
Science of Computer Programming 150 (2017) 26–30
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Original software publication

SMArtOp: A Java library for distributing high-dimensional 
sparse-matrix arithmetic operations

Antonela Tommasel ∗, Daniela Godoy, Alejandro Zunino

ISISTAN, UNICEN-CONICET, Facultad Cs. Exactas, Campus Universitario, Tandil (B7001BBO), Argentina

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 December 2016
Received in revised form 8 June 2017
Accepted 10 June 2017
Available online 20 June 2017

Keywords:
Big-scale sparse-matrix
Matrix arithmetic operation
Distributed computing

Sparse-matrix operations are commonplace in computational science, and novel solutions 
for speeding-up them are essential for numerous applications. SMArtOp is a software for 
efficiently dividing and distributing the processing of large-scale sparse-matrix arithmetic 
operations. This software relies on both the distinctive characteristics of each type of 
arithmetic operation and the particular matrices involved to split the operations into 
parallel and simpler tasks. Experimental evaluation showed the speeding-up and resource 
consumption advantages of the proposed software, in comparison to other linear-algebra 
libraries.

© 2017 Elsevier B.V. All rights reserved.
* Corresponding author. Fax.: +54 (249) 4439681.
E-mail address: antonela.tommasel@isistan.unicen.edu.ar (A. Tommasel).

http://dx.doi.org/10.1016/j.scico.2017.06.005
0167-6423/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2017.06.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:antonela.tommasel@isistan.unicen.edu.ar
http://dx.doi.org/10.1016/j.scico.2017.06.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2017.06.005&domain=pdf


A. Tommasel et al. / Science of Computer Programming 150 (2017) 26–30 27
Software metadata

(Executable) Software metadata description

Current software version v1.2
Permanent link to executables of this version https://github.com/ScienceofComputerProgramming/SCICO-D-

17-00002
Legal software license Apache Licence V 2.0
Computing platform/operating system Java Compatible Platform
Installation requirements & dependencies Java Virtual Machine, Maven, Trove, JPPF for distribution support
If available, link to user manual – if formally published include
a reference to the publication in the reference list

https://github.com/tommantonela/SMArtOp/wiki

Support email for questions antonela.tommasel@isistan.unicen.edu.ar

Code metadata

Code metadata description

Current code version v1.2
Permanent link to code/repository used of this code version https://github.com/ScienceofComputerProgramming/SCICO-D-

17-00002
Legal Code License Apache Licence V 2.0
Code versioning system used Git
Software code languages, tools, and services used Java, Eclipse IDE, Maven, Trove, JPPF for distribution support
Compilation requirements, operating environments & dependencies Java Compatible Platform
If available link to developer documentation/manual https://github.com/tommantonela/SMArtOp/wiki
Support email for questions antonela.tommasel@isistan.unicen.edu.ar

1. Introduction

High-dimensional sparse-matrices are vital in scientific computing and engineering where matrices have thousands or 
millions of elements. Operating with such matrices represents the dominant cost when solving optimisation problems and 
processing images. Even though sparse-matrix operations need to be efficiently performed, managing them has proved to 
be a challenging task.

As technology evolves, both new multi-core and distributed architectures, and Graphics Processing Units (GPUs) are used 
for increasing computers’ power, leading to a continuous demand of new tools to cope with these new architectures [1]
and the huge volume of user generated data. However, most efforts have been focused on developing centralised libraries 
that operate with dense matrices. Hence, the parallel processing of sparse-matrix operations in distributed architectures is 
needed to deal with increasing performance and resource requirements.

This work presents SMArtOp (Sparse Matrix library for ARiThmetic Operations), one of the first Java libraries for operating 
with large-scale sparse-matrices on heterogeneous distributed environments, without needing specialised hardware. Experi-
mental evaluation over a high-dimensional application showed that SMArtOp helped to significantly reduce both the storage 
and memory requirements, and the computing times of operations, when compared to other sequential, multi-thread and 
GPU-based linear-algebra libraries.

2. Problems and background

Linear algebra has played a crucial role in computing since the rise of the first digital computers, hindering applica-
tions’ performance due to the high computational complexity of its operations. Whilst dense-matrices have been intensively 
studied, sparse-matrices have received less attention. Also, diverse issues arise from the interactions between computer 
processors and data [1], as memory accesses continue to be relatively slow despite processors’ speed. Thus, performance 
is usually limited by data synchronisation between processors and memory. The problem worsens if matrix’s elements are 
repeatedly traversed. GPUs have been used as co-processors capable of handling large calculations in addition to CPUs. 
Generally, applications exploiting data level parallelism can attain good performance with GPUs [2]. However, obtaining the 
desired performance from GPUs is not simple, as it usually requires rewriting the algorithms [4], and specific and expensive 
hardware, which might be unavailable. Several linear algebra software libraries are available in programming languages, 
such as Fortran, C++, Python and Java. Table 1 presents the most commonly used linear algebra libraries,1 which mostly 
provide dense matrix implementations, unsuitable for sparse-matrices.

3. Software framework

SMArtOp is designed for dividing and balancing the processing of large-scale sparse-matrix arithmetic operations for 
distributed execution. Operations are divided based on their intrinsic characteristics and the involved matrices, as in [6].

1 A more comprehensive description of the libraries can be found in: https://github.com/tommantonela/SMArtOp/wiki/Comparison-with-other-Software-
Libraries.

https://github.com/ScienceofComputerProgramming/SCICO-D-17-00002
https://github.com/tommantonela/SMArtOp/wiki
mailto:antonela.tommasel@isistan.unicen.edu.ar
https://github.com/ScienceofComputerProgramming/SCICO-D-17-00002
https://github.com/tommantonela/SMArtOp/wiki
mailto:antonela.tommasel@isistan.unicen.edu.ar
https://github.com/tommantonela/SMArtOp/wiki/Comparison-with-other-Software-Libraries
https://github.com/tommantonela/SMArtOp/wiki/Comparison-with-other-Software-Libraries
https://github.com/ScienceofComputerProgramming/SCICO-D-17-00002
https://github.com/ScienceofComputerProgramming/SCICO-D-17-00002


28 A. Tommasel et al. / Science of Computer Programming 150 (2017) 26–30
Table 1
Linear algebra libraries characteristics.

Library Data type Matrix type Execution type

PCOLT MKL Double, float, long, integer Dense, sparse Multi-threaded

JAMPACK la4j COLT JAMA JBLAS 
Apache common maths

Double Dense Sequential

oj! Algorithms Number, bigdecimal Dense Multi-threaded

UJMP BigDecimal, Boolean, byte, double, float, 
int, long, object, short, string

Dense, sparse Sequential

ND4J Float Dense BLAS dependent, GPU parallel

CupSparse Float, double Dense, sparse GPU parallel

numpy/scipy Int boolean float double long complex Dense/sparse BLAS dependent

PETSc Double complex float long int Dense, sparse Sequential, multi-threaded, 
multi-process

3.1. Software architecture

SMArtOp’s architecture2 addresses three flexibility concerns: matrix representation, operation implementation, and oper-
ation distribution. Matrix representations must comply with the matrix.matrixImpl.Matrix interface, which defines 
both access methods and operations that benefit from leveraging on direct access to data representations. Matrix oper-
ations are defined in matrix.matrixComp.MatrixComputation. Packages matrix.reconstructionStrategy
and matrix.policy provide support to operation distribution by implementing the approach in [6]. The package ma-
trix.adapterDistribution focuses on task execution and data sharing, providing an extension point for new dis-
tributed middlewares.

3.2. Software functionalities

SMArtOp provides dense and sparse representations, and implements matrix addition, subtraction, multiplication, scalar 
multiplication, transpose, inverse and Laplacian. The inverse relies on the LU, QR or Cholesky decompositions. Op-
erations support three execution modes: sequential, multi-thread, and distributed in a cluster. The sequential model 
(MatrixComputationFD) is a baseline implementation that does not leverage on matrix sparseness, whereas the multi-
threaded (MatrixComputationSparsePar) and distributed (MatrixComputationSparseDistributed) ones do.
MatrixComputationSparseDistributed considers different metrics to distribute operations, providing alternatives 
for balancing tasks’ work load.

4. Implementation and empirical results

4.1. Implementation details

SMArtOp is implemented in Java, as it is portable and can achieve similar performance to other optimised languages [3]. 
Portability is highly relevant in heterogeneous systems (such as computer clusters with different operating systems or even 
architectures) where a Java application can be run without re-compiling it. Matrix’s values have float precision to bal-
ance memory requirements. Sparse-memory structures aim to decrease network usage, storage and memory requirements. 
Although SMArtOp can be extended to support any middleware for distributing computations over a computer cluster, a de-
fault implementation is provided by using the Java Parallel Processing Framework (JPPF).

4.2. Experimental results

SMArtOp’s performance was tested for the feature selection approach in [5], which involved computing B = X X T +
β F L A F T . Evaluation was based on Digg data,3 with matrices between 8,546 and 42,843 rows, with 66.94% to 99.96%
of sparseness.4 Non-distributed executions were run on an i7-3820 with 32 GB RAM and a NVIDIA Quadro K2200. The 
computer cluster included 5 AMD Phenom II X6 1055T with 8 GB RAM, and 3 AMD FX-6100 with 16 GB RAM.

Fig. 1 shows B execution times. SMArtOp outperformed most of the libraries in Table 1. Distributed results include 
the times of sharing data, synchronising and accessing results. JAMA, COLT-dense, PCOLT, oj! Algorithms, JAMPACK, La4j-
sparse, JBLAS, numpy and numpy-Theano (on GPU) resulted in excessive memory requirements, being unsuitable for high-
dimensional matrix operations. PCOLT required more than 18 days to compute X X T and numpy-Theano 13 minutes, whereas 

2 Further architectural details can be found in https :/ /github .com /tommantonela /SMArtOp /wiki /Software-Architecture.
3 Available in https :/ /github .com /tommantonela /SMArtOp /tree /master /dataset.
4 Further evaluation using a dataset with over 100,000 rows and columns can be found in [6].

https://github.com/tommantonela/SMArtOp/wiki/Software-Architecture
https://github.com/tommantonela/SMArtOp/tree/master/dataset


A. Tommasel et al. / Science of Computer Programming 150 (2017) 26–30 29
Fig. 1. B MatrixComputing time (logarithmic scale). * indicates incomplete execution.

SMArtOp required 12 minutes to compute B . ND4J required 22 (GPU) or 33 (CPU) minutes, and scipy required 29 minutes, 
which is approximately twice the best SMArtOp time. Cusp-C++ and PETSc obtained the best GPU and CPU results respec-
tively outperforming SMArtOp and MKL. However, PETSc, Cusp and MKL require coding in C++, reducing portability. MKL 
is available for a restricted processor set. Although operations were fast, data access was slow as retrieving the matrices 
required more time than operating, which resulted in times close to the best SMArtOp time. Despite leveraging on GPU, 
Cusp-Java obtained worse results than SMArtOp, showing the coding effort needed and the difficulty for leveraging on GPUs. 
In both ND4J and Cusp-Java most part of the time was spent on sharing data and synchronising results, instead of actu-
ally performing the arithmetic operations. The Multi-thread and Cusp-C++ executions were replicated on an i7-6700HQ with 
16 GB RAM and a NVIDIA GTX 960M. The Multi-thread execution required 32 minutes, while Cusp-C++ required 45 minutes. 
These results show that mid-end GPUs might not be sufficient for improving CPU-based solutions. Sparse Apache computed 
B in 39 minutes. Our Multi-thread implementation outperformed most of the evaluated libraries, whilst our Sequential 
one was outperformed by Apache, ND4J, Cusp, scipy and MKL. In summary, the improvements offered by SMArtOp ranged 
between 44% and 99%, considering the smallest (ND4J-GPU) and highest (PCOLT) improvements.

5. Illustrative examples

Listing 1 shows B ’s implementation including the IntData (dataset), Matrix and MatrixComputation definitions. 
The project’s wiki5 includes comprehensive documentation regarding the integration to a Java project and code examples.

public Matrix computeB(IntData data){
FactoryMatrixHolder.setFactory(new FactoryMatrixSparseHashPar()); //Matrix Type Definition
//MatrixComputation defined according to the MatrixType
MatrixComputation algebra = new MatrixComputationSparsePar();
Matrix A = data.getPcoPost();
A = algebra.multiplyByTranspose(algebra.transpose(A)); // Pt x P -- Matrix Multiplication I
A = algebra.laplacian(A); // Laplacian A -- Addition-Subtraction I & Addition-Subtraction II
Matrix aux = algebra.multiply(beta, data.getXpostFeature()); //beta x F
aux = algebra.multiply(aux, A); //Matrix Multiplication II
Matrix Ftrans = algebra.transpose(data.getFpostFeature());
aux = algebra.multiply(aux,Ftrans); //Matrix Multiplication III
Matrix X = algebra.multiplyByTranspose(data.getXpostFeature()); //Matrix Multiplication IV
Matrix B = algebra.add(X, aux); //Addition-Subtraction III
return B;

}
Listing 1: Code example.

6. Conclusions

SMArtOp is a library for distributing high-dimensional sparse-matrix arithmetic operations on computer clusters by lever-
aging on multiple processors and their computational power. SMArtOp outperformed several popular linear algebra libraries 
regarding both the execution times and the required computational resources. Results confirmed SMArtOp’s feasibility and 
advantages for efficiently operating with high-dimensional sparse matrices in distributed environments.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.scico.2017.06.005.

5 https :/ /github .com /tommantonela /SMArtOp /wiki.

http://dx.doi.org/10.1016/j.scico.2017.06.005
https://github.com/tommantonela/SMArtOp/wiki


30 A. Tommasel et al. / Science of Computer Programming 150 (2017) 26–30
References

[1] E. Elmroth, F. Gustavson, I. Jonsson, B. Kågström, Recursive blocked algorithms and hybrid data structures for dense matrix library software, SIAM Rev. 
46 (1) (2004) 3–45.

[2] A. Lee, C. Yau, M.B. Giles, A. Doucet, C.C. Holmes, On the utility of graphics cards to perform massively parallel simulation with advanced Monte Carlo
methods, J. Comput. Graph. Stat. 19 (4) (2010) 769–789.

[3] J. Moreira, S. Midkiff, M. Gupta, P. Artigas, P. Wu, G. Almasi, The NINJA project, Commun. ACM 44 (10) (October 2001) 102–109.
[4] G. Oyarzun, R. Borrell, A. Gorobets, A. Oliva, MPI-CUDA sparse matrix–vector multiplication for the conjugate gradient method with an approximate 

inverse preconditioner, Comput. Fluids 92 (2014) 244–252.
[5] J. Tang, H. Liu, Feature selection with linked data in social media, in: Proceedings of the 12th SDM, SIAM/Omnipress, 2012, pp. 118–128.
[6] Antonela Tommasel, Daniela Godoy, Alejandro Zunino, Cristian Mateos, A distributed approach for accelerating sparse matrix arithmetic operations for 

high-dimensional feature selection, Knowl. Inf. Syst. 51 (2) (2017) 459–497.

http://refhub.elsevier.com/S0167-6423(17)30126-0/bib456C6D726F74683034s1
http://refhub.elsevier.com/S0167-6423(17)30126-0/bib456C6D726F74683034s1
http://refhub.elsevier.com/S0167-6423(17)30126-0/bib4C65655947444830396172786976s1
http://refhub.elsevier.com/S0167-6423(17)30126-0/bib4C65655947444830396172786976s1
http://refhub.elsevier.com/S0167-6423(17)30126-0/bib4D6F72656972613A323030313A4E503A3338333834352E333833383637s1
http://refhub.elsevier.com/S0167-6423(17)30126-0/bib4F7961727A756E32303134323434s1
http://refhub.elsevier.com/S0167-6423(17)30126-0/bib4F7961727A756E32303134323434s1
http://refhub.elsevier.com/S0167-6423(17)30126-0/bib54616E674C3132s1
http://refhub.elsevier.com/S0167-6423(17)30126-0/bib546F6D6D6173656C32303137s1
http://refhub.elsevier.com/S0167-6423(17)30126-0/bib546F6D6D6173656C32303137s1

	SMArtOp: A Java library for distributing high-dimensional sparse-matrix arithmetic operations
	1 Introduction
	2 Problems and background
	3 Software framework
	3.1 Software architecture
	3.2 Software functionalities

	4 Implementation and empirical results
	4.1 Implementation details
	4.2 Experimental results

	5 Illustrative examples
	6 Conclusions
	Appendix A Supplementary material
	References


