(x ) } , (∃ y )(¬ r(x, y ) ∨ p(y )) 〉 , A 2 = 〈{} , r(a, b) 〉 ,
A 3 = 〈{} , p(a ) 〉 , and A 4 = 〈{} , r(b, c) 〉 . Structure C 1 =
〈{ p(a ) } , {A 1 , A 2 } , p(b) 〉 is a claim-coalition for p ( b ) given that

{ (∃ y )(¬ r(x, y ) ∨ p(y )) , r(a, b) } |(I, v ) p(b) , where the substitution

v = { x/a, y/b} holds. Afterwards, given that pr (C 1 ) can be sup-

ported through a primitive argumental structure 〈{} , {A 3 } , p(a ) 〉 ,
it ends up constructed the argument S 1 = 〈{} , {A 1 , A 2 , A 3 } , p(b) 〉
through the substitution v . On the other hand, argument S 1 is a

supporting structure for the premise p ( b ) of the claim-coalition

C = 〈{ p(b) } , {A , A } , p(c) 〉 , which appears through a substitu-
2 1 4 
ion v ′ = { x/b, y/c} in the context of the argumental structure

 2 = 〈{} , {A 1 , A 2 , A 3 , A 4 } , p(c) 〉 . Fig. 3 illustrates the case. 

The set of structures of a GenAF δ will enclose all the argumental

tructures constructible from δ. 

efinition 4.7 (Set of structures of a GenAF ) . Given a GenAF δ =
 π, A 〉 ∈ F , the set S δ is the set of δ-structures iff S δ is the set of

ll argumental structures S constructible from δ. 

.2. Conflict recognition 

For recognizing conflicts in a GenAF , we will rely upon the usual

otions of rebuttals, undercut , and direct undercut ( Gorogiannis &

unter, 2011 ). A slight reformulation of such notions is done by re-

ying upon inconsistency in place of verification of complementary

iterals. As aforementioned, such a decision is crucial for certain

epresentation languages like description logics, where negation of

xioms may fall out of the scope of the description language (see

onsistency-negation and coherence-negation on page 3). We say

hat two argumental structures S 1 and S 2 are in conflict whenever

heir claims cannot be assumed together ( rebuttals ), whenever the

laim of S 1 is inconsistent with a premise of S 2 ( direct undercut ),

r when S 1 is a rebuttal of some proper substructure of S 2 ( under-

ut ). 

efinition 4.8 (Conflictive structures) . Given a GenAF δ ∈ F and its

ssociated set S δ of δ-structures; two structures S 1 ∈ S δ and S 2 ∈
 δ are in conflict iff it follows: 

(rebuttals) { cl (S 1 ) , cl (S 2 ) } | ⊥ (in which case S 2 rebuts S 1 ,
and viceversa), or 

(direct undercut) { cl (S 1 ) , ρ} | ⊥ , where ρ ∈ pr (S 2 ) (in which

case S 1 directly undercuts S 2 ), or 

(undercut) S 1 rebuts S ′ 
2 
, where S ′ 

2 
� S 2 (in which case S 1 un-

dercuts S 2 ). 

Note that conflictive structures may involve potential argu-

ents. This alternative is important to identify sources of inco-

erency (see Section 3.1 ) from the underlying knowledge base. As

een before, an incoherence formula is a potential source of in-

onsistency that can be triggered by incorporating assertions sup-

orting the left-hand side of the formula. This intuition can be ex-

ended to pairs of argumental structures. For instance, two conflic-

ive potential arguments do not stand for a source of inconsistency
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Fig. 2. Structure S ′ from Example 9 . 

Fig. 3. Structures from Example 10 . 
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nless their premises are simultaneously supported through the

ncorporation of new argumental atoms. In such a case, the poten-

ial arguments turn into full conflicting arguments. In this way, the

ecognition of conflicting potential arguments is a way to antici-

ate conflicts in dynamic environments. Standard logic-based ar-

umentation systems do not handle conflicts at a coherency level.

his is an interesting contribution of GenAF s for a wide range of

esearch areas like ontology debugging. However, we will not go

eeper on this matter here since it is not the main focus of this

rticle. Investigations on this subject are underway. 

In order to definitely decide which structure succeeds from a

onflictive pair of rebuttals, an atom comparison criterion �⊆A × A

s assumed to be determined from a comparison criterion among

ormulæ in the KB –which could be defined for instance, upon

elevance or reliability of knowledge, i.e. , a measure of relevance

an be assigned to formulæ in the KB; by default any two for-

ulæ in a KB are assumed to be equally reliable unless the con-

rary is stated. We will overload the definition of the atom com-

arison criterion extending its usage to structures, i.e. , �⊆S δ × S δ;

ence, two structures S 1 and S 2 are assumed to be ordered by

ollowing some structure ordering methodology defined upon the

riterion “�”. The expression S � S means that S is more im-
1 2 1 
ortant/reliable than S 2 . Different structure ordering methodolo-

ies can be defined. In this article we will assume a simple one:

 1 � S 2 implies either that 1) both structures are incomparable,

hich means that there is no A ∈ bd (S 1 ) and no A 

′ ∈ bd (S 2 ) such

hat A � A 

′ ; or 2) there is some A ∈ bd (S 1 ) such that for every

 

′ ∈ bd (S 2 ) it follows A � A 

′ . The attack relation R δ of a GenAF

∈ F , is finally adjudicated in terms of the atom comparison crite-

ion “�”. 

efinition 4.9 (Attack relation) . Given a GenAF δ ∈ F and its as-

ociated set S δ of δ-structures; the set R δ⊆S δ × S δ is the attack

elation iff R δ = { (S 1 , S 2 ) | (S 1 ∈ S δ rebuts S 2 ∈ S δ and S 1 � S 2 ) or

(S 1 ∈ S δ undercuts, or directly undercuts, S 2 ∈ S δ ) } . The infix nota-

ion is used, writing S 1 R δS 2 , to state S 1 attacks/defeats S 2 . 

xample 11. Let δ = 〈 π, A 〉 ∈ F be a GenAF , where A = {A 1 , A 2 , A 3 }
here A 1 = 〈{ p 1 (x ) } , p 2 (x ) 〉 , A 2 = 〈{ p 1 (x ) } , ¬ p 3 (x ) 〉 , A 3 =

{ p 1 (x ) , ¬ p 2 (x ) } , p 3 (x ) 〉 . Consider the primitive structures

 1 = 〈{ p 1 (x ) } , {A 1 } , p 2 (x ) 〉 , S 2 = 〈{ p 1 (x ) } , {A 2 } , ¬ p 3 (x ) 〉 , and

 3 = 〈{ p 1 (x ) , ¬ p 2 (x ) } , {A 3 } , p 3 (x ) 〉 , configuring three potential

rguments. We obtain the following conflicts: S 1 directly under-

uts S 3 , S 2 rebuts S 3 , and S 3 rebuts S 2 . However, the rebuttal

etermined by S 2 and S 3 is avoided to be symmetric within R δ by

elying upon the atom comparison criterion, assuming A 3 � A 2 .

hus, the attack set –whose graph is depicted in Fig. 4 – ends up

eing R δ = { (S 3 , S 2 ) , (S 1 , S 3 ) } . 
Now suppose we have a second GenAF δ′ = 〈 π, A 

′ 〉 ∈ F

here A 

′ = A ∪ {A 4 , A 5 } , and where A 4 = 〈{} , p 1 (a ) 〉 and A 5 =
{} , ¬ p 2 (a ) 〉 . In addition, we will have the full arguments

 4 = 〈{} , {A 4 , A 1 } , p 2 (a ) 〉 , S 5 = 〈{} , {A 4 , A 2 } , ¬ p 3 (a ) 〉 , and S 6 =
{} , {A 4 , A 5 , A 3 } , p 3 (a ) 〉 . Also, the following primitive arguments

ppear S 7 = 〈{} , {A 4 } , p 1 (a ) 〉 , and S 8 = 〈{} , {A 5 } , ¬ p 2 (a ) 〉 . In this

ase, the resulting conflicts are: S 4 undercuts S 6 given that S 4 re-

uts S 8 and S 8 � S 6 , S 8 rebuts S 4 , S 6 rebuts S 5 , and S 5 rebuts S 6 .
However, the rebuttals determined by S 5 and S 6 , and S 4 and

 8 , are avoided to be symmetric by relying upon the atom com-

arison criterion, assuming A � A and A � A . Thus, the at-
3 2 1 5 
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Fig. 4. Graph of structures and attacks for 〈 π , A 〉 – Example 11 . 

Fig. 5. Graph of structures and attacks for 〈 π , A ′ 〉 – Example 11 . 
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tack set –whose graph is depicted in Fig. 5 – ends up being R δ′ =
{ (S 6 , S 5 ) , (S 4 , S 8 ) , (S 4 , S 6 ) } . 

The definition of the relation R δ allows to recognize sources of

information for both inconsistencies and incoherencies from the

knowledge base �. However, it could be also necessary to iden-

tify only the cases of inconsistencies. To this end, we define the

consistency attack relation C δ⊆R δ . In addition, we define the base

consistency attack relation C 

b 
δ

⊆ C δ as the set containing the smaller

conflicting pairs from C δ . 

Definition 4.10 (Consistency Attack) . Given a GenAF δ ∈ F and its

associated sets S δ and R δ , the set C δ⊆R δ is the consistency attack

relation iff C δ = { (S 1 , S 2 ) ∈ R δ|S 1 and S 2 are full arguments}. In

addition, the set C 

b 
δ

⊆ R δ is the base consistency attack relation iff

C 

b 
δ

= { (S 1 , S 2 ) ∈ C δ| for any S ′ 1 � S 1 and any S ′ 2 � S 2 st. (S ′ 1 , S ′ 2 ) ∈
C δ, it holds S ′ 

1 
= S 1 and S ′ 

2 
= S 2 } . 

It is easy to see that any base consistency attack is a rebutting

conflict between full arguments. 

Remark 4.11. Given a GenAF δ ∈ F and its associated sets S δ and

R δ , (S 1 , S 2 ) ∈ C 

b 
δ

iff S 1 ∈ S δ and S 2 ∈ S δ are full arguments st. S 1
rebuts S 2 . 

5. The GenAF reasoner 

A full computation of the set of δ-structures and the attack re-

lation enables the theoretical analysis of our proposal. Through the

reference of a GenAS it will be possible to study acceptability of

arguments and their properties upon rationality postulates for ar-

gumentation as given in Amgoud (2014) . 

Definition 5.1 (Generalized argumentation system) . A triple 〈 δ, S δ ,

R 〉 is a generalized argumentation system (or GenAS , for short)
δ
ff δ ∈ F is a GenAF , S δ is the set of δ-structures, and R δ⊆S δ × S δ is

he attack relation between pairs of conflicting structures from S δ .

he set G stands for identifying the GenAS -domain. 

Given a GenAT τ ∈ T , the following constructor is proposed for

uilding the related GenAS . 

efinition 5.2 ( GenAS constructor) . Given a GenAT τ ∈ T , a func-

ion genas : T −→ G is a GenAS constructor iff genas (τ ) = 〈 δ, S δ, R δ〉
s the GenAS constructed from the GenAF δ = genaf (τ ) . 

The base function is defined for identifying the set of L 

κ -

ormulæ from which a set of argumental structures can be con-

tructed. This will be useful for showing GenAS properties. 

efinition 5.3 (Base function) . Given a GenAT τ =
 �, π, panf π , �, atom 

[ π, �] 
〉 ∈ T and the associated GenAS

enas (τ ) = 〈 δ, S δ, R δ〉 ∈ G , a function base : ℘(S δ ) −→ ℘(L 

κ ) is

he base function iff for any set S ⊆S δ , base (S ) ⊆ panf π (�) is

efined as: base (S ) = { ϕ ∈ panf π (�) | for every S ∈ S and every

 ∈ bd (S) , A = atom 

[ π, �] 
(ϕ) or A = atom 

[ π, �] 
(ϕ 

−) } 
The following properties evaluate the relation between sources

f inconsistency/incoherence from an underlying knowledge base

egarding the existence of attack relations in a related GenAS . 

emma 5.4. Given a GenAT τ = 〈 �, π, panf π , �, atom 

[ π, �] 
〉 ∈ T and

he GenAS genas (τ ) = 〈 δ, S δ, R δ〉 ; if � is consistent then C δ = ∅ . 

Applying contrapositive reasoning to the previous property we

an infer the following corollary. 

orollary 5.5. Given a GenAT τ = 〈 �, π, panf π , �, atom 

[ π, �] 
〉 ∈

 and the GenAS genas (τ ) = 〈 δ, S δ, R δ〉 ; if (S 1 , S 2 ) ∈ C 

b 
δ

then

ase ({S , S } ) is a source of inconsistency in panf (�) . 
1 2 π
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heorem 5.6. Given a GenAT τ = 〈 �, π, panf π , �, atom 

[ π, �] 
〉 ∈ T

nd the GenAS genas (τ ) = 〈 δ, S δ, R δ〉 ; if � is coherent and consistent

hen R δ = ∅ . 
orollary 5.7. Given a GenAT τ = 〈 �, π, panf π , �, atom 

[ π, �] 
〉 ∈

 and the GenAS genas (τ ) = 〈 δ, S δ, R δ〉 ; if (S 1 , S 2 ) ∈ R δ then

ase ({S 1 , S 2 } ) is either a source of incoherence or inconsistency in

anf π (�) . 

The converse of each property given above is not true in any

ase, since a formula ϕ ∈ � may be such that ϕ�⊥ , and there-

ore atom 

[ π, �] 
(ϕ) / ∈ A π . This means that R δ may still be empty but

not necessarily consistent and/or coherent. More on this matter

ill be discussed later in Section 7 . 

From Corollary 5.7 , it is clear that each attack in a GenAS im-

lies a source of inconsistency/incoherence in the underlying �.

ince the objective of a GenAF is to reason over inconsistent knowl-

dge bases, there is a need for a mechanism for allowing to obtain

rom the related GenAS those arguments that prevail over the rest,

.e. , those arguments that can be consistently assumed together,

ollowing some policy. For instance, structures with no defeaters

hould always prevail, since there is nothing strong enough to be

osed against them. The tool we need to resolve inconsistency is

he notion of acceptability of arguments , which is defined on top

f an argumentation semantics ( Baroni & Giacomin, 2007; Dung,

995 ). These semantics ensure the obtention of conflict-free sets

f arguments, namely extensions ; that is, the set of accepted argu-

ents calculated following any of these semantics is such that no

air of conflictive arguments appears in that same extension. Next

e introduce the Dung’s standard semantics adapted for dealing

ith the GenAS specification. 

efinition 5.8 (Conflict-freeness and defense) . Let 〈 δ, S δ, R δ〉 ∈ G

e a GenAS and E ⊆S δ a set of argumental structures. 

• E is conflict-free iff there exist no pair of structures S 1 ∈ E and

S 2 ∈ E such that S 1 R δS 2 . 
• E defends a structure S ∈ S δ ( S is acceptable wrt. E ) iff for any

structure S 1 ∈ S δ such that S 1 R δS there exists a structure S 2 ∈ E

such that S 2 R δS 1 . A set of argumental structures is acceptable

wrt. E when each structure in it is acceptable wrt. E . Finally,

E is called self-acceptable when E is acceptable wrt. E , i.e. , E

defends all its structures. 

efinition 5.9 (Admissible sets) . Let 〈 δ, S δ, R δ〉 ∈ G be a GenAS , a

et E ⊆S δ of argumental structures is said admissible iff E is both

elf-acceptable and conflict-free. 

The expression “Dung’s standard semantics” is usually used to

efer to complete, grounded, preferred , and stable semantics which

ppeared in Dung (1995) 8 . Besides, the unqualified term extension

an be also used to refer to a complete, grounded, preferred, or

table extension. The importance of the notion of admissible sets is

eflected by the fact that every extension under any of the Dung’s

tandard semantics is admissible. 

efinition 5.10 (Dung’s standard semantics for GenAF s) . Let

 δ, S δ, R δ〉 ∈ G be a GenAS , E ⊆S δ a conflict-free set of argumen-

al structures, and F : ℘(S δ ) −→ ℘(S δ ) the characteristic function

efined as F(E ) = {S ∈ S δ | E defends S} . The following are the

Dung’s) standard semantics for GenAF s: 

• E is a complete extension iff it is admissible and it holds E =
F(E ) . 
8 Other argumentation semantics, like the semi-stable and ideal semantics, could 

lso be applied for GenAF s without inconvenience. For simplicity, we just consider 

he four original semantics appearing in Dung’s seminal work ( Dung, 1995 ). 

P  

b

 

i  
• E is a grounded extension iff it is the minimal (wrt. set-

inclusion from S δ) complete extension. 
• E is a preferred extension iff it is a maximal (wrt. set-inclusion

from S δ) complete extension. 
• E is a stable extension iff it is a preferred extension and for

any structure S ∈ (S δ \ E ) there is a structure S ′ ∈ E such that

S ′ R δS . 

Multiple extensions may arise from any semantics except for

he grounded whose outcome is always a unique single extension.

his might require to make a choice among the resulting exten-

ions. On the other hand, the outcome of both the grounded and

table semantics may be the empty set. In the sequel and just for

implicity, we refer to a semantics “s ” for identifying some specific

tandard semantics according to Definition 5.10 . Moreover, we re-

er to a s -extension to identify an extension obtained according to

he semantics “s ”. 

efinition 5.11 (Set of Extensions of a GenAS ) . Given a GenAS σ =
 δ, S δ, R δ〉 ∈ G and a semantics “s ”, a function ext s : G −→ ℘(℘(S δ ))

dentifies the set of s -extensions of σ iff ext s (σ ) is the set of all

xtensions E ⊆S δ modeling the semantics “s ”. In addition, we say

hat ext s (σ
C ) is the set of all consistency s -extensions E ⊆S δ of the

enAS σ C = 〈 δ, S δ, C δ〉 . In such a case, we write ext C s (σ ) to refer to

xt s (σ
C ) . 

Queries made to the argumentation framework are resolved by

ooking for argumental structures supporting them inside exten-

ions built according to the adopted argumentation semantics. A

atisfied query renders a warranted formula. Note that the expres-

ivity of queries will correspond to L 

κ but fulfilling the require-

ents of a π- pANF formula. 

efinition 5.12 (Warrant) . Given a knowledge base � ⊆ L 

κ , the

ssociated GenAT τ ∈ T , and a semantics s ; a π- pANF formula ϑ ∈
 

κ is said to be warranted from � iff there is some argumen-

al structure S ∈ E in some extension E ∈ ext s ( genas (τ )) , such that

( 
∧ 

pr (S)) → cl (S) = ϑ . We will write � |≈[ τ, s ] ϑ to state that ϑ is

arranted from � according to the associated GenAT τ and the se-

antics s . In addition, we will write � |≈C 
[ τ, s ] 

ϑ to state that the

rgumental structure S is in some extension E ∈ ext C s ( genas (τ )) . In

uch a case, we say ϑ is said to be consistently warranted from

B . 

The following example shows the intuitions behind a warrant

ondition of a formula. 

xample 12. Suppose we have a KB � = { p 1 , (p 1 ∧ p 2 → q ) } . A

tructure S = 〈{ p 2 } , {A 1 , A 2 } , q 〉 would be constructed in the re-

ated GenAF , where A 1 = 〈{ p 1 , p 2 } , q 〉 and A 2 = 〈{} , p 1 〉 . In the case

here S is contained in some extension, it means that the struc-

ure has been accepted by the adopted argumentation semantics s .

ence, it is natural to expect the GenAF obtained through the GenAT

, to warrant p 2 → q, i.e. , � |≈[ τ, s ] (p 2 → q ) . On the other hand,

y assuming the primitive structure S ′ = 〈{} , {A 2 } , p 1 〉 is contained

n some s -extension, we would obtain � |≈[ τ, s ] p 1 , where p 1 ends

p warranted. 

The following proposition makes explicit the existing rela-

ion between GenAF -structures and formulæ from an underly-

ng π- pANF knowledge base. This intuition was previously in-

roduced in Section 3.3 and discussed through Remark 3.13 .

roposition 5.13 formally shows the well construction of structures

n accordance to such intuitions. 

roposition 5.13. Given a GenAS 〈 δ, S δ, R δ〉 ∈ G , if S ∈ S δ then

ase ({S} ) | ( 
∧ 

pr (S)) → cl (S) . 

Given a knowledge base � ⊆ L 

κ , it is possible to reason over

nconsistency by relying upon the operator “ |≈[ τ, s ] ”. Note that
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under consistent knowledge bases, “ |≈[ τ, s ] ” behaves as the clas-

sical entailment “�”. 

Theorem 5.14. Given a knowledge base � ⊆ L 

κ and a π- pANF for-

mula ϑ ∈ L 

κ , if � is coherent and consistent then ��ϑ iff � |≈[ τ, s ] 

ϑ . 

The set of warranted conclusions will be the set of sets contain-

ing all the warranted formulæ from each extension. 

Definition 5.15 (Set of warranted conclusions) . Given a knowl-

edge base � ⊆ L 

κ , the associated GenAT τ ∈ T , and a semantics s ;

a function warrant [ τ, s ] : ℘(L 

κ ) −→ ℘(℘(L 

κ )) is a warrant function

iff warrant [ τ, s ] (�) = {{ ( ∧ 

pr (S)) → cl (S) |S ∈ E }| E ∈ ext s ( genas (τ )) } .
For referring to the set of warranted consistent conclusions , we

write warrant C 
[ τ, s ] 

(�) which is analogously constructed from all ex-

tensions E ∈ ext C s ( genas (τ )) . 

Some authors claim that a set of warranted conclusions as given

above may be too credulous and require a more skeptical alterna-

tive. For such matter, we propose the definition of plausible conclu-

sions by relying upon a similar notion given in Amgoud (2014) . 

Definition 5.16 (Set of Plausible Conclusions) . Given a knowl-

edge base � ⊆ L 

κ , the associated GenAT τ ∈ T , and a semantics

s ; a function plausible [ τ, s ] : ℘(L 

κ ) −→ ℘(L 

κ ) is a plausible func-

tion iff plausible [ τ, s ] (�) = 

⋂ 

warrant [ τ, s ] (�) . In addition, the set

of plausible consistent conclusions is identified through the set

plausible C 
[ τ, s ] 

(�) = 

⋂ 

warrant C 
[ τ, s ] 

(�) . 

The result sets defined above ( Definitions 5.12, 5.15 , and 5.16 )

which are constructed only from consistency s -extensions will be

useful for reasoning over argumentation systems that only tackle

consistency clashes, leaving unresolved coherence inconveniences

from the underlying knowledge base. 

6. Applying the GenAF to ALC DLs for reasoning over 

inconsistent ontologies 

The use of argumentation techniques to reason over inconsis-

tent ontologies has been gaining attention lately. Some works have

been presented exploring different variations of this confluence of

areas (see Section 8 ), and although research on the matter is at its

very initial stages, its usability is quite promising. Mostly, for areas

of application like medicine and law, where knowledge bases are

expected to allow inconsistencies and thus reasoning processes are

designed upon non-classical methodologies. 

Considering that in Lutz, Sattler, and Wolter (2001) an exten-

sion of the ALC DL was presented and shown to be equivalent to

L 

2 (see Baader, 1999; Borgida, 1996 for more details), we propose

a reification of L 

κ to the description logic (DL) ALC , and to such

end, concepts descriptions in ALC will be translated into L 

2 for-

mulæ. As a result, we introduce the definition of an ALC - GenAF
aiming at reasoning over potentially inconsistent/incoherent ALC 
ontologies. 

We first give a brief overview of ALC DLs in which we will rely

on for the specification of the ALC - GenAF used for reasoning over

inconsistent ontologies. To this end, we will refer to Bienvenu’s

work on ALC prime implicates as a recommended normal form

for named concepts. A π- pANF ALC ontology can be obtained by

transforming ALC axioms like C � D into subsumptions between C ’s

and D ’s prime implicates; thus, we might not only obtain the ALC -
GenAF , but also benefit from the well known advantages of prime

implicates as a form of knowledge compilation. 

6.1. ALC overview 

Before presenting the reification details, we will give a brief

overview of the ALC DLs (for details on ALC and other DLs,
ee Baader, Calvanese, McGuinness, Nardi, & Patel-Schneider,

003 ). An interpretation I = (�I , ·I ) consists of a nonempty

omain �I , and an interpretation function ·I that maps ev-

ry concept to a subset of �I , every role to a subset of
I × �I , and every individual to an element of �I . Symbols

, A 1 , A 2 , . . . and B, B 1 , B 2 , . . . are used to denote atomic DL con-

epts, C, C 1 , C 2 , . . . and D, D 1 , D 2 , . . . , to denote general DL con-

epts, and R, R 1 , R 2 , . . . , to denote atomic DL roles. The descrip-

ion language ALC is formed by concept definitions according to

he syntax C, D : := A | ⊥ | � | ¬C | C �D | C �D | ∀ R.C | ∃ R.C where the in-

erpretation function ·I is extended to the universal concept as

 

I = �I ; the bottom concept as ⊥ 

I = ∅ ; the full negation or com-

lement as (¬ C ) I = �I \ C I ; the intersection as (C � D ) I = C I ∩ D 

I ;
he union as (C � D ) I = C I ∪ D 

I ; the universal quantification as

(∀ R.C) I = { a ∈ �I | ∀ b. (a, b) ∈ R I → b ∈ C I } ; and the full existential

uantification as (∃ R.C) I = { a ∈ �I | ∃ b. (a, b) ∈ R I ∧ b ∈ C I } . 
An ontology is a pair O = 〈 T , A 〉 , where T represents the TBox,

ontaining the terminologies (or axioms) of the application do-

ain, and A, the ABox, which contains assertions about named in-

ividuals in terms of these terminologies. Regarding the TBox T,

xioms are sketched as C � D and C ≡ D , therefore, an interpreta-

ion I satisfies them whenever C I ⊆ D 

I and C I = D 

I respectively.

n interpretation I is a model for the TBox T if I satisfies all the

xioms in T; thus, the TBox T is said to be satisfiable if it admits

 model. Also, for the ABox A, I satisfies C ( a ) if a ∈ C I , and R ( a,

 ) if (a, b) ∈ R I , and I is said to be a model of the ABox A if ev-

ry assertion of A is satisfied by I; hence, the ABox A is said to

e satisfiable if it admits a model. Finally, regarding the entire on-

ology O, an interpretation I is said to be a model of O if every

tatement in it is satisfied by I, and O is said to be satisfiable if it

dmits a model. 

The different classes of inconsistencies in an ontology are de-

ned through the usual meaning of inconsistency in classical logic,

long with the notion of incoherence presented in Flouris et al.

2006) . Thus, an ontology O is inconsistent iff it admits no model;

n the other hand, the ontology O is incoherent iff there exists an

nsatisfiable named concept C in O, and a concept C is unsatisfiable

ff for each interpretation I of O, C I = ∅ holds. While incoherence

s considered a form of inconsistency in the TBox, it does not re-

lace the usual notion of inconsistency, given that an incoherent

ntology may admit models. 

An ontology contains implicit knowledge that is made explicit

hrough inferences. The notion of semantic entailment is given by

 | α, meaning that every model of the ontology O is also a

odel of the statement α. Just for simplicity, we shall abuse no-

ation writing O = T ∪ A ( e.g. , O = { C � D, A (a ) } ) to identify an on-

ology O = 〈 T , A 〉 ( e.g. , O = 〈{ C � D } , { A (a ) }〉 ). 

.2. Specifying the ALC - GenAF 

One of the first inconveniences we face towards the specifica-

ion of the ALC - GenAF is the construction of a π- pANF ALC on-

ology and the question of what we will obtain from that should

e answered. Bienvenu’s work on ALC prime implicate normal form

 Bienvenu, 20 08; 20 09 ), has been shown as enjoying several prop-

rties which are quite interesting; for instance, ALC concepts in

rime implicate normal form are much better behaved computa-

ionally than arbitrary ALC concepts: whether a concept in prime

mplicate normal form is satisfiable or tautologous can be tested in

onstant time, and whether two concepts in prime implicate nor-

al form are equivalent or if one subsumes the other can be tested

n quadratic time. 

Knowledge compilation requires an initial cost of preprocess-

ng for computing the normal form. The transformation of an

LC concept to its prime implicate normal form can be achieved

hrough the algorithm introduced in Bienvenu (2008) , and was
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hown to result in at most a doubly-exponential blowup in con-

ept size. However, a structural subsumption algorithm was pre-

ented for deciding subsumption between concepts in prime impli-

ate normal form. Such algorithm was shown to be correct, com-

lete, and to make its decisions in linear time in the size of the in-

ut, i.e. , for a query C � D , it terminates in linear time in | C || D |, and

ence in quadratic time in | C| + | D | . This signifies a considerable

mprovement wrt. the cost of subsumption with non-normalized

LC axioms (known to be EXPTIME-complete or PSPACE-complete

or unfoldable ALC , which also requires an initial preprocessing

ost) and it is supposed to offset the initial cost of the transforma-

ion with such computational savings made on later queries. 

We will show that the grammars used for prime implicates can

atch well the π- pANF defined here, and thus, the ALC - GenAF can

enefit from the aforementioned prime implicate nice properties. 

L : := � | ⊥ | A | ¬A | ∀ R.D | ∃ R.D 

Cl : := L | Cl �Cl 

Cb : := L | Cb �Cb 

D : := � | ⊥ | A | ¬A | D �D | D �D | ∀ R.D | ∃ R.D 

Given the ALC prime implicate grammar we can specify a

- pANF ALC ontology. 

efinition 6.1 (. π- pANF ALC Ontology) Given an AL-framework

∈ L and an ALC ontology O = 〈 T , A 〉 , we say O is in π- pANF

ff T ⊆ L T and A ⊆ L a , where L T ::= Cb � Cl identifies axioms and

 a ::= Cl(a ) | R (a, b) , (ground) assertions, with a and b as individ-

al names. The set L T × L a identifies the domain of π- pANF ALC 
ntologies. 

The AL-framework π ∈ L that we adopt to construct the ALC -
enAF , will be specified by making π = 〈 ALC , L cl , L pr , L a 〉 , where:

 pr ::= L 

L cl ::= C l | C l(a ) | R (a, b) 

L a ::= Cl(a ) | R (a, b) 

roposition 6.2. Given the AL-framework π ∈ L for ALC , the lan-

uages L pr ::= L for the premises, and L cl ::= C l | C l(a ) | R (a, b) for

he claims, determine a legal argument language A π . 

Observe that according to Definition 3.3, Definition 6.1 which

pecifies the languages for premises and claims, and the gram-

ar for prime implicate ALC concepts, every axiom/assertion in a

- pANF ontology O is an argumental atom itself in the GenAF , un-

ess the consistency property in Definition 3.3 is violated. It is im-

ortant to note that the algorithms for building prime implicates of

LC concepts presented in Bienvenu (2008) will produce new ALC 
oncepts conforming the grammar given above and it will contain

either unnecessary atomic concepts or roles, nor redundant or ir-

elevant subconcepts. This is another of the remarkable advantages

f the ALC prime implicate normal form, making easier for hu-

ans to read and understand them; even more interesting for us is

hat π- pANF ALC axioms/assertions, as specified by Definition 6.1 ,

ill trivially conform the conditions given in Definition 3.3 to build

rgumental atoms from π- pANF formulæ. 

It is important to mention that the detailed use of prime impli-

ates (and/or other type of normal forms) exceeds the scope of the

rticle, and is proposed as an alternative to benefit from the nice

roperties of knowledge compilation, facing the necessity to trans-

orm ALC ontologies into π- pANF . Moreover, the versatility of the

enAF allows to adapt its argument language to different normal

orms proposed for ALC , like disjunctive form ( ten Cate, Conradie,

arx, & Venema, 2006 ), and linkless normal form ( Furbach, Gün-

her, & Obermaier, 2009; Furbach & Obermaier, 2007 ). Implemen-

ations of the ALC - GenAF should consider algorithms for the trans-

ormation of concepts according to the adopted normal form, in

ombination with the appropriate grammars to obtain π- pANF ALC 
ntologies. In what follows, we will confine ourselves to π- pANF
ntologies satisfying the grammars given above –without consider-

ng the prime implicates of concepts used in examples– although

he reader should keep in mind that other grammars might adapt

ell for constructing a different, but still appropriate ALC - GenAF . 
Some particularities appear for ALC DLs; for instance, concept

quivalences as C 1 ≡ C 2 , are transformed into two π- pANF axioms

 1 � C 2 and C 2 � C 1 . Also, two π- pANF axioms like ⊥� C and C �⊥ ,

ill only create two argumental atoms from their contrapositives

- pANF axioms ¬C �� and �� ¬C , respectively, given that argumen-

al atoms cannot accept ⊥ in any of their components (see the

onsistency property in Definition 3.3 ). Finally, any assertion Cl ( a )

resp., R ( a, b )) produces an evidence 〈 {}, Cl ( a ) 〉 (resp., 〈 {}, R ( a, b ) 〉 ). 
The function “panf π ” ( Definition 3.8 ), is used to translate any

LC ontology O into an equivalent L T × L a ontology panf π (O) . A

esirable property of a π- pANF ALC ontology is that each state-

ent in it generates a single argumental atom (actually a pair, if it

s the case that its contrapositive falls within the language) in its

elated GenAF . This statement holds except for unsatisfiable concept

nclusions as A � ¬A , which are filtered by the consistency property

f Definition 3.3 –giving no related argumental atom in the GenAF . 

Given an ALC ontology O, the associated GenAF 〈 π , A 〉
s obtained by means of the theory function genaf (O) (see

efinition 3.15 ). Note that cyclic terminologies like A ≡ B

ill not be part of any structure due to non-circularity in

efinition 4.5 (condition 8). A similar situation occurs with axioms

ike A � A . 

Next, we exemplify a reasoning process upon an ALC ontology

ith a complex construction of structures where some argumen-

al atoms are reintroduced within a same supporting-chain due to

ifferent variables instantiations. 

xample 13. Given the ALC ontology O =
 R (a, b) , R (b, c) , R (c, d) , A (a ) , ¬ A (c) , ¬ A (d) , A �∀ R.A }. We will

ssume a closed under transposition ALC GenAF δ = 〈 π, A 〉 ,
here A = {A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 

′ 
7 } , such that A 1 =

{} , R (a, b) 〉 , A 2 = 〈{} , R (b, c) 〉 , A 3 = 〈{} , R (c, d) 〉 , A 4 = 〈{} , A (a ) 〉 ,
 5 = 〈{} , ¬ A (c) 〉 , A 6 = 〈{} , ¬ A (d) 〉 , A 7 = 〈{ A (x ) } , (∀ R.A )(x ) 〉 , and

 

′ 
7 = 〈{ (∃ R. ¬ A )(x ) } , ¬ A (x ) 〉 . The related GenAS σ = 〈 δ, S δ, R δ〉

an be built. For simplicity, we will only consider “some” full

rguments which are relevant for this example. 

S 1 = 〈{} , {A 4 , A 7 , A 1 } , A (b) 〉 
S 2 = 〈{} , {A 4 , A 7 , A 1 , A 2 } , A (c) 〉 
S 3 = 〈{} , {A 4 , A 7 , A 1 , A 2 , A 3 } , A (d) 〉 
S 4 = 〈{} , {A 3 , A 6 , A 

′ 
7 
} , ¬ A (c) 〉 

S 5 = 〈{} , {A 3 , A 6 , A 

′ 
7 , A 2 } , ¬ A (b) 〉 

S 6 = 〈{} , {A 3 , A 6 , A 

′ 
7 
, A 2 , A 1 } , ¬ A (a ) 〉 

Let us also consider the following primitive arguments: S ′ 
1 

=
{} , {A 1 } , R (a, b) 〉 

S ′ 
2 

= 〈{} , {A 2 } , R (b, c) 〉 
S ′ 

3 
= 〈{} , {A 3 } , R (c, d) 〉 

S ′ 4 = 〈{} , {A 4 } , A (a ) 〉 
S ′ 

5 
= 〈{} , {A 5 } , ¬ A (c) 〉 

S ′ 
6 

= 〈{} , {A 6 } , ¬ A (d) 〉 
Let us analyze firstly the construction of the mentioned struc-

ures: the set {A 7 , A 1 } is the claim-coalition for A ( b ) in S 1 ,
A 7 , A 2 } is the claim-coalition for A ( c ) in S 2 , and {A 7 , A 3 } is the

laim-coalition for A ( d ) in S 3 . Observe also that S 1 is a support-

ng structure in S 2 , and S 2 is a supporting structure in S 3 ; and

lso that both S ′ 
3 

and S ′ 
6 

are supporting structures of the claim-

oalition’s premise ( ∃ R . ¬A )( x ) in S 4 , S ′ 2 and S 4 are supporting

tructures of the claim-coalition’s premise ( ∃ R . ¬A )( x ) in S 5 , and S ′ 1 
nd S 5 are supporting structures of the claim-coalition’s premise

 ∃ R . ¬A )( x ) in S 6 (refer to Fig. 6 ). 

Afterwards, for avoiding symmetric rebuttals we will rely on

n atom comparison criterion ‘ �’ such that the following rebuttals
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Fig. 6. Graph of rebuttals from Example 13 . Multiple occurrences of an argumental atom within a structure are due to the particular substitution within each corresponding 

supporting structure. 

Fig. 7. Complete graph of attacks from Example 13 . 
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appear: S 1 C 

b 
δ
S 5 , S 2 C 

b 
δ
S 4 , S 3 C 

b 
δ
S ′ 

6 
, S ′ 

4 
C 

b 
δ
S 6 , and S ′ 

5 
C 

b 
δ
S 2 . Fig. 6 illus-

trates both he construction of the referred structures and rebuttals.

In addition, Fig. 7 illustrates the complete graph of attacks con-

sidering both rebuttals and undercuts. The following undercuts

also appear: S 1 C δS 6 , S 2 C δS 6 , S 2 C δS 5 , S 3 C δS 6 , S 3 C δS 5 , S 3 C δS 4 , and

S ′ 
5 
C δS 3 . 
Since we are not considering potential arguments, direct under-

cuts will not appear here. Thus, we are going to analyze only con-

sistency s -extensions, where s implements the complete seman-

tics. The set {S 1 , S ′ 4 , S 4 , S ′ 6 , S ′ 5 } is part of a complete extension in

ext C s (σ ) , hence O |≈C 
[ τ, s ] 

A (b) holds and thus we say that A ( b ) is

consistently warranted by the GenAF reasoner. 

7. Equivalence with logic-based argumentation systems 

In this section we study GenAF s by contrasting them with stan-

dard logic-based argumentation. Therefore, we firstly provide sim-

ple definitions for logic-based arguments and logic-based argu-

mentation systems, and afterwards we define a translation proce-

dure for a subsystem of a GenAS into a standard logic-based ar-

gumentation system. This will allow to study argumentation pos-

tulates for standard logic-based argumentation systems and after-

wards, it brings the possibility of studying such postulates for a

GenAS under certain specific conditions. 

Definition 7.1 (Logic-based argument) . Given the logic L 

κ , a struc-

ture B = 〈 �, α〉 , where � ⊆ L 

κ (body) and α ∈ L 

κ (claim), is a

logic-based argument iff ��α, � �| ⊥ , and there is no � ′ ⊂�

such that � ′ �α. The set B identifies the domain ℘(L 

κ ) × L 

κ of

logic-based arguments. 
We will overload the usage of the functions bd and cl to re-

pectively identify the body and claim of logic-based arguments.

imilarly, the substructure operator � will be used for identifying

ogic-based subarguments such that for any pair B , B 

′ ∈ B , B � B 

′ 
ff bd (B) ⊆ bd (B 

′ ) . In addition, we will overload the base function

or being applied over logic-based arguments such that given a set

f arguments � ⊆ B , base (�) = { ϑ ∈ bd (B) |B ∈ �} . Note that given

 logic-based argument B ∈ B it holds bd (B) = base ({B} ) . 
efinition 7.2 (Logic-based AS) . Given a knowledge base � ⊆ L 

κ ,

S ( �) is a logic-based argumentation system (or just, logic-

ased AS ) from � iff AS (�) = 〈 Args (�) , R 〉 where Args ( �) is the

aximal set of logic-based arguments B ∈ B constructed from KB

.e. , Args (�) = {B ∈ B | bd (B) ⊆ �} ) and R ⊆Args ( �) × Args ( �) is the

ttack relation. The domain of logic-based ASs is identified through

he set S . 

efinition 7.3 (Set of extensions of a logic-based AS) . Given a

nowledge base � ⊆ L 

κ , its associated logic-based AS AS (�) =
 Args (�) , R 〉 , and a standard semantics s ; Ext s ( AS (�)) is the set

f s -extensions of AS ( �) iff for every E ∈ Ext s ( AS (�)) it holds

 ⊆ Args (�) and E is an s -extension. 

Now we provide the following functions for the construction of

 logic-based AS from a GenAS . 

efinition 7.4 (Logic-based argument translation) . Given a GenAS

 δ, S δ, R δ〉 ∈ G , a function lbarg : S δ −→ B is a logic-based argu-

ent function iff lbarg (S) = 〈 base ({S } ) , ( ∧ 

pr (S ) → cl (S)) 〉 , for

ny argumental structure S ∈ S δ . 

The following example shows the intuitions behind the logic-

ased argument translation function. 

xample 14. Suppose we have an argumental structure S =
{ p 1 , p 2 } , {A 1 } , q 〉 , where A 1 = 〈{ p 1 , p 2 } , q 〉 is originated through

 formula p 1 ∧ p 2 → q . Thus, it is natural to expect an equivalent

ogic-based argument lbarg (S) = B = 〈{ p 1 ∧ p 2 → q } , p 1 ∧ p 2 → q 〉 .
ow suppose we have the atom A 2 = 〈{} , p 1 〉 . The structure S ′ =
{ p 2 } , {A 1 , A 2 } , q 〉 would be constructed. In such a case, the trans-

ation would end up as lbarg (S ′ ) = B 

′ = 〈{ p 1 , (p 1 ∧ p 2 → q ) } , p 2 →
 〉 . Observe that if we construct the GenAF -argument S ′′ =
{} , {A 1 , A 2 , A 3 } , q 〉 , where A 3 = 〈{} , p 2 〉 , the translated logic-

ased argument would end up as lbarg (S ′′ ) = B 

′′ = 〈{ p 1 , p 2 , (p 1 ∧
p → q ) } , q 〉 . 
2 
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We show that the logic-based argument function, as defined

bove, effectively translates every argumental structure into a

ogic-based argument. 

roposition 7.5. Given a GenAS 〈 δ, S δ, R δ〉 ∈ G , if S ∈ S δ then

barg (S) ∈ B is a logic-based argument. 

emark 7.6. Observe that given an argumental structure S ∈ S δ, if

barg (S) = B then base ({S} ) = bd (B) . 

efinition 7.7 (Logic-based AS translation) . Given a GenAS σ =
 δ, S δ, R δ〉 ∈ G , a function lbas : G −→ S is an logic-based AS func-

ion iff lbas (σ ) = 〈 B , T 〉 where: 

B = { lbarg (S) | for every argumental structure S ∈ S δ} , and 

T = { (B 1 , B 2 ) | for every pair (S 1 , S 2 ) ∈ C δ , where B 1 = 

barg (S 1 ) and B 2 = lbarg (S 2 ) } . 
The following lemma proposes the conditions under which a

enAS which is translated into a logic-based AS contains all the

rguments constructible from its underlying knowledge base. In

n intuitive manner, ensuring that L 

κ is a π- pANF logic guaran-

ees that all the formulæ in the KB (including its inferences) cor-

esponds to a π- pANF form. Besides, the requirement of closure

nder transposition ensures that modus tollens is modeled for the

onstruction of arguments. Finally, the set of constraints is reduced

o its minimal form in order to ensure that all possible formulæ

ill be considered. Tautologies cannot be plausible conclusions of

ny logic-based argumentation system. The inconveniences related

ith such a drawback are treated in Amgoud (2014) : tautologies

ay depreciate the utility of the argumentation postulate control-

ing the consequences of the system. Note that we will not allow

autologies in the underlying knowledge base for ensuring the well

ehavior of any logic-based AS AS ( �), however, for a GenAF this

ould not be necessary given that it has the ability to restrict the

onstruction of tautologic argumental atoms by modeling the non-

ircularity constraint. 

emma 7.8. Given a GenAT τ = 〈 �, π, panf π , �, atom 

[ π, �] 
〉 ∈ T , the

enAS genas (τ ) = 〈 δ, S δ, R δ〉 ∈ G , and the translated logic-based AS

bas ( genas (τ )) = 〈 B , T 〉 ; if L 

κ is a π- pANF logic, � has no tautologies,

he GenAF δ is closed under transposition, and � ⊆ { ω 

1 
π , ω 

2 
π } where

 

1 
π and ω 

2 
π are atom constraint functions modeling AC 1 and AC 2 ,

espectively, then B = Args (�) . 

The GenAF entails the same conclusions that its translated logic-

ased version. 

emma 7.9. Given a GenAT τ = 〈 �, π, panf π , �, atom 

[ π, �] 
〉 ∈ T , the

enAS genas (τ ) = 〈 δ, S δ, R δ〉 ∈ G , and the translated logic-based AS

bas ( genas (τ )) = 〈 B , T 〉 ; if L 

κ is a π- pANF logic, � has no tau-

ologies, the GenAF δ is closed under transposition, and � ⊆
 ω 

1 
π , ω 

2 
π } where ω 

1 
π and ω 

2 
π are atom constraint functions model-

ng AC 1 and AC 2 , respectively, then warrant C 
[ τ, s ] 

(�) = { clset (E ) |E ∈
xt s ( lbas ( genas (τ ))) } . 

Build from the previous lemmata, the following corollary

resents the conditions under which a GenAS is equivalent to a

ogic-based argumentation system, that means that both argumen-

ation systems shares: the same arguments (arguments from one

S can be translated into the other and viceversa), the same attack

elations (based on consistency), and the same consequences. 

orollary 7.10. Given a GenAT τ = 〈 �, π, panf π , �, atom 

[ π, �] 
〉 ∈ T ,

he GenAS genas (τ ) = 〈 δ, S δ, R δ〉 ∈ G , and the translated logic-based

S lbas ( genas (τ )) = 〈 B , T 〉 ; if L 

κ is a π- pANF logic, � has no tau-

ologies, the GenAF δ is closed under transposition, and � ⊆ { ω 

1 
π , ω 

2 
π }

here ω 

1 
π and ω 

2 
π are atom constraint functions modeling AC 1 and

C , respectively, then lbas ( genas (τ )) is equivalent to AS ( �) . 
2 
However, nothing is still said about the attack relation. In what

ollows we will concentrate on the properties of the attack re-

ation modeled through GenAF s. For such purpose, we will refer

o the work by Amgoud ( Amgoud, 2014 ) where a set of prop-

rties for logic-based argumentation systems has been proposed

ith the objective of characterizing the conflict relation between

airs of logic-based arguments. Such a characterization allow the

tudy of the argumentation postulates that we will see later in

efinition 7.16 . Before formalizing the mentioned conflict charac-

erization, we will say that a set X ⊆� is a minimal source of in-

onsistency of a knowledge base � ⊆ L 

κ iff X �⊥ and there is no

 

′ ⊂ X such that X 

′ �⊥ holds. In addition, we will refer to the set

i (�) ⊆ ℘(L 

κ ) as the set of minimal sources of inconsistencies of a

nowledge base � iff mi (�) contains every minimal source of in-

onsistency of �. 

efinition 7.11 (Conflict characterization ( Amgoud, 2014 )) . Given

S (�) = 〈 Args (�) , R 〉 , for any B 1 , B 2 , B 3 ∈ Args (�) , the attack re-

ation R may verify any of the following properties: 

( R 1 ) if bd (B 1 ) ⊆ bd (B 2 ) and (B 1 , B 3 ) ∈ R then (B 2 , B 3 ) ∈ R . 

( R 2 ) if bd (B 1 ) ⊆ bd (B 2 ) and (B 3 , B 1 ) ∈ R then (B 3 , B 2 ) ∈ R . 

(conflict-dependent) if (B 1 , B 2 ) ∈ R then bd (B 1 ) ∪ bd (B 2 ) | ⊥ . 

(conflict-sensitive) if bd (B 1 ) ∪ bd (B 2 ) | ⊥ then (B 1 , B 2 ) ∈ R or

(B 2 , B 1 ) ∈ R . 

(conflict-exhaustive) if X ∈ mi (�) such that | X | > 1 then there

is X 1 , X 2 ⊂ X such that X = X 1 ∪ X 2 and B 1 , B 2 ∈ Args (�) such

that bd (B 1 ) = X 1 and bd (B 2 ) = X 2 , and either (B 1 , B 2 ) ∈ R or

(B 2 , B 1 ) ∈ R . 

It was shown in Amgoud (2014) (see Proposition 7.18 ) that an

ttack relation simultaneously verifying R 1 and R 2 (see item 1),

r conflict-dependent and conflict-sensitive (see item 2), allow the

erification of the argumentation postulate of (closure under sub-

rguments) (see Definition 7.16 ). However, the specification of the

enAF ’s conflict relation (see Definition 4.8 ) does not allow the ver-

fication of properties R 1 nor conflict-sensitive. There could be al-

ernatives for redefining the conflict relation in order to satisfy

uch properties. Nevertheless, what would this mean? For instance,

onsider Example 11, Fig. 5 . Let us suppose for such a case that we

ave inversed the attack between S 8 and S 4 . Hence, assuming that

(S 8 , S 4 ) ∈ R δ holds, it seems difficult to justify the existence of an

ttack relation from S 6 to S 4 (considering that S 8 � S 6 ) since an

ttack relation is usually directed from the claim of an argument

o the defeated argument. This is made clearer if we consider that

he claim of S 6 is p 3 ( a ), and that there is nothing in S 4 which

ould be related to p 3 . We will see later in this section, that the

rgumentation postulates that are carried through the verification

f such two properties can be achieved in a more intuitive form.

ext, we show that the GenAF ’s attack relation verifies the proper-

ies of conflict-dependent and R 2 . 

roposition 7.12. Given a GenAT τ = 〈 �, π, panf π , �, atom 

[ π, �] 
〉 ∈

 , the GenAS genas (τ ) = 〈 δ, S δ, R δ〉 ∈ G , and the translated logic-

ased AS lbas ( genas (τ )) = 〈 Args (�) , R 〉 , the attack relation R verifies

 2 . 

roposition 7.13. Given a GenAT τ = 〈 �, π, panf π , �, atom 

[ π, �] 
〉 ∈

 , the GenAS genas (τ ) = 〈 δ, S δ, R δ〉 ∈ G , and the translated logic-

ased AS lbas ( genas (τ )) = 〈 Args (�) , R 〉 , the attack relation R is

onflict-dependent. 

For showing conflict-exhaustive attack sets we need to evaluate

ertain circumstances in which the inconsistency from the under-

ying knowledge base cannot be represented through an attack be-

ween two arguments. This may appear for certain logics in which

t is not possible to represent the complementary value of every
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formula. This is also the main inconvenience by which the con-

verse of Corollaries 5.5 and 5.7 do not hold. Next, we formalize

the notion of parallel-complementary logics and afterwards, we il-

lustrate the situation through Example 15 . 

Definition 7.14 (Parallel-complementary logics) . A logic L is

parallel-complementary iff for any formula ϑ ∈ L there is a com-

plementary formula ϑ 

′ ∈ L such that { ϑ, ϑ′ } �⊥ . 

Example 15. Let L cl be a logic such that for any formula ϑ ∈ L cl ,

ϑ can be a literal, i.e. , an atom or its negation, or a clause, i.e. , a

disjunction of literals. For instance, � = {¬ p, ¬ q, p ∨ q } is a set of

formulæ in L cl . Note that L cl is not parallel-complementary given

that a formula like p ∨ q has no parallel-complementary formula.

That is, there is no formula ϑ ∈ L cl such that {( p ∨ q ), ϑ} �⊥ can

be verified. Let us assume a logic-based AS AS (�) = 〈 Args (�) , R 〉 ,
where Args (�) = {B 1 , B 2 , B 3 } such that cl (B 1 ) = p ∨ q, cl (B 2 ) = ¬ p,

and cl (B 3 ) = ¬ q . Observe that argument B 1 cannot be attacked by

any other argument, even more, note that R will be empty. Note

however that � is a minimal set verifying ��⊥ . 

Now we have a condition for modeling a GenAF , ensuring a

conflict-exhaustive attack relation for it. 

Proposition 7.15. Given a GenAT τ = 〈 �, π, panf π , �, atom 

[ π, �] 
〉 ∈

T , the GenAS genas (τ ) = 〈 δ, S δ, R δ〉 ∈ G , and the translated

logic-based AS lbas ( genas (τ )) = 〈 Args (�) , R 〉 , if L cl is parallel-

complementary then R is conflict-exhaustive. 

The following postulates for a logic-based argumentation sys-

tem were proposed by Amgoud in Amgoud (2014) . We firstly

study them and their implications according to the notation of the

present article, and analyze afterwards their relation with regards

to a GenAS translated to a standard logic-based AS, and the proper-

ties it should satisfy in order to guarantee each postulate. 

Definition 7.16 (Postulates for a logic-based AS ( Amgoud,

2014 )) . Given AS (�) = 〈 Args (�) , R 〉 : 
(closure under consequence) for all E ∈ Ext s ( AS (�)) , if

clset (E ) | ϑ then ϑ ∈ clset (E ) . 

(closure under subarguments) for all E ∈ Ext s ( AS (�)) , if B ∈ E
then B 

′ ∈ E, for all B 

′ � B. 

(consistency) for all E ∈ Ext s ( AS (�)) , clset (E ) �| ⊥ . 

(exhaustiveness) for all E ∈ Ext s ( AS (�)) and all B ∈ Args (�) , if

bd (B) ∪ cl (B) ⊆ clset (E ) then B ∈ E . 

(free precedence) for all E ∈ Ext s ( AS (�)) , Args (� \ ⋃ 

mi (�)) ⊆
E . 

The following properties shown in Propositions 7.17, 7.18 , and

7.19 are due to Amgoud in Amgoud (2014) . 

Proposition 7.17 (( Amgoud, 2014 )) . Given AS (�) = 〈 Args (�) , R 〉 , if
R is conflict-dependent and Ext s ( AS (�)) � = ∅ then AS ( �) satisfies the

postulate of (free precedence) for any semantics s . 

Proposition 7.18 (( Amgoud, 2014 )) . Given AS (�) = 〈 Args (�) , R 〉 , if
any of the following is satisfied then AS ( �) satisfies the postulate of

(closure under subarguments) for any semantics s : 

1. An attack relation R satisfying R 1 and R 2 , 

2. An attack relation R which is shown to be conflict-dependent and

sensitive, 

3. An AS AS ( �) satisfying Ext s ( AS (�)) � = ∅ and for all E ∈
Ext s ( AS (�)) , it holds E = Args ( base (E )) , 

Proposition 7.19 (( Amgoud, 2014 )) . Given AS (�) = 〈 Args (�) , R 〉 , if
R is conflict-exhaustive and E = Args ( base (E )) then AS ( �) satisfies

the postulates of (closure under consequence) and (consistency) for

any semantics s . 
Proposition 7.17 is perfectly applied to GenAF s given that we

ave shown it to be conflict-dependent in Proposition 7.13 . Thus,

enAF s guarantee the postulate of (free precedence) for any se-

antics excepting the stable whenever it triggers the empty

et. Regarding the postulate of (closure under subarguments),

roposition 7.18 shows it through any of its three alternative items.

s we have seen before, GenAF s do not satisfy the attack proper-

ies of R 1 and conflict-sensitive, which makes impossible to ver-

fy the mentioned postulate through items 1 and 2. Thus, the al-

ernative seems to be the verification of item 3. Moreover, ver-

fying such item would also allow guaranteeing the postulates

f (closure under consequence) and (consistency), according to

roposition 7.19 . However, the following example shows that veri-

ying E = Args ( base (E )) may be not so trivial, and moreover, it will

e clear that this is actually a main inconvenience that relies upon

ny of the standard semantics for reasoning over logic-based argu-

entation systems. 

xample 16. Assume a KB � = { p, q, ¬ p ∨ ¬ q } where L 

κ is a

- pANF logic, the resulting set of logic-based arguments will

e Args (�) = {B 1 , B 2 , B 3 , B 4 , B 5 , B 6 } , where B 1 = 〈{ p} , p〉 , B 2 =
{ q } , q 〉 , and B 3 = 〈{¬ p ∨ ¬ q } , ¬ p ∨ ¬ q 〉 are the primitive argu-

ents and B 4 = 〈{ p, q } , p ∧ q 〉 , B 5 = 〈{ p, ¬ p ∨ ¬ q } , p ∧ (¬ p ∨ ¬ q ) 〉 ,
nd B 6 = 〈{ q, ¬ p ∨ ¬ q } , q ∧ (¬ p ∨ ¬ q ) 〉 are constructed from com-

ining the primitive ones. Assume also, the following attacks: R =
 (B 1 , B 6 ) , (B 2 , B 5 ) , (B 3 , B 4 ) , (B 4 , B 5 ) , (B 4 , B 6 ) , (B 5 , B 4 ) , (B 6 , B 4 ) } . 
bserve that the set � = {B 1 , B 2 , B 3 } is admissible although

ase (�) | ⊥ . 

The problem presented in Example 16 relies on the construc-

ion of logic-based AF s from arbitrary sets of arguments. It is nec-

ssary to build all possible arguments, including sub and super ar-

uments, in order to ensure that the resulting AF will deliver ra-

ional responses through an argumentation semantics. We say that

 set of arguments is closed whenever it contains all the sub- and

uper-arguments that can be constructed from its arguments. This

nsures an exhaustive construction of arguments from an initial

ase of arguments. We provide such implementation through an

rgumentation closure operator C . 

efinition 7.20 (Argumentation closure) . A set �⊆Args ( �) is

losed iff it holds ( B ∈ � iff B 

′ ∈ �, for all B 

′ � B). 

The following proposition shows that the closure of a set � of

rguments triggers the complete set of arguments that can be con-

tructed using the formulae involved in arguments contained in �.

roposition 7.21. Given a set �⊆Args ( �), � is closed iff � =
rgs ( base (�)) . 

As been shown in Example 16 , the admissibility condition of

 set of arguments violates its own spirit when applied over logic-

ased argumentation systems, i.e. , it does not follow its original in-

ention: to recognize a set of arguments which is conflict-free and

elf acceptable, where conflict-free should be understood as a set

f arguments whose bodies do not entail inconsistency. The rea-

on of such a drawback is probably that the notion of admissibility

as originally formulated for abstract argumentation. Based on the

otion of argumentation closure, we reformulate the abstract no-

ion of admissibility into logic-based admissibility by additionally

equiring the argumentation closure condition. 

efinition 7.22 (Logic-based admissibility) . Given a logic-based AS

 Args ( �), R 〉 , for any set of arguments �⊆Args ( �) we say that � is

logic-based) admissible iff � is closed, conflict-free, and defends

ll its members. For simplicity, when no confusion arise, we get rid

f the prefixal term “logic-based”. 
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Taking into consideration this new form of admissibility for

ogic-based arguments, we reformulate the usual notion of stan-

ard semantics. We will say that a semantics s is a logic-based se-

antics iff s responds to some of the standard argumentation se-

antics but replacing the reference to standard admissibility by

ogic-based admissibility. Thus, for instance, E ∈ Ext s ( AS (�)) is a

omplete (logic-based) extension iff it is (logic-based) admissi-

le and it holds E = F(E ) , where F is the characteristic function.

learly, the set Ext s ( AS (�)) is the set of all the logic-based s -

xtensions of AS ( �) iff s refers to some logic-based semantics. 

xample 17. (Continues from Example 16 ). Under the new defini-

ion of admissibility, we have that � cannot be admissible since it

s not closed. The following admissible sets appear: {B 1 } , {B 2 } , and

B 3 } . Note that the sets {B 1 , B 2 , B 4 } , {B 1 , B 3 , B 5 } , and {B 2 , B 3 , B 6 } ,
re not admissible given that although they are closed and conflict-

ree, none of them defends all its members. 

In Examples 16 and 17 , argument B 3 attacks B 4 , however, note

hat although B 4 is constructed by only referring to arguments

 1 and B 2 , the set {B 1 , B 2 , B 3 } is an admissible extension (un-

er classical admissibility) and also closed under subarguments.

his depreciates the utility of the postulate of closure under sub-

rguments, which does not accomplish with its objective proposed

n Amgoud (2014) . The inconvenience seems to be its inability to

ake reference to superarguments. For that reason, we propose

o harness such postulate –making it more restrictive– by relying

pon argumentation closure as follows. 

efinition 7.23 (Closure Postulate for a logic-based AS) . Given

S (�) = 〈 Args (�) , R 〉 : 
(closure) for all E ∈ Ext s ( AS (�)) , B ∈ E iff B 

′ ∈ E, for all B 

′ � B.

emark 7.24. Given AS (�) = 〈 Args (�) , R 〉 , if AS ( �) guarantees the

ostulate of (closure) then it also guarantees the postulate of (clo-

ure under subarguments). 

The following lemmata show the implications of relying upon

ny logic-based semantics regarding the argumentation postulates.

emma 7.25. Given AS (�) = 〈 Args (�) , R 〉 , if s is some logic-based

emantics then AS ( �) guarantees the postulates of (closure), (closure

nder consequence), and (exhaustiveness). 

emma 7.26. Given AS (�) = 〈 Args (�) , R 〉 , if s is some logic-based

emantics and R is conflict-exhaustive then AS ( �) guarantees the pos-

ulate of (consistency). 

The following theorems expose the conditions by which a GenAS

uarantees the argumentation postulates. 

heorem 7.27. Given a GenAT τ = 〈 �, π, panf π , �, atom 

[ π, �] 
〉 ∈ T

nd the GenAS genas (τ ) = 〈 δ, S δ, R δ〉 ∈ G , if L 

κ is a π- pANF logic, L cl 

s parallel-complementary logic, � has no tautologies, the GenAF δ
s closed under transposition, � ⊆ { ω 

1 
π , ω 

2 
π } where ω 

1 
π and ω 

2 
π are

tom constraint functions modeling AC 1 and AC 2 , respectively, and

 is a logic-based semantics then lbas ( genas (τ )) = 〈 B , T 〉 is a logic-

ased AS guaranteeing the argumentation postulates of (closure), (clo-

ure under consequence), (consistency), and (exhaustiveness). 

heorem 7.28. Given a GenAT τ = 〈 �, π, panf π , �, atom 

[ π, �] 
〉 ∈ T

nd the GenAS genas (τ ) = 〈 δ, S δ, R δ〉 ∈ G , if L 

κ is a π- pANF logic, L cl 

s parallel-complementary logic, � has no tautologies, the GenAF δ
s closed under transposition, � ⊆ { ω 

1 
π , ω 

2 
π } where ω 

1 
π and ω 

2 
π are

tom constraint functions modeling AC 1 and AC 2 , respectively, s is

 logic-based semantics, and Ext s ( AS (�)) � = ∅ then lbas ( genas (τ )) =
 B , T 〉 is a logic-based AS guaranteeing the five argumentation postu-
ates. 
. Related and future work 

As we have mentioned in the introductory section, this ar-

icle presents the definitive results of our proposal of general-

zation of Dung’s AFs through Generalized Argumentation Frame-

orks ( GenAF s). The preliminary approaches to a GenAF were given

n Moguillansky et al. (2009) where we proposed the idea of gen-

ralization through the consideration of an argument language. Af-

erwards, in Moguillansky et al. (2010a) we proposed the analysis

f GenAF s upon ALC DLs. To that end, we considered Bienvenu’s

tudies upon prime implicates as a way of normalizing the un-

erlying knowledge base for constructing the corresponding GenAF .

he proposal done in Rotstein et al. (2010) simply refers to the

onstruction of argumental structures as a way for structuring ar-

uments. However, the focus of that article is different, since it re-

ies upon the study of dynamics in abstract argumentation. In the

resent article, we introduce a new recursive perspective for the

onstruction of argumental structures and a final refinement on

he proposals made in Moguillansky et al. (2010a , 2009) . Finally,

n Section 7 , the argumentation machinery is studied on the light

f the argumentation postulates proposed in Amgoud (2014) . 

Several argumentation systems inherit Dung’s semantics and

se this approach to obtain the accepted arguments; among

hem we can mention Assumption-Based Argumentation (ABA)

 Bondarenko et al., 1997; Bondarenko et al., 1993 ) and AS-

IC+ ( Prakken, 2010 ). ABA is a framework developed to cover

pproaches to default reasoning formulated in the early 90s

 Bondarenko et al., 1997; Bondarenko et al., 1993 ); represents a

eneralization of THEORIST ( Poole, 1988 ) which allows any theory

ormulated in a monotonic logic to be extended by a defeasible

et of assumptions. ABA combines Dung’s preferred extension se-

antics for logic programming in argumentation-theoretic terms,

nd the foundations of abstract argumentation; since ABA is an in-

tance of abstract argumentation, all semantic notions for deciding

he “acceptability” of arguments readily apply to arguments pro-

uced in ABA. Furthermore, ABA is a general-purpose argumenta-

ion framework that can be instantiated to support various appli-

ations and specialized frameworks, including: most default rea-

oning frameworks and problems in legal reasoning, game-theory,

ractical reasoning, and decision-theory. However, ABA builds ac-

ual arguments as deductions supported by assumptions by using

nference rules in an underlying logic. The ASPIC+ system ( Prakken,

010 ) is a general framework for argumentation-based reasoning

hich aims to define a wide class of argumentation frameworks

nd, like ABA, uses Dung’s semantics as the mechanism to decide

cceptability. The system makes use of strict and defeasible rules,

nd arguments are defined as inference trees formed by applying

hese two forms of inference rules. As in ABA and ASPIC+, GenAF

elies on Dung’s semantics, still we can find several differences.

hen comparing GenAF with these two systems a particular differ-

nce that is worth to mention is the level of abstraction regarding

he representation language; by taking advantage of this charac-

eristic, GenAF can be instantiated on different representation lan-

uages in a similar way as we did here for the ALC DL. 

Abstract Dialectical Frameworks (ADFs) ( Brewka, Strass, Ellmau-

haler, Wallner, & Woltran, 2013; Brewka & Woltran, 2010 ), rep-

esent a research line that generalizes Dung’s abstract argumenta-

ion frameworks by associating to each node in the argumentation

raph an acceptance condition. An ADF is a directed graph where

he nodes represent statements or positions which can be accepted

r not. The edges in the graph represent dependencies: the sta-

us of a node depends just on the status of its parents, which are

he nodes with a direct link to it; additionally, each node has an

ssociated acceptance condition that specify the exact conditions

nder which the node is accepted. This framework permits model-

ng different forms of dependencies among the different arguments
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such as support and attack, as well as more general forms of argu-

ment interaction can be represented, e.g. some form of accrual can

be introduced; to obtain the acceptability semantics, the standard

Dung’s semantics is generalized to ADFs. From this description, it

is clear that GenAF represents a different approach where the struc-

ture of the arguments matters. Nevertheless, GenAF can be used be-

low an ADF by producing the arguments that label the nodes. This

could be considered an interesting merge of both lines of research.

Logic-associated abstract argumentation frameworks (LAAF)

( Dung & Thang, 2014 ) are defined by associating abstract argumen-

tation with abstract logics which serve well for the representation

of arguments’ claims in an abstract manner. This characteristic is

very similar to the idea we propose for the specification of an AL-

Framework. As we did here through the use of satisfiability check-

ing, abstract logics’ properties like weak and strong absurdity seem

to fit well for specifying conflicts by abstracting away from refer-

ring to complementary literals. (Dung & Thang, 2014) shows that

LAAFs capture ASPIC-like systems (without preferences) and ABA,

and even provides an equivalent translation from the former to the

latter. In addition, authors present certain properties under which

LAAFs guarantee closure and consistency properties in a quite sim-

ilar way as done here regarding conflict-dependence and conflict-

exhaustive attack relations, and parallel-complementary logics. The

main difference between LAAFs and GenAF s is that in our approach

the generalization of the language brings the alternative to concen-

trate on structuring inner components of arguments for establish-

ing direct relations with normalization methods for the underlying

knowledge base. On the other hand, although we did not provide

translations to ASPIC+ or ABA, GenAF s has been shown to guaran-

tee some logic-based argumentation postulates under specific con-

ditions. This allows to presume GenAF s’ equivalence with any other

argumentation system which can be shown to behave as a stan-

dard logic-based argumentation system. 

The GenAF shares some characteristics with Bipolar Argumenta-

tion Frameworks (BAF) ( Amgoud, Cayrol, & Lagasquie-Schiex, 2004;

Amgoud et al., 2008 ; Cayrol & Lagasquie-Schiex, 2005 ). Bipolar-

ity refers to two kinds of interactions between arguments: sup-

port and conflict. In a Coalition Argumentation Framework (CAF)

( Cayrol & Lagasquie-Schiex, 2010 ), coalitions of arguments are built

to effect support and attack. Acceptability semantics are developed

preserving some properties of Dung’s AF . CAFs intend to gather as

many arguments as possible in a coalition, which cannot be bro-

ken afterwards for defense purposes. This is a significant differ-

ence with the GenAF , in which argumental atoms within claim-

coalitions may participate simultaneously in other claim-coalitions

for support purposes only. Another difference with GenAF s is that

BAFs and CAFs are defined at an almost complete abstract level,

i.e. , no assumptions are made on the nature of arguments; thus,

no language for arguments is provided. As in Dung’s seminal work

on AF s, this allows to concentrate mostly on the study of the ar-

gumentation semantics; however, the problem of reasoning over

inconsistent knowledge bases is not analyzed. 

A collective argumentation framework ( Bochman, 2003; Nielsen

& Parsons, 2006 ) is an abstract framework built from a set of ar-

guments and an attack relation between sets of arguments. There,

a set of arguments can attack other arguments, but contrary to

our approach, this relation is not reducible to inner attacks. This

is more similar to the assumptions done in CAFs, where the no-

tion of coalition is considered as a whole and its members cannot

be used separately in an attack relation. Although both propos-

als are similar (both define semantics on subsets of arguments),

Nielsen and Parsons’ ( Nielsen & Parsons, 2006 ) allows sets of ar-

guments to attack single arguments only, and uses similar Dung’s

semantics, whereas Bochman’s ( Bochman, 2003 ) proposal for ar-

gumentation semantics gives new specific definitions for stable

and admissible sets of arguments. Differences with the GenAF are
imilar to those with CAFs, based on the abstraction level and

he atomicity of coalitions. On the other hand, similarities with

ochman’s approach rely on the objective of building arguments

rom a type of restricted knowledge bases, namely disjunctive logic

rograms. By taking into consideration the similarities of collec-

ive argumentation frameworks and CAFs, an interesting related

ine of research for enriching GenAF s is to define an attack relation

pon sets of arguments. This sort of attack relation may be quite

dvantageous for non-parallel-complementary logics. As shown in

ection 7 , a conflict-exhaustive attack relation only can be ensured

nder parallel-complementary logics (see Proposition 7.15 ). How-

ver, an attack relation based on collections of argumental structures

ay bring a solution by modeling conflicts that appear from/to a

et of arguments in contrast to the restrictive attack relation be-

ween pairs of arguments. 

A similar approach is the one presented by García and Simari

2004) , under the name of Defeasible Logic Programming (DeLP):

n argumentation based machinery for reasoning about a special-

zed horn-style knowledge bases, defeasible logic programs . Simi-

ar to the construction of argumental structures in the GenAF , an

rgument in DeLP is built from a defeasible logic program as a

elf conclusive piece of knowledge achieving its claim. Semantics

re query-based, that is, upon a query an argument supporting

t is built, and thereafter a tree (rooted in the query supporter)

f defeaters is constructed; then, the tree is analyzed through an

cceptability criterion by marking its nodes, i.e. , the arguments.

hese trees are a sub-graph of the ones resulting from a com-

lete attack relation à la Dung, and constitutes a different sort of

emantics which are better suited for real applications due to its

onstruction upon queries. Future work on GenAF s’ semantics also

nvolves the application of dialectical trees of GenAF -arguments. 

In Gorogiannis and Hunter (2011) , some problems were inves-

igated for preventing bad uses of conflict relations; for instance,

ith classical logic and direct undercuts without restrictions, if the

nowledge base is inconsistent any argument can be shown to

e in a preferred extension. This means that such a combination

ay end up being too credulous and therefore the instantiation of

he framework would not tell us anything useful. However, these

ort of drawbacks usually come from the use of an unrestricted

ogic. GenAF s are able to avoid them through an appropriate spec-

fication of the argument language. For instance, the mentioned

roperty holds for direct undercuts by verifying that the claim

f an argument entails the negation of some formula included in

he second argument (postulate D 1 ′ in Gorogiannis and Hunter

2011) ). GenAF s avoids this inconvenience by checking unsatisfia-

ility of a set containing a premise of an argumental structure and

he claim of a second argumental structure. In this manner, we

void recognizing conflicts via opposed formulæ which is a prob-

em for reasoning about description logics: negation of DL-axioms

ay fall out of the scope of the language. For that reason, we rely

pon unsatisfiability checking of dismembered parts of formulæ,

hich allows us to abstract away from such inconveniences of

yntax. 

A study about characterizations of conflicts, argumentation ra-

ionality and their implications has been done for GenAF s in this

rticle by considering the general behavior characterizations for

ogic-based argumentation proposed in Amgoud (2014) . There, Am-

oud develops a quite exhaustive analysis on the matter of argu-

entation postulates. That work has been essential for showing

he behavior of instantiated GenAF s ( i.e. , GenAS s). In Section 7 we

evelop a deep analysis on this subject with interesting conclu-

ions. For instance, the specification of theoretic conditions under

hich a GenAF is equivalent to a logic-based argumentation sys-

em for guaranteeing the five argumentation postulates proposed

n Amgoud (2014) . Future work on this matter involves the refine-

ent of the essential set of argumentation postulates in order to
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chieve complete representation theorems. That would allow the

onstruction of logic-based argumentation systems by only ensur-

ng the conditions stated through the postulates. 

First-order argumentation was previously studied in Besnard

nd Hunter (20 05, 20 08) . The main difference with the GenAF is

hat as any classic logic-based argumentation system, they build

rguments directly from subsets of the knowledge base, by relying

pon the proof procedure corresponding to the modeled represen-

ation language. These kind of frameworks look simpler than ours;

n contrast, the GenAF enjoys a higher versatility, being possible to

et the argument language framework (AL-framework) for mod-

ling classical logic-based argumentation systems. As aforemen-

ioned, Section 7 covers the conditions for such constructions. On

he other hand, GenAF s have higher granularity which makes them

etter for identifying minimal inconsistency/incoherence sources, 

nd even also for handling knowledge base dynamics such as de-

ugging or change operations. In this sense, our proposal is more

imilar to that in Vreeswijk (1997) , were GenAF ’s argumental atoms

re comparable to their arguments since they are interpreted as

aterial conditionals (implications “ → ”) in classical logic. Never-

heless, no notion of deduction nor conflict for FOL interpretations

re analyzed in Vreeswijk (1997) . 

Knowledge base compilation towards efficient argumentation

as also studied by Besnard and Hunter in Besnard and Hunter

2006) . These authors rely upon their first-order argumentation

ystem ( Besnard & Hunter, 2005 ) to apply compilation techniques

o construct arguments more efficiently from the given knowledge

ase. The argumentation semantics they adopt is based on trees

f arguments, similar to García and Simari (2004) . We are inter-

sted in their techniques for knowledge base compilation and al-

orithms for constructing arguments to eventually implement an

pplied GenAF . 

The usage of a comparison criterion as done for GenAF s, might

e related to Preference-based Argumentation Frameworks (PAFs)

 Amgoud & Cayrol, 2002 ). However, the main objective here is

nly to provide a tool for avoiding, if necessary, the construction

f symmetric rebuttals. Moreover, PAFs relying on non-symmetric

ttack relations ( Amgoud & Vesic, 2009 ) may avoid modeling at-

acks between conflicting arguments. This is a clear difference

ith our usage of a comparison criterion. GenAF s, however, can-

ot avoid the construction of symmetric undercuts. The justifica-

ion of such a problem is also related to the discussion presented

n Section 7 with regards to the direction of attacks for construct-

ng conflict-sensitive attack relations. 

Argumentation is an alternative for reasoning over inconsis-

ent ontologies. This can be implemented by referring to stan-

ard DLs reasoners for reasoning about consistent contexts, while

n argumentation machinery would provide the specialized ex-

ension for dealing with inconsistent blocks of knowledge from

he base. For the standard (consistent-based) reasoning machin-

ry, although reasoning about DLs is mostly of a high computa-

ional complexity, specialized algorithms perform well in practice

or the general case. Novel less expressive description languages

ppear for improving the computational cost of reasoning. Theo-

ies for reasoning over inconsistent ontologies look for optimiza-

ion methods with considerable success for diminishing compu-

ational costs. Knowledge compilation provides an interesting al-

ernative for improving reasoning efficiency admitting an initial

reprocessing cost; for instance, the case of unfoldable ALC con-

titutes another example of knowledge base compilation for on-

ologies, where the subsumption problem turns from EXPTIME-

omplete to PSPACE-Complete in the case of unfolded axioms. The

ienvenu’s prime implicate normal form for ALC DLs ( Bienvenu,

008 ) is a nice alternative; while the transformation involves an at

ost doubly-exponential blowup in concept length, the subsump-

ion problem turns into polynomial. 
On the other hand, the GenAF machinery here proposed

or inconsistency-tolerant reasoning, can be an argumentation-

ased alternative for the well-known inconsistency-tolerant se-

antics used for ontology reasoning. Inconsistency-tolerant se-

antics ( Lembo, Lenzerini, Rosati, Ruzzi, & Savo, 2010; Lembo &

uzzi, 2007 ) are also referred as repair-based semantics (as seen

n Database Theory ( Chomicki, 2006 )), where a repair is obtained

y applying a minimal set of changes for restoring consistency.

ince many possible repairs can appear, the approach decides that

hat is true should be so in all possible repairs of the base. Thus,

nconsistency-tolerant query answering computes the answer to

 query in all possible repairs. That property is fundamental for

he ABox Repair (AR) Semantics and all its variants: Intersection

Box Repair (IAR), Closed ABox Repair (CAR) , and Intersection Closed

Box Repair (ICAR) . In Rosati (2011) the computational complexity

or reasoning over inconsistent ALC ontologies has been shown

o correspond to EXPTIME under any of the repair-based seman-

ics. The obvious difference between repair-based semantics and

he argumentation-based alternative is that consistency restoration

s avoided in the latter. This property is mandatory in some re-

earch areas in which inconsistencies are not necessarily repre-

entational errors. For instance, knowledge bases representing con-

epts of medicine or law are probably the most notorious ones for

hich consistency restoration is specially avoided. However, the

omputational complexity that is reduced by avoiding calculating

ach repair is faced once again when constructing the set of argu-

ents for deciding the query. 

Moguillansky, Wassermann, and Falappa (2010b) proposed a

ethodology for constructing the defeaters of a given ALC -
rgument based on the well known axiom pinpointing techniques

roposed in Schlobach et al. (2007) for debugging unfoldable ALC 
ntologies. That methodology is shown to be in PSPACE, which cor-

esponds to the same complexity class of Schlobach’s debugging

ethodology. This is useful for reasoning upon dialectical trees,

here the tree is constructed upon a root argument supporting

he query. On the other hand, argumentation semantics based on

rah of arguments like Dung-standards’ face a new computational

nstance beyond the graph construction. For example, the complex-

ty results in abstract argumentation for stable semantics are due

o Dimopoulos and Torres (1996) , where credulous acceptance has

een shown to be in NP-Complete, while for the skeptical case, it

orresponds to co-NP-Complete. In this sense, the research for the

ase of logic-based argumentation is still under way, and is part

f the motivation for new appearing restrictions on the underlying

anguage for representing knowledge. For instance, the construc-

ion of defeaters proposed in Moguillansky et al. (2010b) relies

pon Schloback’s axiom pinpointing which is based on a tableaux

echnique, a sort of chase procedure. A well known inconvenience

ith chase procedures applied to unrestricted FOL is that they

ight not end. For controlling such kind of situations some re-

trictions are usually imposed to the adopted description language

nd/or to the query expressiveness. That is the purpose, for in-

tance, for restricting the usage of functional symbols in FOL or for

elying upon sets of FOL formulæ enjoying the bounded-treewidth

odel property ( Goncalves & Grädel, 20 0 0 ) for ensuring that check-

ng satisfiability keeps being decidable. For more details on decid-

bility of query evaluations and non-termination of chase proce-

ures, the interested reader is referred to Calì, Gottlob, and Kifer

2013) . Future work in this direction includes the proposal of opti-

ized algorithms for the construction of arguments and defeaters

owards a complete analysis of the computational costs for con-

tructing the argumentation machinery and processing an argu-

entation semantics. 

Regarding software implementations, several argumentation- 

ased applications are actually available for studying argumenta-

ion semantics’ empirical behavior while pursuing computational
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efficiency. For a brief compendium, the reader can refer to Thimm

et al. (2016) . However, to our best knowledge, no machinery is

actually running for reasoning over inconsistent ontologies, be-

yond the experimental partial application reported in Rahwan and

Banihashemi (2008) . Recently, in Bex, Snaith, Lawrence, and Reed

(2014) a software was reported for building an argumentation base

from web blogs for constructing debate and discussions. However,

the reasoning machinery is not based upon description logics. 

9. Conclusions 

A novel argumentation framework was presented as a general-

ization of the classical Dung’s AF ( Dung, 1995 ), named through the

acronym GenAF . The proposal of the GenAF keeps the abstraction

on the logic used to represent knowledge inside arguments while

specifying an argument language to give some inner-structure to ar-

guments. This allows a generalized form of abstract argumentation

which is able to adapt to any knowledge representation language

known to conform to some first-order logic (FOL) fragment. There-

fore, a GenAF aims at providing a straightforward reifiable argu-

mentation framework for reasoning about inconsistent knowledge

bases (KBs). A main characteristic of GenAF s is that formulæ from

the underlying KB are interpreted as argumental atoms. To this

end, the KB is required to conform to a pre-argumental normal form

for obtaining a related GenAF . Upon such necessity, we proposed

the usage of knowledge compilation techniques, such us ( Bienvenu,

20 08; Darwiche & Marquis, 20 02 ) among others, as a way of trans-

forming a knowledge base towards efficient querying; in this man-

ner, although an expensive preprocessing cost is faced, compensa-

tion will be acquired through computational savings made on later

reasoning process upon GenAF . 

Applying a GenAF to handle a specific representation language

for reasoning over an underlying knowledge base, requires the con-

cretization of the argument language, which involves both con-

crete sublanguages for claims and premises. We introduce the no-

tion of coalition , which is a structure capable of grouping several

atoms for inferring a new claim. From this discussion, becomes

clear that GenAF ’s argumental atoms play a smaller role than argu-

ments in classic argumentation frameworks: they are aggregated

into structures towards the achievement of a specific claim. The

idea behind the aggregation of atoms within a structure is simi-

lar to that of sub-arguments ( Martínez et al., 2007 ). A GenAF con-

siders two different kinds of structures: full arguments , which are

self-conclusive, as usual arguments in frameworks like ( Besnard &

Hunter, 20 05; 20 08 ) among others; and potential arguments , which

cannot achieve their claims unless their premises are supported.

Note that instantiation of variables within a potential argument

may occur as a consequence of its premises being supported, giv-

ing rise to full arguments. 

Defeats in a GenAF are defined from pairs of conflictive struc-

tures rendering two different classes of attack relations: between

full arguments and between potential arguments. The two types

of attacks stand for identifying two kinds of conflicting sources of

information from the underlying knowledge base; that is, inconsis-

tency and incoherence ( Flouris et al. 2006 ). Intuitively, a source of

incoherence from a KB is a piece of information that, although it

does not infer inconsistency, it admits only empty interpretations

for any model of the KB; thus, in a consistent KB, incoherence can

appear unveiling a kind of “pre-inconsistency”. Coping with inco-

herences is an important matter in the area of ontology debugging

and repairing. 

As aforementioned, GenAF ’s versatility allows to cope with dif-

ferent logics for arguments. In particular, the reification of the ab-

stract argument language into the ALC description language ren-

ders an interesting methodology for ontology reasoning without

the need to repair nor debug the ontology, thus bringing a way
o reason on top of inconsistencies. This allows to avoid loosing

nowledge which is of utmost relevance in areas of application like

edicine and law where knowledge bases are naturally expected

o be inconsistent. 

The argumentation machinery proposed here is semantically

etermined –by the standard set theoretic Tarskian semantics. This

llows to propose further implementations relying on some pre-

erred reasoner engine; for instance, an ALC - GenAF may be han-

led via tableaux techniques which are usually used to implement

ntology reasoners. On the other hand, the implementation of an

LC - GenAF could be developed straightforwardly, over the normal-

zed ALC ontology, emulating the argumentation machinery. This

s possible given that ALC axioms are interpreted as argumental

toms in the GenAF , and therefore, the normalized ontology serves

s a repository of atoms for the argumentation machinery to work.

Regarding argumentation rationality, the five postulates pro-

osed in Amgoud (2014) has been shown to be guaranteed for

 GenAS under specific conditions. A GenAS constructed upon a

- pANF logic, brings a direct relation between the inner structure

f arguments and formulæ in the underlying knowledge base, but

lso ensures a manageable set of arguments. In this sense, the

umber of alternative conclusions that an argument’s body may

rigger is kept considerably low since claims are restricted to a

pecific normal form. Also, tautologies has been shown in Amgoud

2014) to be a real drawback in logic-based argumentation systems

ince they cannot be plausible conclusions. A GenAS guaranteeing

he five postulates prohibits tautologies for avoiding being part

f the conclusions of a system. In addition, the underlying GenAF

hen providing the constraints of consistency and non-circularity

ay avoid unnecessary construction of inconsistent and/or tauto-

ogic argumental atoms. Finally, we have shown that the five ar-

umentation postulates are guaranteed under logic-based seman-

ics . This specialized semantics for logic-based argumentation sys-

ems ensures a complete construction of extensions. Standard se-

antics has been formalized mainly for abstract argumentation.

or that reason, under certain circumstances classical admissibil-

ty may bring sets of arguments constructed from an underlying

ource of inconsistency. The problem is solved through the defini-

ion of logic-based admissibility which ensures extensions where

ll the possible arguments are involved. 
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ppendix 

emma 5.4. Given a GenAT τ = 〈 �, π, panf π , �, atom 

[ π, �] 
〉 ∈ T and

he GenAS genas (τ ) = 〈 δ, S δ, R δ〉 ; if � is consistent then C δ = ∅ . 

roof. By reductio ad absurdum , we assume � is consistent but

 δ � = ∅ . We also assume (S 1 , S 2 ) ∈ C δ, where S 1 ∈ S δ and S 2 ∈ S δ
re full arguments, and we know both structures are either rebut-

als or undercuts. However, in the case they are undercuts, from

efinition 4.8 , we know there is some S ′ 2 � S 2 such that (S 1 , S ′ 2 ) ∈
 δ is a rebuttal. This means that { cl (S 1 ) , cl (S ′ 2 ) } | ⊥ . Afterwards,

rom Definition 5.3 , we know that base ({S 1 , S ′ 2 } ) ⊆ panf π (�) holds

nd since base ({S 1 } ) | cl (S 1 ) and base ({S ′ 2 } ) | cl (S ′ 2 ) , afterwards

ase ({S 1 , S ′ } ) | { cl (S 1 ) , cl (S ′ ) } and thus base ({S 1 , S ′ } ) | ⊥ hold.

2 2 2 
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t is easy to see that ��⊥ , i.e., KB s inconsistent which is absurd.

inally, C δ = ∅ holds. �

heorem 5.6. Given a GenAT τ = 〈 �, π, panf π , �, atom 

[ π, �] 
〉 ∈ T

nd the GenAS genas (τ ) = 〈 δ, S δ, R δ〉 ; if � is coherent and consistent

hen R δ = ∅ . 

roof. By reductio ad absurdum , we will assume � is coherent and

onsistent, but R δ � = ∅ . From Lemma 5.4 , we know that C δ = ∅
ence, from Definition 4.10 we know that for any (S 1 , S 2 ) ∈ R δ, at

east one of the structures S 1 or S 2 is a potential argument. More-

ver, from Definition 4.8 , three options arise: either (1) S 1 rebuts

 2 , (2) S 1 directly undercuts S 2 , or (3) S 1 undercuts S 2 . 
We will assume without loss of generality, that (S 1 , S 2 ) ∈ R δ is

 base attack, that is, for any S ′ 
1 
� S 1 and any S ′ 

2 
� S 2 such that

(S ′ 1 , S ′ 2 ) ∈ R δ, it holds S ′ 1 = S 1 and S ′ 2 = S 2 . Said this, we know that

ase 3) is subsumed by case 1). 

For (1), we know { cl (S 1 ) , cl (S 2 ) } | ⊥ and that there is at

east one of both structures which is a potential argument. This

eans that pr (S 1 ) ∪ pr (S 2 ) is non-empty, which means that for

ach ρ ∈ pr (S 1 ) ∪ pr (S 2 ) we can assume the existence of a for-

ula ϕ ∈ base ({S 1 , S 2 } ) such that ϕ has the form ρ ∧ ρ1 ∧ . . . ∧
n → β ( π- pANF formula). It is easy to see that for any model

of base ({S 1 , S 2 } ) , we have that ( pr (S 1 ) ∪ pr (S 2 )) I = ∅ . After-

ards, for every formula ϕ, we have that ρI ∩ ρI 
1 

∩ . . . ∩ ρI 
n = ∅ .

his means that the free premises cannot be supported since

t would trigger the inconsistency determined by the conflict of

laims { cl (S 1 ) , cl (S 2 ) } | ⊥ . Hence, � is incoherent which is again

bsurd, and hence, S 1 cannot rebut S 2 . 
For (2), we have that { cl (S 1 ) , ρ} | ⊥ , where ρ ∈ pr (S 2 ) (see

efinition 4.8 ), and thus { cl (S 1 ) , ρ} is unsatisfiable, which means

hat cl (S 1 ) I ∩ ρI = ∅ for every model I of base ({S 1 , S 2 } ) . Hence,

e can assume there is a formula ϕ ∈ base ({S 2 } ) that has the form

∧ ρ1 ∧ . . . ∧ ρn → β ( π- pANF formula). It is clear that ρI ∩ ρI 
1 

∩
 . . ∩ ρI 

n = ∅ . Hence, � is incoherent which is absurd. Finally, S 1 
annot be a direct undercut of S 2 . 

Finally, it is clear that R δ = ∅ holds. �

roposition 5.13. Given a GenAS 〈 δ, S δ, R δ〉 ∈ G , if S ∈ S δ then

ase ({S} ) | ( 
∧ 

pr (S)) → cl (S) . 

roof. By reductio ad absurdum , we assume that base ({S} ) |
( 
∧ 

pr (S) → cl (S)) does not hold. This means that there is

n interpretation I that makes all the formulæ in base ({S} )
rue and that the same interpretation does not make true

( 
∧ 

pr (S) → cl (S)) . Hence, for all ϑ ∈ base ({S} ) , ϑ 

I is non-empty

ut ( 
∧ 

pr (S) → cl (S)) I = ∅ . Let’s analyze the construction of S .

rom Definition 4.5 , we have that there is a claim-coalition C for

l (S) , and from Definition 4.2 , that clset ( bd (C)) |(I, v ) cl (S) and

r (C) = prset ( bd (C))[ v ] , which means that the left-hand side of ev-

ry formulæ in base ( bd (C)) has been substituted in the same man-

er that their right-hand sides has and that the coalition’s claim

as for reaching cl (S) . All the substituted left-hand sides are the

remises of C. In Definition 4.5 , some of such premises are sup-

orted by a set � ⊆ L cl , where each α ∈ � is the claim of another

rgumental structure, i.e. , the supporting structures of S . (We rely

pon a set � given that we are working with a legal argument lan-

uage, thus from Definition 3.6 , condition 1, we have that for any

∈ �, there is a set � ⊆ L cl such that ��ρ .) By Definition 4.3 we

ave that � |(I, v ) ρ, where ρ ∈ pr (C) . This means that there is

n interpretation I and a substitution v through which each claim

n � is true and also is made true ρ . The same interpretation is

lso used for each of the premises of C that is supported via a

et of supporting structures. Afterwards, the unsupported premises

f C along with the premises of the supporting structures consti-

ute the premises of the structure S which are still unsupported

free premises wrt. bd (S) ). This means that every interpretation I
hich is a model of each formula ϑ ∈ base ({S} ) is also a model

f cl (S) and therefore, cl (S) I is non-empty as well. Observe that

or each premise ρ ∈ pr (S) there is a formula (ρ ∧ ρ1 ∧ . . . ∧ ρn →
) ∈ base ({S} ) , that as we said, has a non-empty interpretation I,

.e. , (ρ ∧ ρ1 ∧ . . . ∧ ρn → α) I � = ∅ . Afterwards, (ρ ∧ ρ1 ∧ . . . ∧ ρn ) 
I ⊆

I , and thus ( 
∧ 

pr (S)) I ⊆ cl (S) I , for a non-empty interpreta-

ion model I, which is equivalent to say that I is a model of

( 
∧ 

pr (S)) → cl (S) . This means that ( 
∧ 

pr (S) → cl (S)) I � = ∅ , which

s absurd. �

heorem 5.14. Given a knowledge base � ⊆ L 

κ and a π- pANF for-

ula ϑ ∈ L 

κ , if � is coherent and consistent then ��ϑ iff � |≈[ τ, s ] 

. 

roof. Assuming s as any of the standard semantics in

efinition 5.10 , we have at least the grounded extension

 ∈ ext s ( genas (�)) which is the least fixed point of the char-

cteristic function, i.e. , F(E ) = E . Afterwards, it is easy to see

hat E = S δ given that R δ = ∅ (see Theorem 5.6 ). For any formula

 ∈ L 

κ , if ��ϑ holds then we can assume there is an argumental

tructure S ∈ S δ such that ( 
∧ 

pr (S)) → cl (S) = ϑ . Finally, since

 = S δ, we have that S ∈ E and given that E is an extension, we

ave that S has no defeaters in E which means that ϑ is warranted

nd thus � |≈[ τ, s ] ϑ . 

On the other hand, if � |≈[ τ, s ] ϑ then from Definition 5.12 ,

e know that there is a structure S ∈ S δ such that ( 
∧ 

pr (S)) →
l (S) = ϑ is warranted. From Proposition 5.13 we know that

ase ({S} ) | ϑ, and since � is consistent/coherent and base ({S} ) ⊆
anf π (�) , we also know that ��ϑ. �

roposition 6.2. Given the AL-framework π ∈ L for ALC , the lan-

uages L pr ::= L and L cl ::= C l| C l(a ) | R (a, b) determine a legal argu-

ent language A π . 

roof. According to Definition 3.6 , for any ρ ∈ L pr there is a set

⊆ L cl such that ��ρ . Since Cl is a disjunction of L , it is always

ossible to verify ��ρ . For the second condition in Definition 3.6 ,

e need to show that for any ALC axiom ϕ (according to the orig-

nal ALC grammar given in Section 6.1 ) there is a set � of axioms

( 
∧ 

�) → α, where � ⊆ L pr and α ∈ L cl , such that ��ϕ. It is easy

o see that ( 
∧ 

�) → α will correspond to an axiom ( 
∧ 

L ) → Cl,

hich is equivalent to Cb → Cl , and considering the ALC seman-

ics given in Section 6.1 , it is also equivalent to Cb � Cl , which is a

- pANF ALC axiom according to Definition 6.1 . Hence, � will con-

ain π- pANF axioms Cb � Cl . We need to show that ��ϕ. To this

nd, assuming ϕ as C � D ; if D is disjunctive and C is conjunctive,

hen C � D has the form Cb � Cl and therefore ��ϕ. Besides, if 1) D

s a conjunctive concept and/or 2) C is a disjunctive concept, two

lternatives arise: assuming for 1) D = D 1 � D 2 , it is easy to see

hat each conjunctive clause in D triggers a different π- pANF axiom,

.e., C � D 1 and C � D 2 . Afterwards, if both D 1 and D 2 are disjunctive

oncepts (and C is a conjunctive concept), then C � D 1 and C � D 2 

re π- pANF axioms Cb � Cl . The case for 2), assuming C = C 1 � C 2 ,

s solved similarly with a pair of axioms C 1 � D and C 2 � D , which

ill be π- pANF axioms Cb � Cl if it is the case that C 1 and C 2 are

oth conjunctive concepts (and D is a disjunctive concept). Finally,

t is easy to see that ��ϕ, and hence, A π is a legal argument

anguage. �

roposition 7.5. Given a GenAS 〈 δ, S δ, R δ〉 ∈ G , if S ∈ S δ then

barg (S) ∈ B is a logic-based argument. 

roof. We need to show that lbarg (S) satisfies the three condi-

ions of a logic-based argument: 1) base ({S} ) | ( 
∧ 

pr (S) → cl (S)) ,

) base ({S} ) �| ⊥ , and 3) there is no X ⊂ base ({S} ) such that X |
( 
∧ 

pr (S) → cl (S)) . 

1) has been proven in Proposition 5.13 . 



166 M.O. Moguillansky, G.R. Simari / Expert Systems With Applications 64 (2016) 141–168 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L  

G  

l  

t

{  

i  

E

P  

{  

D

t  

W  

t  

B  

X  

i  

E

P  

T  

b  

R

P  

r

P  

T  

b  

c

P  

a  

s  

s  

f  

l  

A  

n  

c  

P

c

⊥

P  

T  

b  

L

P  

s  

X  

a  

p  

L  

ϑ  

h  

X  

t  

b  

c  

n  

B

P  

A

For 2), by reductio ad absurdum , we assume that base ({S} ) | ⊥ .

This means that base ({S} ) is unsatisfiable and therefore, that there

is no interpretation model for base ({S} ) which is an absurd given

that we have shown in Proposition 5.13 that such model exists for

reaching the argument’s claim from its premises. Thus, 2) has been

proven. 

To show 3) it is sufficient to refer to minimality (condition 7) in

Definition 4.5 . Afterwards, since there is no structure S ′ such that

bd (S ′ ) ⊂ bd (S ) , cl (S ) = cl (S ′ ) and pr (S) = pr (S ′ ) , we know that

there is no subset X ⊂ base ({S} ) such that X | ( 
∧ 

pr (S)) → cl (S) . 

Finally, it is clear that lbarg (S) ∈ B holds. �

Lemma 7.8. Given a GenAT τ = 〈 �, π, panf π , �, atom 

[ π, �] 
〉 ∈ T , the

GenAS genas (τ ) = 〈 δ, S δ, R δ〉 ∈ G , and the translated logic-based AS

lbas ( genas (τ )) = 〈 B , T 〉 ; if L 

κ is a π- pANF logic, � has no tautologies,

the GenAF δ is closed under transposition, and � ⊆ { ω 

1 
π , ω 

2 
π } where

ω 

1 
π and ω 

2 
π are atom constraint functions modeling AC 1 and AC 2 ,

respectively, then B = Args (�) . 

Proof. Since L 

κ is a π- pANF logic and we know that � ⊂ L 

κ , we

have that � is a π- pANF knowledge base and thus, it follows that

panf π (�) = � holds. We need to show that 1) B ⊆Args ( �) and 2)

Args ( �) ⊆B . 

For 1), by reductio ad absurdum we will assume there is an ar-

gument B ∈ B such that B �∈ Args (�) . From Definition 7.2 we know

that Args (�) = {B ∈ B | bd (B) ⊆ �} . From Proposition 7.5 we know

that B ∈ B , so the only alternative for B �∈ Args (�) is to assume

that there is a formula ϑ ∈ bd (B) such that ϑ �∈ � in order to show

that bd (B) �⊆ � holds. From Proposition 7.5 we know that B is con-

structed from a structure S ∈ S δ where base ({S} ) = bd (B) , so we

have that ϑ ∈ base ({S} ) . Afterwards, from Definition 5.3 , we know

that ϑ ∈ panf π (�) , and since panf π (�) = � holds, we have that ϑ
∈ � which is an absurd. Finally, B ⊆Args ( �) holds. 

For 2), once again, by reductio ad absurdum we will assume

that there is an argument B ∈ Args (�) such that B �∈ B . From

Proposition 7.5 we know that there is no structure S ∈ S δ such that

lbarg (S) = B. Hence, either there is a formula ϑ ∈ bd (B) such that

(a) ϑ �∈ base ({S} ) , or (b) cl (B) � = ( 
∧ 

pr (S) → cl (S)) . 

For a), we know that bd (B) ⊆ �, thus, ϑ ∈ � and since

we know panf π (�) = �, we also have that ϑ ∈ panf π (�) . After-

wards, from Definition 5.3 , we have that for every A ∈ bd (S) , ei-

ther A = atom 

[ π, �] 
(ϕ) or A = atom 

[ π, �] 
(ϕ 

−) holds for any ϕ ∈
panf π (�) . Hence, the alternatives are that A �∈ A where A =
atom 

[ π, �] 
(ϑ 

−) –which is absurd given that by hypothesis we know

δ is closed under transposition– or neither A = atom 

[ π, �] 
(ϑ) nor

A = atom 

[ π, �] 
(ϑ 

−) can be verified. Hence, A �∈ A π given that A =
ε (see Definition 3.12 ). The alternatives are, either A is circular ( i.e. ,

〈 �, α〉 , where ��α) implying that ϑ is tautologic which would vi-

olate the hypothesis, or A is not consistent ( Definition 3.3 ) imply-

ing ϑ�⊥ which would violate consistency from Definition 7.1 and

hence B �∈ Args (�) which is absurd, or there is some constraint

in � which A cannot verify –which again is absurd given that

by hypothesis � models at most AC 1 (consistency) and AC 2 (non-

circularity), for which case we would be violating again either con-

sistency from Definition 7.1 and hence B �∈ Args (�) which is ab-

surd or the hypothesis requiring non-tautologic formulæ. Finally,

ϑ ∈ base ({S} ) . 
For b), since bd (B) = base ({S} ) , in order to verify cl (B) � =

( 
∧ 

pr (S) → cl (S)) we only have the alternative that cl (B) iff

( 
∧ 

pr (S) → cl (S)) . Afterwards, since by hypothesis we know that

L 

κ is a π- pANF logic, we necessarily have that there is no struc-

ture S ′ ∈ S δ such that base ({S ′ } ) | cl (B) , however since bd (B) |
cl (B) and bd (B) = base ({S} ) we know that base ({S} ) | cl (B) . Fi-

nally, S ′ = S which is absurd. Hence, Args ( �) ⊆B holds. 

Finally, B = Args (�) holds. �
emma 7.9. Given a GenAT τ = 〈 �, π, panf π , �, atom 

[ π, �] 
〉 ∈ T , the

enAS genas (τ ) = 〈 δ, S δ, R δ〉 ∈ G , and the translated logic-based AS

bas ( genas (τ )) = 〈 B , T 〉 ; if L 

κ is a π- pANF logic, � has no tau-

ologies, the GenAF δ is closed under transposition, and � ⊆
 ω 

1 
π , ω 

2 
π } where ω 

1 
π and ω 

2 
π are atom constraint functions model-

ng AC 1 and AC 2 , respectively, then warrant C 
[ τ, s ] 

(�) = { clset (E ) |E ∈
xt s ( lbas ( genas (τ ))) } . 
roof. From Definition 5.15 we know that warrant C 

[ τ, s ] 
(�) =

{ ( ∧ 

pr (S)) → cl (S) |S ∈ E }| E ∈ ext C s ( genas (τ )) } . From

efinition 7.7 we know that R is such that for every (S 1 , S 2 ) ∈ R δ

here is (B 1 , B 2 ) ∈ R where B 1 = lbarg (S 1 ) and B 2 = lbarg (S 2 ) .
hich means that for every extension E ∈ Ext s ( lbas ( genas (τ )))

here is an extension E ∈ ext s ( genas (τ )) such that for any

 ∈ E there is S ∈ E , and viceversa. Afterwards, for each

 ∈ warrant [ τ, s ] (�) we have ( 
∧ 

pr (S)) → cl (S) ∈ X which therefore

s equivalent to cl (B) ∈ E . Hence, warrant C 
[ τ, s ] 

(�) = { clset (E ) |E ∈
xt s ( lbas ( genas (τ ))) } . �

roposition 7.12. Given a GenAT τ = 〈 �, π, panf π , �, atom 

[ π, �] 
〉 ∈

 , the GenAS genas (τ ) = 〈 δ, S δ, R δ〉 ∈ G , and the translated logic-

ased AS lbas ( genas (τ )) = 〈 Args (�) , R 〉 , the attack relation R verifies

 2 . 

roof. This demonstration is trivial since (B 3 , B 1 ) can be always a

ebuttal and therefore, (B 3 , B 2 ) is an undercut. �

roposition 7.13. Given a GenAT τ = 〈 �, π, panf π , �, atom 

[ π, �] 
〉 ∈

 , the GenAS genas (τ ) = 〈 δ, S δ, R δ〉 ∈ G , and the translated logic-

ased AS lbas ( genas (τ )) = 〈 Args (�) , R 〉 , the attack relation R is

onflict-dependent. 

roof. Since R is constructed from C δ , any pair in R is a rebuttal or

n undercut. Moreover, since every undercut is constructed from

ome underlying rebuttal, it is sufficient to study only rebuttals

ince its results would be trivially extended to undercuts. Hence,

or any (B 1 , B 2 ) ∈ R we have a pair (S 1 , S 2 ) ∈ C δ such that B 1 =
barg (S 1 ) and B 2 = lbarg (S 2 ) . This means that cl (S 1 ) ∪ cl (S 2 ) | ⊥ .

nd since, both structures are full arguments, we know they have

o free premises. This means that, cl (S 1 ) = cl (B 1 ) and cl (S 2 ) =
l (B 2 ) . Thus, we know that cl (B 1 ) ∪ cl (B 2 ) | ⊥ . However, from

roposition 7.5 we know that bd (B 1 ) | cl (B 1 ) and also bd (B 2 ) |
l (B 2 ) which therefore is sufficient to verify bd (B 1 ) ∪ bd (B 2 ) |
 . �

roposition 7.15. Given a GenAT τ = 〈 �, π, panf π , �, atom 

[ π, �] 
〉 ∈

 , the GenAS genas (τ ) = 〈 δ, S δ, R δ〉 ∈ G , and the translated logic-

ased AS lbas ( genas (τ )) = 〈 Args (�) , R 〉 , if L 

κ is a π- pANF logic and

 cl is parallel-complementary then R is conflict-exhaustive. 

roof. From conflict-exhaustive (see Definition 7.11 ), if X ∈ mi (�)

uch that | X | > 1 then there is X 1 , X 2 ⊂ X such that X = X 1 ∪
 2 and B 1 , B 2 ∈ Args (�) such that bd (B 1 ) = X 1 and bd (B 2 ) = X 2 ,

nd either (B 1 , B 2 ) ∈ R or (B 2 , B 1 ) ∈ R . Since X ∈ mi (�) and � =
anf π (�) we know that X ∈ mi ( panf π (�)) . Also, X �⊥ , and since

 cl is parallel-complementary we know that X �ϑ and X �ϑ′ , where

 , ϑ 

′ ∈ L cl such that { ϑ, ϑ′ } �⊥ . Besides, we know X is minimal,

ence, there are necessarily two sets X 1 , X 2 ⊂ X such that X =
 1 ∪ X 2 and X 1 �ϑ and X 2 �ϑ

′ . Afterwards, we have that there are

wo full arguments S 1 ∈ S δ for ϑ and S 2 ∈ S δ for ϑ′ such that

ase ({S 1 } ) = X 1 and base ({S 2 } ) = X 2 . Also, since their claims are

ontradictory, we know they are rebuttals, hence (S 1 , S 2 ) ∈ C 

b 
δ
. Fi-

ally, from Definition 7.4 , we know lbarg (S 1 ) = B 1 and lbarg (S 2 ) =
 2 , and hence from Definition 7.7 we know (B 1 , B 2 ) ∈ R . �

roposition 7.21. Given a set �⊆Args ( �), � is closed iff � =
rgs ( base (�)) . 
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roof. ⇒ ) We need to prove that if � is closed then � =
rgs ( base (�)) . Besides, from Definition 7.20 we know that ( B ∈ �

ff B 

′ ∈ �, for all B 

′ � B). We need to show 1) � ⊆ Args ( base (�))

nd 2) Args ( base (�)) ⊆ �. 

For 1), by reductio ad absurdum we assume there is an

rgument B 

′ ∈ � such that B 

′ �∈ Args ( base (�)) . The definition

f a base function for logic-based arguments (see page 30)

s base (�) = { ϑ ∈ bd (B) |B ∈ �} . From Definition 7.2 , we know

rgs (�) = {B ∈ B | bd (B) ⊆ �} , and by assuming � = base (�) we

ave that Args ( base (�)) = {B ∈ B | bd (B) ⊆ base (�) } . Then, since

d (B 

′ ) ⊆ base (�) we have that B 

′ ∈ Args ( base (�)) , which is ab-

urd. 

For 2), by reductio ad absurdum we assume there is an argu-

ent B ∈ Args ( base (�)) such that B �∈ �. From Definition 7.2 , we

now that bd (B) ⊆ base (�) . We can assume that for each formula

 ∈ bd (B) there is some argument B 

′ ∈ � such that ϑ ∈ bd (B 

′ ) . Af-

erwards, we can also assume that the primitive argument B 

′′ =
{ ϑ } , ϑ 〉 is such that B 

′′ � B 

′ , and then B 

′′ ∈ � given that � is

losed. Since this holds for every formula ϑ ∈ bd (B) , we know that

ll the primitive subarguments of B are in �. Given that � is

losed, we know that B ∈ � which is absurd. 

⇐ ) We need to prove that if � = Args ( base (�)) then � is

losed. This means that, � contains all the arguments constructible

rom base (�) (see Definition 7.2 ). We need to show: 1) if B ∈ �

hen B 

′ ∈ �, for all B 

′ � B and 2) if B 

′ ∈ �, for all B 

′ � B, then

 ∈ �. For 1), we know bd (B) ⊆ base (�) . Then, for all B 

′ � B we

now that bd (B 

′ ) ⊆ bd (B) and thus bd (B 

′ ) ⊆ base (�) , which means

hat B 

′ ∈ �. The proof for 2) is similar. �

emma 7.25. Given AS (�) = 〈 Args (�) , R 〉 , if s is some logic-based

emantics then AS ( �) guarantees the postulates of (closure), (closure

nder consequence), and (exhaustiveness). 

roof. Since s is some logic-based semantics, any s is based

pon logic-based admissibility. This means that for every exten-

ion E ∈ Ext s ( AS (�)) it holds that E is a logic-based admissible

et, which implies E is closed, self-acceptable, and conflict-free (see

efinition 7.22 ). Thus, (closure) is guaranteed. 

We need to show (closure under consequence) for all E ∈
xt s ( AS (�)) , if clset (E ) | ϑ then ϑ ∈ clset (E ) . By reductio ad ab-

urdum , we assume ϑ �∈ clset (E ) . This means that there is some ar-

ument B ∈ Args (�) such that cl (B) = ϑ but B �∈ E . This is so, given

hat ϑ is inferred from the claims of arguments in E, and thus from

heir bodies, and also given that ϑ ∈ L 

κ . Thus, bd (B) ⊆ E . Since E 
s closed, from Proposition 7.21 we know that E = Args ( base (E )) ,

nd therefore, B ∈ E which is absurd. 

We need to show (exhaustiveness) for all E ∈ Ext s ( AS (�))

nd all B ∈ Args (�) , if bd (B) ∪ cl (B) ⊆ clset (E ) then B ∈ E . From

roposition 7.21 we know that E = Args ( base (E )) , hence B ∈ E . �

emma 7.26. Given AS (�) = 〈 Args (�) , R 〉 , if s is some logic-based

emantics and R is conflict-exhaustive then AS ( �) guarantees the pos-

ulate of (consistency). 

roof. Since E is a logic-based admissible set, we know that E is

losed, hence from Proposition 7.21 , we know E = Args ( base (E )) .

fterwards, from Proposition 7.19 , (consistency) is guaranteed. �

heorem 2.27. Given a GenAT τ = 〈 �, π, panf π , �, atom 

[ π, �] 
〉 ∈ T

nd the GenAS genas (τ ) = 〈 δ, S δ, R δ〉 ∈ G , if L 

κ is a π- pANF logic, L cl 

s parallel-complementary logic, � has no tautologies, the GenAF δ
s closed under transposition, � ⊆ { ω 

1 
π , ω 

2 
π } where ω 

1 
π and ω 

2 
π are

tom constraint functions modeling AC 1 and AC 2 , respectively, and

 is a logic-based semantics then lbas ( genas (τ )) = 〈 B , T 〉 is a logic-

ased AS guaranteeing the argumentation postulates of (closure), (clo-

ure under consequence), (consistency), and (exhaustiveness). 
roof. From Corollary 7.10 we know that lbas ( genas (τ ))

s equivalent to AS ( �). Thus, from Lemma 7.25 we know

bas ( genas (τ )) guarantees the postulates of (closure), (closure

nder consequence), and (exhaustiveness). Afterwards, from 

roposition 7.15 we know that T is conflict-exhaustive, and thus

rom Lemma 7.26 we know lbas ( genas (τ )) guarantees the postulate

f (consistency). �

heorem 2.28. Given a GenAT τ = 〈 �, π, panf π , �, atom 

[ π, �] 
〉 ∈ T

nd the GenAS genas (τ ) = 〈 δ, S δ, R δ〉 ∈ G , if L 

κ is a π- pANF logic, L cl 

s parallel-complementary logic, � has no tautologies, the GenAF δ
s closed under transposition, � ⊆ { ω 

1 
π , ω 

2 
π } where ω 

1 
π and ω 

2 
π are

tom constraint functions modeling AC 1 and AC 2 , respectively, s is

 logic-based semantics, and Ext s ( AS (�)) � = ∅ then lbas ( genas (τ )) =
 B , T 〉 is a logic-based AS guaranteeing the five argumentation postu-

ates. 

roof. From Theorem 7.27 we know lbas ( genas (τ )) guarantees

he postulates of (closure), (closure under consequence), (consis-

ency), and (exhaustiveness). From Proposition 7.13 we know T

s conflict-dependent and from Proposition 7.17 , we also know

hat lbas ( genas (τ )) guarantees (free precedence). Hence, the five

ostulates are guaranteed under the conditions stated by the

ypothesis. �
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