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A B S T R A C T

SRO_ANN, a MatLab® toolbox for implementing multiple surface response optimization by artificial neural net-
works (SRO_ANN) is presented. Radial basis functions, a type of artificial neural networks, are applied through an
easily managed graphical user interface. A detailed description of the interface is provided, including a simulated
and two literature examples which allow one to show the potentiality of the software. The discussed experimental
examples correspond to: (1) the maximization of the research octane number (RON) of fuels, influenced by three
factors (reaction temperature, operating pressure and low liquid hourly space velocity), and (2) the optimization
of the calcification process for diced tomatoes, evaluated through three different responses (calcium content,
firmness and pH), which are affected by three factors (calcium concentration, solution temperature and treatment
time). The results show that the application of a nonparametric tool can enhance the performance of optimization
modeling tasks.
1. Introduction

Multivariate design of experiments (DOE) and optimization of pro-
cedures using the response surface methodology (RSM) are issues of high
concern for the analytical community. Their implementation is manda-
tory in analytical chemistry instead of classical univariate procedures for
a number of reasons, namely: (1) less effort and resources are required,
(2) considerably less experimental points are needed, saving time, energy
and cost, (3) global instead of local optima are achieved, (4) possible
interactions among affecting factors are considered, and, perhaps more
importantly, (5) truly optimal results are achieved [1,2]. DOE and RSM
have been proved to be useful for developing, improving and optimizing
a wide variety of procedures, not only of analytical concern, but from
other real-world applications [3].

The following steps are followed for applying DOE and RSM [2]: (a)
identification of the responses, which are affected by controlled and
uncontrolled variables (factors), (b) factor screening, in which the
y, Natural Science Institute, Federal U
, Curauma, Chile, inform that they ha

alítica, Facultad de Ciencias Bioquím
entina.
ri).

ber 2017; Accepted 3 November 201
original (possibly large) number of factors is reduced to a handful of
significant factors, (c) building a response surface design, (d) modeling
the design by least-squares or artificial neural networks to explain how
the responses are affected by the factors, and (d) optimization, where the
optimal combination of factors allowing to reach the best or desired
response is obtained. If several responses are being simultaneously
optimized following some pre-defined criteria, the desirability function
may become a powerful assisting tool [4].

In the present report, a chemometric MatLab® toolbox is presented,
developed to perform response surface optimization based on artificial
neural networks, and integrated in an easy-to-use graphical interface
environment. It has been named SRO_ANN. Calculations and graphical
outputs are conveniently managed through graphical user interface
(GUI) shells. The software does not require a highly experienced user, but
a basic knowledge of the underlying methods is advisable in order to
successfully interpret the results.

A simulated example where classical least-squares solution fails is
niversity of South and Southeast of Par�a, Brazil, and Prof. Manuel Bravo Mercado, Facultad
ve tested the software described and have found that it appears to function as the authors
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Fig. 1. Main window of the SRO_ANN program.
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presented, showing the potentiality of the ANN approach for studying
a system where the behavior of the response as a function of the
influencing factors is known. In addition, selected literature examples
were studied for which this toolbox is ideally suited, namely: the
maximization of the research octane number (RON) influenced by
three factors (reaction temperature, operating pressure and low liquid
hourly space velocity) [5], and the optimization of the calcification
process for diced tomatoes followed by three responses (calcium
content, firmness and pH) which are affected by three factors (calcium
Fig. 2. SRO_ANN window summarizing the selecte
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concentration, solution temperature and treatment time) [6]. The ex-
amples are presented in the order of increasing complexity: the first
one pursues the optimization of a single response, whereas the latter
implies three responses which should be optimized following
different criteria.

The software is freely available and is provided on request via e-mail,
including manual and examples. The software itself comes in two for-
mats: (1) a set of open MatLab codes, or (2) a stand-alone compiled
version. Please contact the corresponding author.
d conditions for optimization for Example #2.



Table 1
Central composite design built to find the optimal conditions of n-octane reforming.

Experiment Factorsa Response

T (ºC) P (bar) LHSV (h�1) RONb

1 480.00 10.00 1.20 88.6
2 480.00 10.00 1.80 88.1
3 480.00 30.00 1.20 82.3
4 480.00 30.00 1.80 81.2
5 510.00 10.00 1.20 95.3
6 510.00 10.00 1.80 98.5
7 510.00 30.00 1.20 88.7
8 510.00 30.00 1.80 91.2
9 495.00 20.00 1.50 85.2
10 468.00 20.00 1.50 81.3
11 521.00 20.00 1.50 93.7
12 495.00 2.36 1.50 91.5
13 495.00 37.63 1.50 88.3
14 495.00 20.00 0.97 90.5
15 495.00 20.00 2.02 80.8
16 495.00 20.00 1.50 85.7

a T(ºC): reaction temperature, P(bar): operating pressure, LHSV(h�1): low liquid hourly
space velocity.

b RON: research octane number. Fig. 4. Actual and predicted values for the response RON using both LS and RBF models.
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2. Theory

2.1. Response surface methodology

RSM is based on building a mathematical model for each response, in
general, by fitting a second-order polynomial expression of the response
as a function of the influencing factors. Only in rare cases cubic poly-
nomials have been employed for modeling [7]. The general form of the
second-order expression is the following:

y ¼ β0 þ
Xk
i¼1

βixi þ
Xk
i¼1

βiix
2
i þ

Xk
1�i�j

βijxixj þ ε (1)

where y represents the response, xi and xj the factors, β0 is the constant
term or intercept, βi, βii and βij the coefficients of linear, quadratic and
Fig. 3. Normal probability plot for the residuals co
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interacting terms, respectively, and ε is a residual term. Usually, only
two-factor interactions are taken into account [2].

The model equation is usually fitted by the least-squares (LS). When
the data do not follow a normal distribution or the relationship between
factors and response is too complex to be fitted by polynomial functions,
artificial neural networks (ANN) can be used as a nonparametric tool for
non-linear multivariate modeling [8]. In any case, the model must be able
to properly describe the data behavior to make meaningful predictions.
When only two factors are optimized, a single graphical view is gener-
ated, since the response surface can be represented as a solid surface in a
three-dimensional space. On the other hand, when more than two factors
are being optimized, several graphical representations may be produced
for pairs of them, maintaining the remaining ones at constant values.
Additionally, contour maps may be plotted as a complementary visuali-
zation strategy, consisting of iso-response lines corresponding to specific
values of the response.
rresponding to response RON in Example #1.



Fig. 5. Response surface (A) and contour plot (B) for the response RON obtained by application of the RBF approach.
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2.2. Multiple response optimization: desirability function

The global desirability function (D) was proposed by Derringer and
Suich in 1980 to optimize multiple responses [9]. The D function is based
on the idea that the quality of a product or process that has many features
is completely unacceptable if one of them is outside of a “desirable” limit.
201
The object is to find operating conditions that ensure agreement with the
criteria of all the involved responses, providing the best value of
compromise in the desirable joint response [4]. This is achieved by
obtaining a single response which combines the individual ones. Der-
ringer's desirability function allows the analyst to find the factor levels
which allow to simultaneously reach the optimal value for all the



Table 2
Box-Behnken design built to find the optimal conditions on a calcification process for diced
tomatoes.

Experiment Factorsa Responsesb

Ca
(% CaCl2)

Te (ºC) Ti (min) CC
(μg g�1)

F (N g�1) pH

1 0.75 65.00 3.35 2890.3 20.79 4.01
2 1.45 50.00 3.35 7490.2 26.48 3.61
3 0.75 35.00 3.35 1698.1 22.85 3.69
4 0.75 50.00 1.93 1274.3 20.00 4.13
5 0.75 35.00 0.50 804.9 17.75 3.92
6 0.05 50.00 3.35 253.5 14.81 4.33
7 0.75 65.00 0.50 1162.5 21.57 4.33
8 0.05 50.00 0.50 152.0 10.10 4.35
9 0.05 65.00 1.93 390.4 15.40 4.35
10 0.05 35.00 1.93 248.1 12.85 4.20
11 0.75 50.00 1.93 1505.9 23.53 3.85
12 0.75 50.00 1.93 1660.3 24.12 3.77
13 1.45 35.00 1.93 5578.8 24.81 3.75
14 1.45 65.00 1.93 3720.0 23.04 3.86
15 1.45 50.00 0.50 1842.9 20.59 4.00

a Ca (% CaCl2): calcium concentration, Te (ºC): solution temperature, Ti (min): treatment
time.

b CC (μg g�1): calcium content, F (N g�1): firmness.
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evaluated variables, including the researcher's priorities during the
optimization procedure.

The first step in this procedure consists in obtaining an individual
desirability function di(ŷi) for each response ŷi(k), computed using the
fitted models and establishing the optimization criteria. Desirability al-
ways takes values between 0 and 1, where di(ŷi) ¼ 0 for an undesirable
response, and di(ŷi) ¼ 1 represents a completely desirable value, i.e., an
ideal response. Intermediate values of di(ŷi) indicate more or less desir-
able responses.

Depending on the adopted optimization criteria, different functions
may be built. They vary within an acceptable range of response values
given by (Ui –Li), where Ui is the upper acceptable value for the response
and Li is the lower. Thus, if the response has to be maximized, di(ŷi) can
be described by the following equation:

diðbyiðxÞÞ ¼
266664

0 if byiðxÞ< Li�byiðxÞ � Li

Ui � Li

�s

if Li � byiðxÞ � Ui

1 if byiðxÞ>Ui

377775 (2)

where s is a power value or weight, set by the analyst to determine how
important it is for ŷi to be close to the maximum. Equations for mini-
mization and for a target value can also be created [4]. Factor levels may
also be included in the optimization procedure, in order to prioritize the
use of certain suitable conditions within the experimental region.

Finally, once the n variables (factor and responses levels) are trans-
formed into n desirability functions, they can be combined in a unique
function: the global desirability (D), to find out the best joint responses
using the following equation:

D ¼ �dr11 � dr22 �……� drnn
� 1P

ri ¼
 Yn

i¼1

drii

! 1P
ri

(3)

where ri is the importance of each variable relative to the others. When D
attains a value different to zero, all variables being simultaneously
optimized reach a desirable value. On the contrary, D will be zero if just
one of the responses is completely undesirable.

2.3. Radial basis functions

Radial basis functions (RBF) are ANN consisting on three layers. The
input layer serves to distribute the input variables to the hidden one.
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Each of the m neurons of the hidden layer uses a basis Gaussian function
as transfer. Suitable parameters (centres and widths) are required for the
hidden Gaussian functions [10]. The centres are contained in a k � 1
vector c. Both centres and widths are usually considered to be equal for
all functions. The output from the mth. hidden neuron, for a given input
k � 1 object s, is therefore expressed as:

outi ¼ exp
�
� 1
2σ2

ks� cik2
�

(4)

where jjs – cijj is the Euclidean distance between s and ci. The input value
to the output node is the weighted sum of all the outputs of the hidden
nodes, with the response of the output node linearly related to its input.
Hence, the RBF network output (out) for an input object s is given by:

out ¼ w0 þ
Xm
i¼1

wi exp
�
� 1
2σ2

ks� cik2
�

(5)

where w0 is the bias and wm is the weight assigned to the mth. hidden
output. These weights are adjusted to minimize the mean square error of
the net output. Therefore, two sets of parameters (the centres and widths)
in the hidden layer, and a set of weights in the output layer are adjusted.
RBF has a guaranteed learning procedure for convergence: given the
centres of them basis functions and a set of k training objects with known
factor values and target response, the minimum squared error in the
prediction of the response is attained when the weights are given by:

w ¼ (HT H)�1 HT r (6)

wherew is a vector (m � 1) collecting the weights, r (n � 1) is the vector
of target response values, and H (n � m) is the so-called design matrix,
whose elements are calculated as:

Hðj; iÞ ¼ exp
�
� 1
2σ2

ks� cik2
�

(7)

We have followed one of the procedures recommended by Orr, where
the value ofm is tuned by forward subset selection and generalized cross-
validation [10]. This avoids overfitting, i.e., the selection of an m value
equal to the number of independent training samples.

3. SRO_ANN: program description

Among other interesting features, SRO_ANN involves a single main
window, from which all steps required for RBF modeling can be carried
out (Fig. 1):

1) Frame labelled “Training data”. Two browsers allow one to load in the
workspace the files containing the values of factors from the design
matrix data and the measured experimental responses. The design
information includes factor combinations corresponding to the
implemented experimental design (full factorial, central composite,
Box-Behnken, Doehlert, optimal, etc.), and should be uploaded as a
‘.txt’ file of size (n � k), where n is the number of experiments and k
the number of factors. Responses should be uploaded also as a ‘.txt’
file of size (n � r), where r is the number of responses being analysed.
For example, if a central composite design with five central points for
two factors and three responses is employed, the design matrix is of
size 13 � 2 (13 ¼ 2k þ 2 � k þ Nc, where k is the number of factors
and Nc the number of central points), and the response matrix is of
size 13 � 3.

2) Frame labelled “Test data”. The browsers allow one to load factor and
response values for independent experiments to test the performance
of the trained RBF network.

3) Frame labelled “Net”. Pressing the “TRAIN NET00 button, the RBF can
be optimized through the procedure described in Eq. (6). Three plots
are displayed in this step: (a) predicted vs. nominal response values,



Fig. 6. Nominal and predicted values for the responses CC, F and pH using both LS and RBF models.
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Fig. 7. Response surfaces for CC, F and pH, obtained by means of RBF.
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(b) prediction residuals vs. nominal responses, and (c) normal prob-
ability plot for the residuals. This latter graph is of great importance
when the data are suspected to follow a non-normal distribution and a
better fit could be attained using nonparametric tools. Additionally,
training results (nominal, predicted and residuals) can be saved as a
file ‘trairesults.txt’ in the working folder where the data are located,
and the network architecture is provided in the main screen (number
of input, hidden and output neurons for each trained net). The pa-
rameters corresponding to the optimized model should be saved to be
used for future predictions and for building the response surface with
the button “SAVE NET”.

The button “TEST NET” allows one to test the performance of the
trained network on the independent data set if the latter is available. This
experimental verification can be performed comparing response pre-
dictions with experimental values. The information should be uploaded
in files ‘.txt’ of similar structure than those uploaded for training infor-
mation. Indicators of the quality of the model can be attained at
this stage.
Table 3
Criteria used for the optimization of a calcification process for diced tomatoes.

Factorsa, responseb

and D value
Optimization
criteria

Lower
limit

Upper
limit

Predicted

SRO-LS SRO-ANNc

Ca (%CaCl2) In range 0.05 1.45 0.40 0.45
Te (ºC) In range 35.00 65.00 35.00 37.14
Ti (min) In range 0.50 3.35 3.35 2.74
CC (mg g�1) Minimize 700.0 1050.0 8.68 739.26
F (N g�1) Maximize 18.50 20.50 18.898 19.88
pH Minimize 3.92 3.95 3.82 3.92
D – – – 0.457 0.817

a Ca: calcium concentration; Te: solution temperature; Ti: treatment time.
b CC: calcium content; F: firmness.
c Network architectures: 3-9-1 for CC, 3-4-1 for F and 3-4-1 for pH (number of input,

hidden and output neurons).
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4) Frame labelled “Optimization”. First the net parameters should be
loaded using the “LOAD NET” button. Then the desirability function
is implemented, which is important when there are several responses
to be optimized: factors as well as responses can be optimized to find
the optimal combination of factors which produce the optimal
response according to the criteria set by the experimenter. Informa-
tion for both factors and responses can be set including the following:
minimum, maximum, target or in range. Importance can be assigned
to factors and responses as shown in Eq. (3). Then, pressing the button
“REVIEW CONDITIONS”, a window is displayed summarizing the
selected conditions for optimization (see Fig. 2).
Fig. 8. Desirability surface as a function of calcium concentration and solution temper-
ature, obtained by means of RBF in Example # 2.
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When pressing the button ‘GO’ on the latter window, the results of the
optimization are displayed in a table with optimal values for the re-
sponses being optimized and their corresponding combination of factors.
Additionally, the global desirability function value is presented for the
best factor combination, which is relevant for multiple response opti-
mization. Figures are also available showing the response surface or
contour plot for user-selected pairs of factors. When more than one
response is analysed, the global desirability or individual responses can
be selected for plotting.

4. Results and discussion

4.1. Software requirements

The MatLab version of the software only uses MatLab R2012a by
MathWorks®. The codes, manual and examples are freely available at
www.iquir-conicet.gov.ar/descargas/opt_rbf.rar. The files only need to
be copied into a folder declared in the MatLab Path. Alternatively, a
stand-alone compiled version is available, including a free version of
the MatLab Common Runtime (MCR) program for installation. In this
case, after installing MCR, the executable sro_ann.exe file can be
copied in any folder from which it can be run. The compiled software
version and the MCR program can be freely obtained at the
following sites:

https://www.dropbox.com/sh/6xjf4nzk5w8h5at/
AAAm5oQbv5txDEI5XdBjNF2ia?dl¼0.

https://www.dropbox.com/sh/eqc34ngkzphkvqt/
AAAUiqi7aJhVPeCAZXgMihj9a?dl¼0.
4.2. Examples

With the aim of showing the usefulness of the approach, one simu-
lated and two literature case-studies are presented. In the simulated
example, a response is varied as a function of two factors using a cubic
polynomial, allowing to test the ANN approach under controlled
conditions.

In the first experimental example, the optimized experimental con-
ditions for the maximization of the research octane number (RON) are
sought [5]. The second example corresponds to the optimization of the
calcification process for diced tomatoes [6]. The examples are presented
in the order of increasing complexity: the first one involves a single
response and the second one three different responses with
different criteria.

4.2.1. Simulated example
To test the results of the ANN approach in comparison with the LS

one, a simulated response r has been created as a function of two factors
x1 and x2:

r ¼ 4þ x31 � 2x21 þ x32 � 2x22 (8)

This function has a maximum at x1¼ 0, x2¼ 0, with a value of 4 units.
The factor values were dictated by a central composite design with five
central replicates, and with extreme values of the factors of �1 and 1 in
both cases. Gaussian noise with a standard deviation of 0.05 units was
added to all responses.

Classical LS analysis using a second-degree polynomial leads to a
residual standard deviation sfit of 0.27 response units, corresponding to a
lack-of-fit (LOF) probability of p ¼ 0.005, indicating the presence of a
significant LOF, although the value of R2 was 0.9723. Using the estimated
polynomial coefficients, the maximum value of rwas predicted to be 4.13
units at x1 ¼ 0.16, x2 ¼ 0.28.

On the other hand, training an RBF with the same data using 7 hidden
neurons gave considerably better results. The residual standard deviation
sfit of 0.057 units indicated a non-significant LOF value with p ¼ 0.37
(R2 ¼ 0.9992). Moreover, modeling the response as a function of the
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factors using the SRO_ANN software correctly predicted the values of the
factors leading to maximum response: x1 ¼ 0, x2 ¼ 0. The maximum
value of r was predicted to be 4.02 units, in closer agreement with the
analytical solution.

4.2.2. Example #1: modeling and optimization of catalytic naphtha
reforming

This case-study was taken from the work reported by F. M. Elfghi [5]
concerning three factors affecting the maximum RON that can be ob-
tained by reforming n-octane over a Pt–Re bimetallic catalyst. In the
present report, we recreated the central composite design (Table 1) and
analysed the results by means of surface response optimization through
least-squares (SRO-LS) and artificial neural networks (SRO-ANN). Spe-
cifically, the interest is focused on the effect of reaction temperature (T,
ºC), operating pressure (P, bar) and low liquid hourly space velocity
(LHSV, h�1) on the RON value for the corresponding reformed com-
pound. For each experiment, RON was instrumentally measured. The
final objective is to determine the factor combination improving the
RON value.

The analysis of the SRO-LS results through the ANOVA test demon-
strated that a linear model fits the RON response with a residual standard
deviation sfit of 3.05 response units, corresponding to a lack-of-fit (LOF)
probability of p¼ 0.086, close to the limit of a significant LOF (0.05). The
R2 value was 0.7539, i.e. the model could only explain 75.39% of the
variability in the response. Equation (9) is a mathematical expression of
the obtained linear model.

y ¼ 86.0 þ 6.45 x1 – 3.93 x2 þ 0.75 x3 (9)

here y is the RON response, and x1, x2 and x2 are the factors T, P and
LHSV, respectively. Fig. 3 shows the normal probability plot for the re-
siduals. As can be appreciated, the bad SRO-LS results are consistent with
the apparent deviation of the residuals from the normality assumption.
Notice that a different model was considered in Ref. [5], because of the
inclusion of non-significant quadratic and interaction terms in the model
expression.

The system was then analysed by means of SRO-ANN using 6 hidden
neurons, reaching considerably better results. The residual standard de-
viation sfit of 2.00 units indicated a clearly non-significant LOF value with
p ¼ 0.431 and R2 ¼ 0.9269. This better performance of RBF may be
attributed to its ability to universally approximate non-linear systems.
The improvement in model fit for the response can be seen in Fig. 4,
which shows the correlation between actual and predicted values for the
response using both models (the RBF results are taken from the output of
the presently described program).

Fig. 5A and B shows the response surface and the contour plot for
the response RON obtained by the application of the most reliable RBF
approach for factor 1 (T, ºC) and factor 2 (P, bar), maintaining factor 3
(LHSV, h�1) at a constant value (its maximum value). The optimal
conditions maximizing RON correspond to 521.0 �C, 7.4 bar and
1.7 h�1, rendering a RON value equal to 99.2. In sum, the RBF
approach was capable of improving the model fit in comparison to
what was obtained by applying LS, leading to reliably opti-
mized results.

4.2.3. Example #2: optimization of the calcification process for diced
tomatoes

This example comes from the work performed by Floros et al., 1992
[6], and is based on the optimization of a calcification process for diced
tomatoes to produce firm tomato dices without excessive Ca2þ uptake. It
comprises three factors: calcium concentration (Ca), solution tempera-
ture (Te) and treatment time (Ti), and three responses: calcium content
(y1 ¼ CC), firmness (y2 ¼ F) and pH (y3). Table 2 presents the
Box-Behnken design used by the authors and recreated in this work for
the present study. The three responses were analysed bymeans of SRO-LS
and SRO-ANN. For each experiment, the total calcium content was
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determined by atomic absorption spectrometry, the firmness was
measured using a multiple blade share cell and computed as maximum
share force, and the pH was measured using a pH-meter. The objective is
to determine the optimum processing conditions that provide a final
product with calcium lesser than 800 μg g�1, maximum firmness, and pH
as low as possible.

Using the LS methodology, the ANOVA test indicated that linear
models could reasonably fit the responses F and pH, respectively, with
residual standard deviations sfit of 2.6 and 0.1 units, and no significant
lack of fit (p ¼ 0.493 and p ¼ 0.884). The R2 values were 0.880 for F and
0.835 for pH. On the other hand, the CC response showed a high sfit value
of 820 units, and significant lack of fit (p ¼ 0.039), indicating that the
model (linear with interaction between Ca and Ti) did not appropriately
fit this response. A number of mathematical transformations were pro-
bed, on a trial-and-error basis, to improve this result. It was found that a
square root transformation [(CC)1/2] led to a satisfactory two-factor
interaction model, with no significant lack of fit (p ¼ 0.202) and
R2 ¼ 0.955. However, although this mathematically transformed model
improves the fit, there appears to be no physico-chemical motivation why
the CC response should be subjected to the square root.

Equations (10)–(12) are the mathematical representation of the ob-
tained models:

(y1)
1/2 ¼ 40.1 þ 25.2 x1 þ 10.1 x2 þ 10.0 x3 – 4.4 x1 x2 þ 10.0 x1 x3 (10)

(y2) ¼ 19.9 þ 5.2 x1 þ 0.3 x2 þ 1.9 x3 (11)

(y3) ¼ 4.0–0.3 x1 þ 8.3 x2 – 0.1 x3 (12)

where y1, y2 and y3 are (CC)1/2, F and pH, and x1, x2 and x3 are Ca, Te and
Ti, respectively. Only the factors that are significant for the responses
have been included in the above equations.

Subsequently, the factor combinations and response values were
analysed applying SRO-ANN. The residual standard deviation sfit of 533,
1.3 and 0.1 units indicated non-significant LOF p-values of 0.097, 0.965
and 0.983, with R2-values of 0.977, 0.968 and 0.942, for CC, F and pH,
respectively. Beyond the better numeric result for the response CC using
RBF, the latter model is preferable since it implies no assumptions as to
the mathematical relationship among the variables. The response fitting
improvements can be appreciated in Fig. 6, which shows the correlation
between actual and predicted values for the responses using both models.
Fig. 7 shows the response surfaces for (CC), F and pH obtained by means
of the RBF model.

Using the obtained models for each of the responses, the desirability
function was applied to find the experimental conditions that minimize
CC (the legal limit is below 800 μg g�1) and pH, and maximize F. The
obtained solutions, taking into account the models obtained by both
approaches were not satisfactory since the predicted values for CC were
1631.7 and 2496.5 μg g�1, respectively, values much higher
than 800 μg g�1.

Then, new criteria were set in order to accomplish the requirements,
mainly for CC. These new criteria were to minimize CC between 700.0
and 1050.0 μg g�1, maximize F between 18.50 and 20.50 Ng�1, and
minimize pH between 3.92 and 3.95. These criteria and the optimum
combinations obtained applying both methods are presented in Table 3.
The optimal value found for D in the SRO-LS case was 0.457, indicating
that 45.7% of the specified criteria could be accomplished. On the con-
trary, for SRO-RBF case, the D value was significantly higher (0.817),
meaning that the criteria were almost fully reached. In addition, higher
firmness may be achieved using the RBF approach in comparisonwith LS,
with almost the same calcium content and pH, and employing a lower
treatment time. One fact that should be remarked is that both RBF and LS
could minimize the pH below the predefined range. Fig. 8 shows the
desirability response surface as a function a calcium concentration and
solution temperature, obtained by means of LS and RBF. By applying
RBF, the models for the three responses could be significantly improved
in comparison to LS.
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5. Conclusion

In this work, a description of SRO_ANN, a new flexible and freely
available MatLab toolbox, is carried out using as a test two literature
examples. In this toolbox, modeling with RBF artificial neural networks
and optimization with the desirability function have been implemented.

6. Validation

Two independent reviewers, Prof. Adriano de Araújo Gomes, College
of Chemistry, Natural Science Institute, Federal University of South and
Southeast of Par�a, Brazil, and Prof. Manuel Bravo Mercado, Facultad de
Ciencias, Pontificia Universidad Cat�olica de Valparíso, Curauma, Chile,
have tested the software, and report the following statements.

Report from Prof. de Araújo Gomes: the authors developed the Mat-
Lab toolbox “SRO_ANN” in the executable andMatLab GUI versions. Both
programs allow the user to load the data in txt format, carry out multiple
response optimization using neural networks and generate several useful
graphical and statistical parameters outputs. Not least, all this can be
done with little effort and without any knowledge about MatLab. I used
the program, and it works as described in the user manual.

Report from Prof. Bravo Mercado: the authors have developed a
Guided User's Interface (GUI) for optimization of experimental designs
based on radial basis-neural networks. I installed the interface in a
windows-PC and used with Matlab 2012a. The interface includes a
manual and data sets for training analysis. The GUI allows the optimi-
zation of one or several experimental responses, using desirability func-
tion for the last option. For application, the available functions are very
intuitive and the network model can be easily built and validated. The
data (only “txt” format) can be loaded directly from the interface, for
training or validation purposes. In my opinion, this interface can be easily
adapted for academic and research purposes; and, it represents a very
interesting alternative to polynomial approaches for experimenters
requiring optimization based in experimental design methodology.
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