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a b s t r a c t

We consider, in the setting of p and n large, sample covariance matrices whose population
counterparts follow a spiked population model, i.e., with the exception of the first (largest)
few, all the population eigenvalues are equal. We study the asymptotic distribution of
the partial maximum likelihood ratio statistic and use it to test for the dimension of the
population spike subspace. Furthermore, we extend this to the ultra-high-dimensional
case, i.e., p > n. A thorough study of the power of the test gives a correction that allows us
to test for the dimension of the population spike subspace even for values of the limit of
p/n close to 1, a setting where other approaches have proved to be deficient.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In many applications involving high-dimensional data, a few of the dimensions containmost of the relevant information.
Identifying howmany dimensions should be kept in the analysis is of paramount importance in representing and modeling
data efficiently. Even though this issue has attracted much attention from practitioners as well as researchers, there is still
no clear consensus on how to proceed in a systematic way. Among practitioners, a popular approach amounts to checking
how many of the transformed variables explain a large part of the variance in the data and little (if any) attention is paid to
the nature of what is discarded. An exception to this simplified approach is presented in [20], in which the authors compare
the bulk of the eigenvalues to the typical bulk found in randommatrix theory.

Systems of this sort, in which a small number of variables contain all the relevant information, appear in various fields.
In an effort to understand these types of systems, Johnstone [11] introduced the spiked population model. In this model,
all the population eigenvalues are equal to 1 except for a few fixed, larger eigenvalues that carry the relevant information.
The behavior of the sample eigenvalues of the spiked population model in the high-dimensional case has been thoroughly
studied in the past decade; see, e.g., [3,2,19]. In a remarkable result, Baik et al. [2] proved that the asymptotic behavior
of the sample eigenvalues experiences a phase transition. If a population eigenvalue from the spike is not big enough, its
value cannot be recovered from the samples: the estimated eigenvalue gets pulled towards the bulk, the noisy section of the
matrix. On the other hand, if the spike population eigenvalue is bigger than a certain threshold, its value can be recovered
from the limit of the estimates, which are, however, biased.
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The same question about how many components should be kept was long ago answered in the traditional p fixed, n
growing paradigm (here p indicates the dimension of the data X and n indicates the sample size). One of the most common
tests assumes that the data follow a normal distribution and uses the maximum likelihood ratio statistics LRTd = Ld/Lp,
where Ld indicates the maximum likelihood under the null hypothesis (that d components should be kept) while Lp is the
maximum likelihood under the full model [15]. This maximum likelihood ratio test is used sequentially, starting with d = 0
and estimating d as the first hypothesized value that is not rejected. In the fixed p and n growing paradigm, under the
null hypothesis, ln(LRTd) has a known asymptotic distribution—a fact used by Bartlett [4] and by Lawley [13] to build the
rejection region of the test. Another common approach, which has the advantage of requiring no subjective judgments, is
based on the application of information theoretic criteria. Wax and Kailath [26] presented an estimator in this direction
using the minimum description length (MDL) principle [21,22]. In both cases, sequential testing or information criteria, a
crucial ingredient is the knowledge of the asymptotic distribution of the maximum likelihood ratio statistic under the null
hypothesis.

In the high-dimensional case, the dimensionality of the data can be relatively large compared to the sample size and
traditional statistical theory cannot be easily adapted. Under the assumption that there exist q0 < p < n fixed components,
Kritchman and Nadler [12] considered the MDL estimator developed in [26]. They show that MDL fails to detect the signal
at low signal-to-noise ratios and hence underestimates the signal at small sample sizes; they then present a new estimator
that improves the detection rate. Nevertheless, they only prove the consistency of their estimator under the scenario in
which p is fixed and n → ∞.

One of the contributions of our paper is the study of the asymptotic distribution of the partial maximum likelihood ratio
statistic for the case in which p, n → ∞, p/n → y ∈ (0, 1). This allows us to present a sequential test to determine the
dimension of the population spike subspace. Also, as a bonus, it paves the way to correct the penalty term inWax–Kailath’s
MDL estimator of the true dimension and then prove its consistency in this high-dimensional scenario.

We also address the problem for p > n. In some applications one can find situations in which the number of variables
exceeds the number of observations (y > 1). Suppose that we have multiple time series and, given a window in time, we
look for a small number of factors that contain most of the relevant information. In principle, we could take a big window
(large n) to estimate the covariance matrix. Financial time series, for example, change frequently (they could even be non-
stationary) leading us to believe that bigger time windows do not help in the understanding of the current structure. To
attack a situation of this sort we would need to develop a similar test for the case p ≥ n, p/n → y ∈ [1,∞). In this case
themaximum likelihood ratio statistic is not defined; see [7]. However, wemotivate a new definition by switching the rows
and columns in the data matrix. We find its asymptotic distribution and extend the definition and consistency of the MDL
criteria to this case. It should be noted that the case d = 0 was already done by Srivastava [23].

This paper is organized as follows: Section 2 presents the asymptotic distribution of the maximum likelihood ratio
statistic which is used in Section 3 to define the sequential test. Section 4 illustrates the results using simulated scenarios.
The power of the test is found in Section 5. Finally, Section 6 builds on the analysis from Section 5 to improve on the way to
estimate the true dimension in a consistent way and Section 7 concludes. All proofs are relegated to Appendix A.

The following notation and definitions will be used in our exposition. For positive integers m and n,Rm×n stands for
the class of all matrices of dimension m × n. For a square matrix A, |A| indicates its determinant. We will use the operator
vec : Rm×n

→ Rmn which vectorizes an arbitrary matrix by stacking its columns. Let A ⊗ B denote the Kronecker product
of matrices A and B. We will use S ∼ Wp(m,6) to denote that S follows a Wishart distribution with m degrees of freedom
and scale matrix 6, i.e., S = X⊤X where X ∈ Rm×p has independent rows following a normal distribution with mean 0 and
covariance matrix 6. We write χ2(f ) for the chi-square distribution with f degrees of freedom. The multivariate Gamma
function is defined as Γp(x) = πp(p−1)/4p

j=1 Γ {x − 1/2(j − x)} for a complex number x with Re(x) > 1/2(p − 1), where
Γ (x) is the ordinary Gamma function; see p. 62 of [15].

2. Asymptotic distribution of the maximum likelihood ratio statistic for partial sphericity

For X ∼ N (µ,6), with X ∈ Rp, the sphericity test is given by

H0 : 6 = σ 2Ip vs. Ha : 6 ≠ σ 2Ip (1)

with unknown σ . The maximum likelihood ratio test statistic to test the null hypothesis (1) was first derived by Mauchly
[14] as the power n/2 of

LRT0 = |6|{ tr(6)/p}−p, (2)

where 6 is the sample covariance matrix of the data X1, . . . ,Xn, defined as
n

i=1(Xi − X̄)(Xi − X̄)⊤/(n − 1). Gleser [7]
shows that the maximum likelihood ratio statistic exists only when p ≤ n − 1 and that the test with the rejection region
{LRT0 ≤ cα} (where cα is chosen so that the test has a significance level of α) is unbiased. The choice of cα follows from the
classical asymptotic result (see [15], Theorem 8.3.7) to the effect that under H0 with p fixed

−(n − 1)ρ ln(LRT0)  χ2(f )
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as n → ∞, where denotes convergence in distribution. Here

ρ = 1 −
2p2 + p + 2
6(n − 1)p

and f =
1
2
(p − 1)(p + 2).

The quantity ρ = ρn → 1 is a correction term to improve the convergence rate when the sample is finite. For the high-
dimensional case (p, n big) it was proved in [10] that the probability of wrongly rejecting the null hypothesis goes to 1 as
p increases and therefore the classical test can fail completely. To overcome this problem, in their Theorem 1 they found
the asymptotic distribution of (2) under the null hypothesis H0 when p and n grow in such a way that p < n − 1 and
p/n → y ∈ (0, 1]. Based on these results they find a rejection region for the test that has asymptotic significance level α for
a given α.

If the null hypothesis is not rejected, we conclude that 6 is a constant times the identity or, equivalently, in terms of
principal components, that no reduction in dimension can be achieved by transforming to principal components with lower
dimension. If this null hypothesis is rejected, it is still possible, for example, for the p−1 smallest eigenvalues to be equal. In
this case, if their common value is small compared to the largest eigenvalue, most of the variation in the sample is explained
by just the first principal component, giving a substantial reduction in dimension. Hence, it is reasonable to consider the
null hypothesis that the p− 1 smallest eigenvalues of 6 are equal. If this is rejected, we can test whether the p− 2 smallest
eigenvalues are equal, and so on. Then in practice we test sequentially the null hypotheses

Hd : λd+1 = · · · = λp, (3)

for all d ∈ {0, . . . , p − 2}, where λ1, . . . , λp are the eigenvalues of 6. The null hypothesis Hd is equivalent to having
6 = (9,90)3(9,90)

⊤
= 93d9

⊤
+ σ 2909

⊤

0 , where 3 = diag(λ1, s1. . ., λ1, . . . , λh,
sh. . ., λh, σ

2, p−d. . ., σ 2),3d is the
truncated matrix obtained by deleting the last p − d rows and columns of 3, d = s1 + · · · + sh, λ1 > · · · > λh > σ 2,
9 = (91, . . . ,9h) ∈ Rp×d semi-orthogonal with 9i ∈ Rp×si and 90 the semi-orthogonal complement of 9 of dimension
p × (p − d). If Hd is true, we say that the population covariance matrix 6 has d spike eigenvalues, or that the dimension of
the spike subspace, the span of the columns of 9, is d. As in the case of sphericity, this kind of test was much studied in the
multivariate literature for p fixed and n growing. More specifically, the test called partial sphericity for the Hd hypothesis is
based on the statistic (see [15], Theorem 9.6.1)

LRTd =
λ̂d+1 × · · · × λ̂p

1
p−d

p
i=d+1

λ̂i

p−d , (4)

where λ̂i are the eigenvalues (in decreasing order) of 6̂ (the sample covariance matrix). Let us remark that 0 < LRTd ≤

LRTd+1 ≤ 1, which is easy to see from the fact that LRT 1/(p−d)
d is the ratio between the geometric and arithmetic means. It is

known that the maximum likelihood ratio test (4) is well defined only when m = n − 1 ≥ p, as in the case of d = 0, and it
was proved by Lawley [13] (later improved by James [9]) that the asymptotic distribution of (4) under Hd is

− ρ ln(LRTd)  χ2
(p−d+2)(p−d−1)/2, (5)

as n increases with p fixed, where σ̂ 2
=
p

i=d+1 λ̂i/(p − d) and

ρ = m − d −
2(p − d)2 + (p − d)+ 2

6(p − d)
+

d
i=1

σ̂ 2

(λ̂i − σ̂ 2)2
.

This asymptotic distribution makes it possible to define a test that has asymptotic significance level α using the rejection
region {LRTd < cα}. As in the case of the sphericity test, the result is no longer true when p/m is large.

Going back to the case H0 : d = 0, even when the maximum likelihood ratio test is not well defined when p > m, it
was pointed out in [23] that we can still build a sphericity test. Namely, for p > m, under H0,W = m6 ∼ Wp(m, σ 2Ip) and
therefore W = Y⊤Y with Y ∈ Rm×p independent normals with mean 0 and variance σ 2. Then W = YY⊤

∼ Wm(p, σ 2Im)
with p > m, and one can build the maximum likelihood ratio test for W as was done for W for the case p < m. Since the
non-zero eigenvalues of W andW coincide, we get the maximum likelihood ratio test, under the null hypothesis H0, for W
as

LRT0 =
λ̂1 × · · · × λ̂m

1
m

m
i=1
λ̂i

m .

Using [10, Theorem 1] we get the asymptotic distribution for LRT0, under H0, with m and p exchanging their roles. As a
consequence, a test with asymptotic significance level α can be built. Let us note that in the case of [23], the approximation
is given in terms of a χ2 distribution, while in [10] and here, a normal approximation is given.
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This gives the motivation to define the maximum likelihood ratio test for partial sphericity, for the case of p > m+ d, as

LRTd =
λ̂d+1 × · · · × λ̂m

1
m−d

m
i=d+1

λ̂i

m−d .

In order to build a test that has asymptotic level α for the case of p and m increasing under partial sphericity, and with
p < m or p > m + d, we first need to find the asymptotic distribution of the LRTd in these cases. The following proposition
gives the asymptotic distribution when p,m grow to infinity and p/m → y with y ∈ (0,∞). In the rest of paper we will
assume the condition Q0:
Condition Q0: There exists q0 ≪ min(p,m) independent of p andm such that Hd defined in (3) is true for d ≤ q0.

Proposition 1. Let W = m6̂ ∼ Wp(m,6) and let us assume Condition Q0. Under the null hypothesis that the true number of
spikes is d fixed, i.e.,

Hd : λd+1 = · · · = λp,

the asymptotic distribution of LRTd (when m and p grow and p/m → y > 0) is given by
(a) Case p < m:

ln LRTd − µm,p,d

σm,p,d
 N (0, 1),

where

µm,p,d = µm,p + ln Am,p,d + ln Bm,p,d, σ 2
m,p,d = −2


p − d
m

+ ln

1 −

p
m


,

with µm,p = −p − (m − p − 1/2) ln(1 − p/m),

Am,p,d =

h
i=1

λ
si
i

 d
i=1

λ̂i,

Bm,p,d =

1 +

d
i=1
λ̂i −

h
i=1

siλi

p
i=d+1

λ̂i


p−d

.

(b) Case p > m + d:
ln(LRTd)− µm,p,d

σm,p,d
 N (0, 1),

where

µm,p,d = µ∗

m,p,d + ln B∗

m,p,d + ln C∗

m,p,d + lnD∗

m,p,d

and

σ 2
m,p,d = −2


m

p − d
+ ln


1 −

m
p − d


,

with µ∗

m,p,d = −m − (p − d − m − 1/2) ln{1 − m/(p − d)},

B∗

m,p,d =

1 +

d
i=1
λ̂i −

h
i=1

siλi

m
i=d+1

λ̂i


m−d 

m − d
m

m−d

,

C∗

m,p,d =


σ 2(p − d)

m

d

,

D∗

m,p,d =

h
i=1


1 +

λi

σ 2

m
p − d − m − 1

si  d
i=1

λ̂i.

The proof of Proposition 1 can be found in Appendix A.1.
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Remark 1. Proposition 1 contains the sphericity test studied by Jiang and Yang [10] for m > p. Moreover, if p > m, under
the hypothesis of sphericity we get that the new maximum likelihood ratio test has the same asymptotic distribution as
in the case in [10], except that p and m change their roles. This should not be a surprise, since W ∼ Wp(m, σ 2Ip) can be
written asW = σ 2X⊤Xwith X ∈ Rm×p filled with independent standard normals. From here, defining W = σ 2XX⊤, we getW ∼ Wm(p, σ 2Im). The non-zero eigenvalues ofW and W are the same, and therefore the usual definition of the likelihood
ratio test for W coincides with the definition of the maximum likelihood ratio test forW. As a consequence, the asymptotic
distribution of the LRT for p > m under d = 0 follows from the result of [10], exchanging the roles ofm and p.

Remark 2. Let us note that µm,p,d is a random variable that depends on the true values of σ 2, λ1, . . . , λd and of the first d
sample eigenvalues λ̂1, . . . , λ̂d of 6̂. To be able to use the asymptotic distribution of Proposition 1 to test for the dimension
of the spike subspace, we need to replace the true values by consistent estimators. The parameter σ 2 can be replaced by its
consistent estimator σ̂ 2

=
p

i=d+1 λ̂i/(p−d). For λi it is well known that, in the limit, the estimates of the spike eigenvalues
experience a phase transition, [2]. Indeed, if λ > σ 2(1 +

√
y), then

λ̂ → λ


1 +

yσ 2

λ− σ 2


, (6)

whereas for eigenvalues λwhich are in the range (σ 2, σ 2(1+
√
y)], the limit becomes σ 2(1+

√
y)2, making them invisible,

i.e., indistinguishable from the bulk since the sample eigenvalues corresponding to a fixed number of eigenvalues of the bulk
go to the same σ 2(1 +

√
y)2; see [3]. Therefore we cannot directly replace λi by λ̂i in µm,p,d since, even if λi is greater than

the threshold σ 2(1 +
√
y), the λ̂i are biased estimators of λi. We do know, however, the bias of the estimator exactly from

(6). Therefore we can substitute the λi ≥ σ 2(1 +
√
y) in the expression for µm,p,d using the equation suggested by Eq. (6):

λ̂i = λi


1 +

p
m

σ̂ 2

λi − σ̂ 2


to get

λi =
1
2


λ̂i + σ̂ 2

− σ̂ 2 p
m

+


−4λ̂iσ̂ 2 +


λ̂i + σ̂ 2 − σ̂ 2 p

m

2
, (7)

a consistent estimator for λi. In the limit, the discriminant will be non-negative if and only if λi ≥ σ 2(1 +
√
y). Now, the

sample version of the discriminant can be negative when the true eigenvalue is close to the threshold (or less than the
threshold). In that case we will considerλi = σ̂ 2(1 +

√
p/m) since that is the value ofλi for λ̂i that makes the discriminant

be zero. Replacing λi in µm,p,d byλi and σ 2 by σ̂ 2, we get a new approximation for the asymptotic distribution, when all
the spike eigenvalues are greater than the threshold, that can be used for testing. On the other hand, if one or more spike
eigenvalues are less than the threshold, this new asymptotic distribution will give a test with asymptotic level not greater
than α. (See Lemma 1.)

Summarizing, we have the following corollary.

Corollary 1. Under the hypothesis of Proposition 1, if the spike eigenvalues λ1, . . . , λd are all greater than the threshold
σ 2(1 +

√
y),

ln(LRTd)− µ̂m,p,d

σm,p,d
 N (0, 1),

where µ̂m,p,d is obtained from µm,p,d by replacing λi with λ̃i defined on (7) and σ 2 with σ̂ 2.

3. Test to find the dimension d of the spike subspace

As we pointed out in Section 2, the test will be done sequentially as in the usual case. We consider the null hypothesis
that 6 = σ 2Ip. If this is rejected, we can test whether the min(p − 1,m − 1) smallest eigenvalues are equal, and so on,
i.e., we test sequentially the null hypotheses for each d ∈ {0, . . . , q0} when Condition Q0 is true.

For the test to have significance level α, the rejection region will be the set {LRTd < C} where C is chosen such that
PrHd(LRTd < C) = α and where C depends on α and can depend on the sample. Using Corollary 1 we can build the
asymptotic test with rejection region

ln(LRTd)− µ̂m,p,d

σm,p,d
< zα


, (8)
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where µ̂m,p,d was defined in Corollary 1, σm,p,d was defined in Proposition 1, and zα is the α quantile of the normal
distribution. This test will have asymptotic significance level α when all the true spike eigenvalues are greater than
σ 2(1+

√
y). On the other hand, if one ormore spike eigenvalues are less than the threshold, the test with rejection region (8)

will have significance level not greater than α and therefore will be a conservative test. Summarizing, we have the following
lemma, whose proof is in Appendix A.2.

Lemma 1. The test for the hypothesis

Hd : λd+1 = · · · = λp vs. H1 : λd+2 = · · · = λp

with rejection region defined in (8) has significance levelΦ(zα + L) with

L =


1

√
−2{y + ln(1 − y)}


i∈J2

si


λi

σ 2
− (1 +

√
y)− ln

λi

σ 2(1 +
√
y)


when p < m,

1
√

−2{1/y + ln(1 − 1/y)}


i∈J2

si


λi

yσ 2
−

1 +
√
y

y
− ln

σ 2(y − 1)+ λi
√
yσ 2(

√
y + 1)


when p > m + d,

where J1 = {i ≤ h : λi > σ 2(1 +
√
y)}, J2 = {i ≤ h : λi ∈ (σ 2, σ 2(1 +

√
y)]},Φ is the cumulative distribution function of

N (0, 1) and zα is its αth quantile.

Remark 3. Since L ≤ 0, without information about the population spike eigenvalues, the test defined in Lemma 1 has
asymptotic significance level smaller than α. When all the spike eigenvalues are greater than the threshold, L = 0 and the
test will have asymptotic significance level α.

4. Simulations

4.1. Set of simulations to show the behavior of the asymptotic approximations

In this section we show the behavior of the asymptotic distribution given in Proposition 1 as well as the asymptotic
approximation distribution presented in Corollary 1 that we used for testing when the null hypothesis is true. We do
this for a variety of m, p as well as d. Let us recall that these two distributions are asymptotically equivalent when all
the spike eigenvalues are greater than the threshold. In order to do this we have chosen the scenarios used in [17].
They consider models with spike subspace dimensions d = 4 and d = 5 and spike eigenvalues (7, 6, 5, 4) and
(259.72, 17.97, 11.04, 7.88, 4.82), respectively. In both cases σ 2 is chosen to be 1. We note that in both of these scenarios,
all the spike eigenvalues are bigger than the threshold σ 2 (1+

√
y). In all the simulations, we assume that as p andm grow,

their ratio is constant and therefore equal to its limit y.
In Fig. 2 we show (red lines) the asymptotic distributions from Proposition 1 and (blue lines) the approximation

distributions described in Section 3 for the above settings for p/m = 0.3 and p/m = 0.6 (i.e., for m > p). We can see
how the behavior of the asymptotic distributions improves as p andm increase in both cases p/m = 0.3 and p/m = 0.6.

We have also run similar simulations for some cases in which p > m (the results can be found in the supplementary
material). The results are essentially the same. The rates of convergence to the true distribution, however, slow down as p/m
increases. Further simulation results reported in the supplementarymaterial (see Appendix B) show that the approximating
distributions improve when the spike eigenvalues are further away from the critical value, σ 2 (1 +

√
y), the exact and the

asymptotic distributions becoming almost indistinguishable.
An interesting point already noticed by Jiang and Yang [10] for the case d = 0 is that the classical chi-square

approximation (5) becomes poorer as pbecomes large relative tom. An illustration is provided in the supplementarymaterial
(see Appendix B).

In addition to the those presented, we have run simulations using non-normal distributions (Student’s, chi, and uniform)
and obtained unsurprising results. In the fat-tailed cases (Student’s with 4 degrees of freedom, for example) the test has
a slight tendency to overshoot, whereas in the non-fat-tailed cases (uniform) the deviations in the results are on the
undershooting side.

4.2. Sequential test for the dimension of the spike subspace. simulations

Several methods have been recently proposed using random matrix theory for determining the number of factors for
high-dimensional data. These contributions come from different fields. Among others, we can cite [8] or [16] in economics,
and [12] in the array processing or chemometrics literature. A review and an up to date method for the high-dimensional
case is presented by [17], based on recent results from the theory of randommatrices [1,5,19].

As we did in the previous subsection, we consider the models they use to check our results. In both, the ratios used by
them are p/m = 0.3 and p/m = 0.6. We present the results of our iterative procedure in Tables 1–4. Tables 1–2 should
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Table 1
Values of d picked for spikes = (259.72, 17.97, 11.04, 7.88, 4.82) (true dimension = 5) and p/m = 0.3.

1 2 3 4 5 6 7 8 9

(30, 100) 0.000 0.000 0.000 0.007 0.981 0.010 0.002 0.000 0.000
(60, 200) 0.000 0.000 0.000 0.000 0.983 0.013 0.003 0.001 0.000
(120, 400) 0.000 0.000 0.000 0.000 0.981 0.016 0.003 0.000 0.000
(240, 800) 0.000 0.000 0.000 0.000 0.959 0.027 0.010 0.002 0.002

Table 2
Values of d picked for spikes = (259.72, 17.97, 11.04, 7.88, 4.82) (true dimension = 5) and p/m = 0.6.

1 2 3 4 5 6 7 8 9

(60, 100) 0.000 0.000 0.000 0.216 0.735 0.031 0.008 0.003 0.006
(120, 200) 0.000 0.000 0.000 0.184 0.762 0.033 0.012 0.004 0.003
(240, 400) 0.000 0.000 0.000 0.167 0.798 0.025 0.006 0.003 0.001
(480, 800) 0.000 0.000 0.000 0.126 0.841 0.022 0.007 0.003 0.001

Table 3
Values of d picked for spikes = (7, 6, 5, 4) (true dimension = 4) and p/m = 0.3.

1 2 3 4 5 6 7 8 9

(30, 100) 0.000 0.000 0.039 0.901 0.036 0.014 0.002 0.000 0.001
(60, 200) 0.000 0.000 0.014 0.932 0.041 0.009 0.004 0.000 0.000
(120, 400) 0.000 0.000 0.006 0.935 0.042 0.011 0.004 0.001 0.000
(240, 800) 0.000 0.000 0.006 0.949 0.035 0.009 0.001 0.000 0.000

Table 4
Values of d picked for spikes = (7, 6, 5, 4) (true dimension = 4) and p/m = 0.6.

1 2 3 4 5 6 7 8 9

(60, 100) 0.000 0.018 0.482 0.452 0.028 0.011 0.004 0.003 0.001
(120, 200) 0.000 0.011 0.427 0.518 0.028 0.008 0.006 0.000 0.001
(240, 400) 0.000 0.002 0.368 0.583 0.027 0.012 0.007 0.001 0.000
(480, 800) 0.000 0.002 0.352 0.605 0.024 0.013 0.003 0.001 0.000

be compared with their Tables 1–2 and Tables 3–4 to their Table 3. In every case we run 1000 replications. In addition, the
variance is not assumed to be known and it is estimated as the average of the remainder eigenvalues.

As we can see our method is very competitive when p/m = 0.3 but its performance deteriorates for higher ratios. We
have run the same scenarios for lower values of p/m which, for the sake of space, we have included in the supplementary
material (see Appendix B). Based on those we can confirm that this behavior (performance getting worse as p/m increases)
persists. The problem is that even if the asymptotic distribution under the null hypothesis is almost perfect, as we saw
in Section 4.1, the sequential likelihood ratio test underestimates the dimension of the spike subspace. Nevertheless, the
maximum likelihood ratio test chooses, in close to 95% of the cases, either the true dimension or a value that is lower than
the true dimension.

Clearly, if we were to test Hd : true dimension = d vs. Ha : true dimension > d in all the cases, the maximum
likelihood ratio test would not reject the null hypothesis 95% of the cases, as expected. However, since the test is sequential,
the problem is that it can get stuck in a dimension smaller than the true one. As we will see in the next section, this is due
to the fact that the power of the likelihood ratio test decreases when p/m grows to 1 (case p < m) or decreases to 1 (case
p > m), a phenomenon already seen by Jiang and Yang [10] in their Table 1, for p < m and p/m growing to 1. To overcome
the problem of underestimating the dimension, we will present, in Section 6, a potential solution based on a more detailed
study of the behavior of the maximum likelihood ratio statistic under the alternative hypothesis.

5. Asymptotic distribution of LRTd when the true dimension is d1

We have studied the asymptotic distribution of the statistic under the null hypothesis. To go more deeply into the
understanding of its behavior, wewould like to know the distribution of the statisticwhenwe are not considering the correct
(true) number of spikes. Throughout this section we will assume that the true number of spikes is d1 and the statistic under
consideration is LRTd where d is less than or greater than d1.

Proposition 2. Let us assume Condition Q0. The asymptotic distribution as p/m → y of the maximum likelihood ratio test LRT d
when the true model is spiked of dimension d1 ≠ d is given by

ln(LRTd)− µm,p,d,d1

σm,p,d1
 N (0, 1),
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where
(a) for p < m, µm,p,d,d1 is equal to µm,p,d1 plus

h1
i=h0+1

si(ln ki − ki + 1) when d < d1,

(d − d1)

(1 +

√
y)2 − ln(1 +

√
y)2 − 1


when d1 < d ≤ q0,

(9)

(b) for p > m + d1, µm,p,d,d1 is equal to µm,p,d1 plus
h1

i=h0+1

si (ln ki/y − ki/y + 1) when d < d1,

(d − d1)

(1 +

√
y)2

y
− ln

(1 +
√
y)2

y
− 1


when d1 < d ≤ q0.

(10)

Anytime,µm,p,d1 is defined as in Proposition 1 but replacing d by d1, ki = λi/σ
2
{1+yσ 2/(λi−σ

2)} if i ∈ J1,k and ki = (1+
√
y)2

if i ∈ J2,k or when λi = σ 2 where for k = 0, 1, J1,k = {i ≤ hk : λi > σ 2(1 +
√
y)}, J2,k = {i ≤ hk : λi ∈ (σ 2, σ 2(1 +

√
y)]},

and h0, h1 are such that d = s1 + · · · + sh0 and d1 = s1 + · · · + sh1 .

The proof can be found in Appendix A.3.

5.1. The power of the test

The next proposition gives the asymptotic power of the maximum likelihood ratio test for the hypothesis Hd: the spike
subspace has dimension d vs. Ha : the spike subspace has dimension greater than d for the case that the specific alternative
hypothesis truemodel has a spike subspace of dimension d1 > d and all the spike eigenvalues are greater than the threshold.

Proposition 3. Let us assume Condition Q0. The asymptotic power of the maximum likelihood ratio test for the hypothesis Hd:
spike subspace of dimension d vs. Ha : spike subspace has dimension greater than d, for the case that the specific alternative
hypothesis true model has d1 ∈ (d, q0] spikes and all the spike eigenvalues are greater than the threshold, is given as follows:
1. Case p < m

ψ(d1) = Φ


h1

i=h0+1
si

λi
σ 2 − ln


λi
σ 2


− 1


+ zασm,p,d

σm,p,d1


2. Case p > m + d1

ψ(d1) = Φ


h1

i=h0+1
si

λi
yσ 2 −

1
y − ln


1 −

1
y +

λi
yσ 2


+ zασm,p,d

σm,p,d1


whereΦ is the cumulative standard normal distribution and zα is the α quantile of the standard normal.

The proof of this proposition can be found in Appendix A.4.
Let us note that for fixed y, as m and p grow, σm,p,d/σm,p,d1 → 1 when p/m → y. Now, the bigger the eigenvalues

λi with i ∈ {h0 + 1, . . . , h1}, the bigger
h1

i=h0+1 si{λi/σ
2

− ln(λi/σ 2) − 1} > 0 and
h1

i=h0+1 si[λi/(yσ
2) − 1/y −

ln{1 − 1/y + λi/(yσ 2)}] > 0. As a consequence, larger values of λi imply a greater power. Moreover λi → ∞ for
i ∈ {h0 + 1, . . . , h1} implies that the power goes to 1. On the other hand, for fixed λi with i ∈ {h0 + 1, . . . , h1} and
y → 1, we have that σm,p,d1 → ∞, σm,p,d/σm,p,d1 → 1 and, therefore, the power decreases to α as y → 1. For
y → 0, σm,p,d1 → 0, σm,p,d/σm,p,d1 → 1 and in this case the power goes to 1.

Tables 5–8 show the probabilities of rejection for each of the values under the true dimension for the two models
considered in our simulation runs. We see how, not surprisingly, the power decreases as p/m grows closer to 1.

In light of Proposition 3 and the explanation above, the results obtained in Section 4.2 (and in the supplementarymaterial)
should not be surprising. We saw that the maximum likelihood ratio test underestimates the true dimension of the spike
subspace when the limit of p/m is close to 1. This is confirmed by the behavior of the power of the test when y ≈ 1. The
consequence of this is that the sequential test stops earlier than it is supposed to. In spite of this, we do know the asymptotic
behavior of the statistic as a function of the null hypothesis (thanks to Proposition 2). We can then use this knowledge to
modify the statistic by penalizing the number of spikes chosen.



26 L. Forzani et al. / Journal of Multivariate Analysis 159 (2017) 18–38

Table 5
Probability of rejecting, spikes = (7, 6, 5, 4) (true dimension = 4) and p/m = 0.3.

1 2 3

(30, 100) 1.000 1.000 0.884
(60, 200) 1.000 1.000 0.978
(120, 400) 1.000 1.000 0.997
(240, 800) 1.000 1.000 0.996

Table 6
Probability of rejecting, spikes = (7, 6, 5, 4) (true dimension = 4) and p/m = 0.6.

1 2 3

(30, 100) 1.000 0.976 0.408
(60, 200) 1.000 0.996 0.543
(120, 400) 1.000 0.995 0.613
(240, 800) 1.000 0.998 0.595

Table 7
Probability of rejecting, spikes = (259.72, 17.97, 11.04, 7.88, 4.82) (true dimension = 5)
and p/m = 0.3.

1 2 3 4

(30, 100) 1.000 1.000 1.000 0.987
(60, 200) 1.000 1.000 1.000 1.000
(120, 400) 1.000 1.000 1.000 1.000
(240, 800) 1.000 1.000 1.000 1.000

Table 8
Probability of rejecting, spikes = (259.72, 17.97, 11.04, 7.88, 4.82) (true dimension = 5)
and p/m = 0.6.

1 2 3 4

(30, 100) 1.000 1.000 1.000 0.703
(60, 200) 1.000 1.000 1.000 0.784
(120, 400) 1.000 1.000 1.000 0.848
(240, 800) 1.000 1.000 1.000 0.872

Remark 4. Passemier and Yao [17] present a method to test for the dimension of the spike subspace that is based on
eigenvalue spacings. Due to the nature of the technique, dealing with multiple spike eigenvalues can be tricky. In [18]
they prove that due to the different speeds of convergence of the spacings between the spike and the bulk eigenvalues,
their method still works for matrices with repeated eigenvalues, even if at a different, slower, rate of convergence. The
maximum likelihood ratio does not run into these problems since, as will become clear in the results from the next section,
the important quantity we look at is related to the value of the eigenvalue itself and not to their spacings.

6. A penalized version of the maximum likelihood ratio test

As we mentioned in Section 2, the maximum likelihood ratio statistic (4) is an increasing function of d. The same
phenomenon was observed in Proposition 2 for the asymptotic mean. But, also in Proposition 4, we have seen that the
growth rate of the asymptotic mean changes from d < d1 to d > d1. This will allow us to define a new consistent estimator
of the dimension of the spike subspace via information criteria, as was done in [26] for the fixed-p case.

Proposition 4. Suppose that the spike subspace of the true model has dimension d1. Givenµm,p,d,d1 defined in Proposition 2 and
ϵ ≥ 0, we consider, for ỹ = max(1, y), the function g(d) = µm,p,d,d1 − (d − d1)


h{σ 2(1 +

√
y)} + ϵ


with

h(λ) =
λ

ỹσ 2


1 +

yσ 2

λ− σ 2


− ln


λ

ỹσ 2


1 +

yσ 2

λ− σ 2


− 1.

Let λ∗ > σ 2(1 +
√
y) be such that ϵ = h(λ∗)− h{σ 2 (1 +

√
y)}. Then, if all the spike eigenvalues are greater than λ∗, we have

that g has a global maximum at d = d1.

The proof can be found in Appendix A.5.

Remark 5. First, h{σ 2(1 +
√
y)} is only dependent on y. Second, for ϵ = 0, the function g is increasing for d < d1 and

constant for d ≥ d1. Moreover, if all the eigenvalues in the spiked part are greater than σ 2(1 +
√
y), then g is strictly

increasing for d ≤ d1.
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Table 9
Values of d picked via HD-MDL for spikes = (259.72, 17.97, 11.04, 7.88, 4.82) (true dimension = 5) and p/m = 0.3.

1 2 3 4 5 6 7 8 9

(30, 100) 0.000 0.000 0.000 0.000 0.995 0.005 0.000 0.000 0.000
(60, 200) 0.000 0.000 0.000 0.000 0.999 0.001 0.000 0.000 0.000
(120, 400) 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
(240, 800) 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000

Table 10
Values of d picked via HD-MDL for spikes = (259.72, 17.97, 11.04, 7.88, 4.82) (true dimension = 5) and p/m = 0.6.

1 2 3 4 5 6 7 8 9

(60, 100) 0.000 0.000 0.000 0.000 0.968 0.032 0.000 0.000 0.000
(120, 200) 0.000 0.000 0.000 0.000 0.993 0.007 0.000 0.000 0.000
(240, 400) 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
(480, 800) 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000

Proposition 4 gives us a clear intuition of the behavior of themean of the distribution of the different statistics used in the
sequential test. In the population, if ϵ > 0 and all the spike eigenvalues are greater than λ∗, then the mean of the maximum
likelihood ratio test plus the penalty term has a global maximum at d = d1. Inspired by Proposition 4, we will define a new
estimator for the dimension d̂ϵ . For ϵ ≥ 0 fixed, we define

d̂ϵ = min

argmax
0≤j≤q0


ln(LRTj)− j[h{σ 2 (1 +

√
y)} + ϵ]


, (11)

where q0 is an upper bound for d. Note that if we knew what the true value of the dimension of the spike subspace (d1) is,
we could replace j by j− d1 in the definition of d̂ϵ , leaving us with an expression that is very closely related to the function g
defined above. Clearlywe cannot do that, since the point of defining d̂ϵ is exactly to estimate the value of d1. For our purposes
this is, however, inconsequential.

Now, since the function h(λ) is strictly increasing, when λ > σ 2 (1 +
√
y), there exists a value λ∗ such that ϵ =

h(λ∗)− h{σ 2 (1+
√
y)}. The idea is that this new estimator will miss the eigenvalues located between the threshold and λ∗

but, with high probability, will pick up all the eigenvalues bigger than λ∗ as m, p → ∞. As a consequence of Proposition 4,
we have

Proposition 5. Suppose that the true dimension of the spike subspace is d1. If all the spike eigenvalues are greater than λ∗, then
d̂ϵ defined in (11) is a consistent estimator of d1 in the sense that

Pr(d̂ϵ = d1) → 1 as p,m → ∞,
p
m

→ y > 0.

The proof can be found in Appendix A.6.

Remark 6. Aswas discussed above, the choice of ϵ will determinewhich eigenvalueswill be detected. Themethodwill miss
any eigenvalues λ which are smaller than λ∗ where λ∗ satisfies ϵ = h(λ∗) − h{σ 2 (1 +

√
y)}. Therefore, the strategy for

picking ϵ should be as follows: first pick a λ∗ slightly bigger than σ 2 (1 +
√
y), then define ϵ as the mentioned difference.

As the proposition shows, this method is consistent as long as we have chosen a λ∗ which sits to the left of the smallest of
the eigenvalues which are bigger than the threshold. Otherwise, if our chosen λ∗ turns out to be larger than some of the
relevant eigenvalues, those eigenvalues will not be picked up and the dimension estimated will be smaller than d1.

6.1. Simulations and comparison with Kritchman–Nadler’s method

The procedure defined in (11) gives us another way to estimate the true dimension of the spike subspace. To illustrate
this estimator we have replicated simulations for the examples already presented. Tables 9–12 show the results for the
cases corresponding to Tables 1–4. It can be seen that the performance is greatly improved. Using results from the theory of
random matrices pays off since they allow us to pick the penalty function in a meaningful way. More results from this fact
can be found in the supplementary material (see Appendix B).

In addition, we run the scenarios shown in Figs. 7 and 8 in [12]. The results are presented in Fig. 1. In both cases we
plot the probability of misdirection when there is only one spike eigenvalue. The spike value appears on the x axis. The
new estimator defined is denoted by HD-MDL (high-dimensional MDL). We see how a detailed analysis of the growth of the
maximum likelihood ratio statistics allows us to improve the detection performance. One caveat of our approach, however, is
that we have to choose a value for ϵ. For large values of ϵ the estimator will miss eigenvalues that are close to the threshold
but will minimize the probability of missing larger ones. On the other hand, very low values will increase, slightly, the
probability of missing larger eigenvalues (when p and m are not sufficiently large).
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Table 11
Values of d picked via HD-MDL for spikes = (7, 6, 5, 4) (true dimension = 4) and p/m = 0.3.

1 2 3 4 5 6 7 8 9

(30, 100) 0.000 0.000 0.000 0.992 0.008 0.000 0.000 0.000 0.000
(60, 200) 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
(120, 400) 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
(240, 800) 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

Table 12
Values of d picked via HD-MDL for spikes = (7, 6, 5, 4) (true dimension = 4) and p/m = 0.6.

1 2 3 4 5 6 7 8 9

(60, 100) 0.000 0.000 0.002 0.971 0.027 0.000 0.000 0.000 0.000
(120, 200) 0.000 0.000 0.000 0.995 0.005 0.000 0.000 0.000 0.000
(240, 400) 0.000 0.000 0.000 0.999 0.001 0.000 0.000 0.000 0.000
(480, 800) 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

Fig. 1. Probabilities of misdetection in two cases.

7. Conclusion

For the high-dimensional case (p < n and p, n → ∞)we study the asymptotic distribution of the maximum likelihood
ratio statistics for partial sphericity in high-dimensional settings for the case of a spiked covariance model as introduced
by Johnstone [11]. In addition, we consider the ultra high-dimensional case (p > n and p, n → ∞) and study the
asymptotic distribution of the maximum likelihood ratio statistics where the roles of p and n are reversed. Knowledge of
these asymptotic distributions allows us to develop a test to choose the dimension of the spike subspace that focuses on the
non-spiked portion of the covariance matrix. One nice feature of this approach is that no knowledge of the variance of the
non-spiked part is required. The study of the power of themaximum likelihood ratio test leads us to refine the test, adding a
penalty term to the likelihood. The idea of a penalty term is connected to the elbowmethod used in cluster analysis to choose
the number of clusters [24] and, also, to the information theoretic approaches such as AIC and MDL [26]. By studying the
change of behavior of the distribution of themaximum likelihood ratio statistic for values below and over the true dimension
of the spike subspace, we are able to modify it and to prove that the resulting estimator is consistent.
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Appendix. Proofs

Through the proofs we will use the fact that in all spiked models with spike subspace of dimension d, σ̂ 2
=p

i=d+1 λ̂i/(p − d) converges almost surely to σ 2.



L. Forzani et al. / Journal of Multivariate Analysis 159 (2017) 18–38 29

Fig. 2. Simulation with σ 2
= 1, p = 100, 200, 300, 400, for d = 4, (λ1, λ2, λ3, λ4) = (7, 6, 5, 4), p/m = 0.3 in the first row, p/m = 0.6 in the second

row, d = 5, (λ1, λ2, λ3, λ4, λ5) = (259.72, 17.97, 11.04, 7.88, 4.82), p/m = 0.3 in the third row and p/m = 0.6 in the fourth row. The red curve is
the asymptotic distribution of ln LRTd given in Proposition 1 and the blue curve the lower approximation given in Corollary 1. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

A.1. Proof of Proposition 1

We consider separately the cases p < m and p > m + d.

1. Case p < m. This case follows using the technique developed by Muirhead [15] and the approximations given in [10].
For each i ∈ {0, . . . , h}, let us call 9̂i the sample version of 9i ∈ Rp×si , where s0 = p − d. Remember that, under the
null hypothesis Hd, the matrices 91, . . . ,9h correspond to the d spike eigenvalues of the covariance matrix 6. We have6 = (9̂, 9̂0)3(9̂, 9̂0)

⊤ with 3 = diag(λ̂1, . . . , λ̂p). It should be noted that since m > p all the eigenvalues of the
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sample covariance matrix are different and not 0 with probability 1. Now,

LRTd =
λ̂d+1 × · · · × λ̂p

1
p−d

p
i=d+1

λ̂i

p−d = LRT∗A91 · · · A9hA90

with

LRT∗ =
|6̂|

tr(9⊤
1 6̂91)

s1

s1
· · ·


tr(9⊤

h 6̂9h)

sh

sh 
tr(9⊤

0 6̂90)

p−d

p−d ,

A9i =


tr(9⊤

i 6̂9i)

si

si

|9̂
⊤

i 6̂9̂i|
, i = 1, . . . , h, and

A90 =


tr(9⊤

0 6̂90)

tr(9̂
⊤

0 6̂9̂0)

p−d

.

Since σm,p,d ↛ 0, the pieces required to get the result are

ln(LRT∗)−µm,p

σm,p,d
 N (0, 1), (12)

ln(Πh
i=1A9i)− ln(Am,p,d) → 0, (13)
ln(A90)− ln(Bm,p,d) → 0. (14)

Proof of (12). To follow Muirhead’s proof we need to compute E(LRT t
∗
), the moment generating function of ln(LRT∗),

under the null hypothesis for t in a neighborhood of 0. We find

LRT∗ =
|6̂|

h
i=0

{ tr(Ψ⊤

i 6̂Ψi/si)}si

=
|6̂||6−1

|

h
i=0

{λ−1
i tr(Ψ⊤

i 6̂Ψi/si)}si
=

|6−1/26̂6−1/2
|

h
i=0

{ tr(Ψ⊤

i 6−1/26̂6−1/2Ψi/si)}si
.

Hence

E(LRT t
∗
) = E

 |6−1/26̂6−1/2
|
t

h
i=0

{ tr(Ψ⊤

i 6−1/26̂6−1/2Ψi/si)}sit



= E


|A|

t

h
i=0
( trAii/si)sit

 ,
where the expectation in the last expectation is taken with respect to a matrix A = m 6−1/26̂6−1/2

∼ Wp(m, Ip). Using
Proposition 8.1 of [6], Aii = m Ψ⊤

i 6−1/26̂6−1/2Ψi ∼ Wsi(m, Isi) and are independent; see Theorem 3.2.6 in [15]. As a
consequence,

E(LRT t
∗
) =

1

2
mp
2 Γp

m
2

  |A|
t+ m−p−1

2

Πh
i=0


trAii
si

sit exp−
1
2
trA

dA

=
2
(m+2t)p

2 Γp
m+2t

2


2

mp
2 Γp

m
2

 E

 1

Πh
i=0


trAii
si

sit
 , (15)
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where the expectation in the last expectation is taken with respect to a matrix A ∼ Wp(m + 2t, Ip) and Aii ∼

Wsi(m + 2t, Isi) independent using the definition of Wishart distribution with non-integer degrees of freedom; see
Section 3.2 in [15]. Now, E{( trAii/si)−sit} is equal to

1

Γsi

m+2t
2


2
(m+2t)si

2

 
trS
si

−sit

|S|
m+2t−si−1

2 exp


−
1
2
trS

dS

=
1

Γsi

m+2t
2


2
(m+2t)si

2


|S|t


trS
si

−sit

|S|
m−si−1

2 exp


−
1
2
trS

dS

=
Γsi

m
2


2

msi
2

Γsi

m+2t
2


2
(m+2t)si

2

E


 |S|

1
si
trS
si


t ,
where the last expectation is considering S ∼ Wsi(m, Isi). Using Corollary 8.3.6 of [15],

E


trAii

si

−sit


=
ssiti Γ

 1
2 sim


2tsiΓ

 1
2 sim + sit

 .
Consequently, replacing in (15),

E(LRT t
∗
) =

Γp
m

2 + t


Γp
m

2

 (p − d)(p−d)t Γ
 1
2 (p − d)m


Γ
 1
2 (p − d)m + (p − d)t


Πh

i=1
ssiti Γ

 1
2 sim


Γ
 1
2 sim + sit

 . (16)

Wenowuse Lemma5.1 from [10],which is a consequence of Stirling’s expansion forGamma functions.We take b(x) =

2tx/mwith x = m(p − d)/2. Since b(x) = O(
√
x) = O(m) for t finite, − ln[Γ {m(p − d)/2 + t(p − d)}/Γ {m(p − d)/2}]

is equal to

−t(p − d) ln
m
2
(p − d)


−

t2(p − d)2 − t(p − d)
m(p − d)

+ O(1/m)

= −t(p − d) ln
m
2
(p − d)


−

t2(p − d)
m

+ O(1/m)

and taking b(x) = sit , for t finite and x = msi/2, b(x) = O(1),

− ln
Γ
m

2 si + sit


Γ
m

2 si
 = −sit ln

m
2
si


−
s2i t

2
− sit

msi
+ O(1/m2)

= −sit ln
m
2
si


+ O(1/m).

Taking logarithms in (16) and using the above approximations plus Lemma 5.4 from [10], we have for r2m = − ln(1−p/m)
and t = O(1/rm):

ln E(LRT t
∗
) = 2


−
(p − d)

m
+ r2m


t2

2
+


−p + r2m(m − p −

1
2
)


t + o(1),

which leads to (12).

Proof of (13). Sincem9⊤

i
69i ∼ Wsi(m, λiIsi), we have whenm → ∞ tr(9⊤

i
69i)/si → λi; see Theorem 3.2.20 in [15].

Therefore,
h

i=1

ln(A9i)− ln(Am,p,d) =

h
i=1

si


ln

tr(9⊤

i
69i)

si
− ln λi


→ 0.

Proof of (14). By definition of A90 we need to compute

tr(9⊤

0
690)

tr(9̂
⊤

0
69̂0)

=

p
i=1
λ̂i − tr(9⊤69)

tr(9̂
⊤

0
69̂0)

.
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Therefore,

ln

A90/Bm,p,d


= (p − d) ln

1 +
1

p − d

h
i=1

siλi − tr(9⊤69)

1
p−d

 p
i=1
λ̂i −

h
i=1

siλi


 ,

and the proof of (14) follows if

a =

h
i=1

siλi − tr(9⊤69)

1
p−d

 p
i=1
λ̂i −

h
i=1

siλi

 → 0. (17)

In fact, it was proven above that the numerator goes to 0. On the other hand, for the denominator we have

E


1

p − d


p

i=1

λ̂i −

h
i=1

siλi


= σ 2

var


1

p − d


p

i=1

λ̂i −

h
i=1

siλi


=

2
m(p − d)2


h

i=1

siλ2i + σ 4(p − d)


→ 0

from which (17) follows.

2. Case p > m + d. Since m6 ∼ Wp(m,6) then m6 = Z⊤Z with Z ∈ Rm×p
∼ N (0, Im ⊗ 6) and m6 = ZZ⊤

=

Z(9,90)(9,90)
⊤Z⊤

∈ Rm×m with Z(9,90) ∈ Rm×p and Z(9,90) ∼ N (0, Im ⊗ 3). As a consequence,

m6 = Z99⊤Z + Z909
⊤

0 Z .

Now, Z9 ∈ Rm×d and Z9 ∼ N (0, Im ⊗ 3d) and therefore Z9 = Zd3
1/2
d for some Zd ∼ N (0, Im ⊗ Id). Analogously,

Z90 = σ Z̃ for some Z̃ ∼ N (0, Im ⊗ Ip−d) and moreover Zd and Z̃ are independent. Therefore,

6 =
1
m

Zd3dZ⊤

d +
σ 2

m
ZZ⊤, (18)

withZZ⊤
∼ Wm(p − d, Im) independent of Zd ∼ N(0, Im ⊗ Id). Now,

|6| =

σ 2

m
ZZ⊤

 Id +
1
σ 2

3
1/2
d Z⊤

d (
ZZ⊤)−1Zd3

1/2
d

 .
Let us note that the eigenvalues of6 are the non-zeros eigenvalues of6: λ̂1, . . . , λ̂m. Therefore,

LRTd =
|6|

1
m−d

m
i=d+1

λ̂i

m−d

1

λ̂1 × · · · × λ̂d

=

 σ 2

m
ZZ⊤

||Id +
1
σ 2 3

1/2
d Z⊤

d (
ZZ⊤)−1Zd3

1/2
d


1

m−d

m
i=d+1

λ̂i

m−d

1

λ̂1 × · · · × λ̂d

=
|σ 2ZZ⊤

| 1
m tr


σ 2ZZ⊤

m


1
m tr


σ 2ZZ⊤

m


1

m−d

m
i=d+1

λ̂i


m−d 

1
m

tr


σ 2
ZZ⊤

m

d

|Id +
1
σ 2 3

1/2
d Z⊤

d (
ZZ⊤)−1Zd3

1/2
d |

λ̂1 × · · · × λ̂d

= LRT ∗BCD,



L. Forzani et al. / Journal of Multivariate Analysis 159 (2017) 18–38 33

where LRT ∗, B, C and D are the factors in exactly the same order to that in the third line of the previous equation. Since
σm,p,d ↛ 0, the pieces to get the result are

ln(LRT ∗)−µ∗

m,p,d

σm,p,d
 N (0, 1), (19)

ln B − ln B∗

m,p,d → 0, (20)

ln C − ln C∗

m,p,d → 0, (21)

lnD − lnD∗

m,p,d → 0. (22)

Proof of (19). By definition,

LRT ∗
=

|ZZ⊤
| 1

m tr(ZZ⊤)
m .

Now, the result follows from [10] sinceZZ⊤
∼ Wm(p − d, Im).

Proof of (20). By definition of B and (18),

B =

1 +

d
i=1
λ̂i −

1
m tr


Zd3dZ⊤

d


tr(9̂

⊤

0
69̂0)


m−d 

m − d
m

m−d

.

Then

ln

B/B∗

m,p,d


= (m − d) ln

1 +

h
i=1

siλi − 1
m tr


Zd3dZ⊤

d


tr(6̂)−

h
i=1

siλi


and the proof of (20) follows if

a =

h
i=1

siλi − 1
m tr


Zd3dZ⊤

d


1

m−d


tr6̂ −

h
i=1

siλi

 → 0. (23)

In fact, since ZT
dZd ∼ Wd(m, Id), E{ tr


Zd3dZ⊤

d /m

} =

h
i=1 siλi and var{ tr


Zd3dZ⊤

d /m

} = 2

d
i=1 siλ

2
i /m = O(m−1).

Therefore the numerator goes to 0. On the other hand, the denominator goes to yσ 2 < ∞ since tr6/p → σ 2, fromwhat
follows (23).

Proof of (21). Since

E

 tr
ZZ⊤

m


p − d

 =
1

m(p − d)
tr{E(ZZ⊤)} =

σ 2

m
tr(Im) = 1

and

var

 tr
ZZ⊤

m


p − d

 =
1

(p − d)2m2
var{ tr(ZZ⊤)}

=
2

m(p − d)
→ 0,

it follows that ln(C)− ln(C∗

m,p,d) → 0.

Proof of (22). By definition of D and D∗

m,p,d it is enough to prove that

ln
Id +

1
σ 2

3
1/2
d Z⊤

d (
ZZ⊤)−1Zd3

1/2
d

− h
i=1

si ln

1 +

λi

σ 2

m
p − d − m − 1


→ 0.
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But this follows directly from the fact that since Zd andZ are independent andZZ⊤
∼ Wm(p− d, Im) using the moments

of the inverse Wishart distribution [25],

E

Id +

1
σ 2

3
1/2
d Z⊤

d (
ZZ⊤)−1Zd3

1/2
d


= Id +

1
σ 2

m
p − d − m − 1

3d > 0,

and

var

vec


Id +

1
σ 2

3
1/2
d Z⊤

d (
ZZ⊤)−1Zd3

1/2
d


→ 0.

To check the last statement, we use the variance decomposition formula, the fact that

var

vec


3

1/2
d Z⊤

d (
ZZ⊤)−1Zd3

1/2
d


|Zd


= Kvar{vec(ZZ⊤)−1

}K⊤,

with K = (3
1/2
d Z⊤

d ⊗ 3
1/2
d Z⊤

d ) and the moments of the inverse Wishart distribution [25]. The proof of (22) follows from
the fact that the determinant is a continuous function.

A.2. Proof of Lemma 1

The lemma follows if we prove that

µ̂m,p,d − µm,p,d

σm,p,d
→ L when p,m → ∞. (24)

We will use repetitively that λ̃i → λi when λi ∈ J1 and λ̃i → σ 2(1 +
√
y) for λi ∈ J2. Let us consider the cases p < m and

p > m + d separately.
1. Case p < m. The difference between the term ln(Am,p,d) for µ̂m,p,d and µm,p,d converges to

i∈J2

si ln σ 2(1 +
√
y)−


i∈J2

si ln λi. (25)

To compare the term ln(Bm,p,d) for µ̂m,p,d andµm,p,d, let us note before that ln(Bm,p,d) from Proposition 1 is asymptotically
equivalent to

Bm,p,d = y

i∈J1

si
λi

λi − σ 2
+


i∈J2

si(1 +
√
y)2 −


i∈J2

si
λi

σ 2
.

In fact, since (p− d) ln{1+ ap,m/(p− d)} = a+ o(1)when p− d → ∞ if a = lim ap,m is finite, it is enough to prove that

ln(Bm,p,d)− (p − d) ln

1 +

1
p − d

Bm,p,d


→ 0

as p and m go to infinity. But by definition of ln(Bm,p,d) andBm,p,d we have

ln(Bm,p,d)− (p − d) ln

1 +

1
p − d

Bm,p,d



= (p − d) ln

1 +

d
i=1
λ̂i −

h
i=1

siλi

p
i=d+1

λ̂i


− (p − d) ln


1 +

1
p − d


y

i∈J1

si
λi

λi − σ 2
+


i∈J2

si(1 +
√
y)2 −


i∈J2

si
λi

σ 2



= (p − d) ln

1 +

1
p − d

H

.

The proof of the statement then follows if we prove that

H =

−


y

i∈J1

siλi
λi−σ 2 +


i∈J2

si(1 +
√
y)2 −


i∈J2

siλi
σ 2


+

d
i=1

λ̂i−
h

i=1
siλi

1
p−d

p
i=d+1

λ̂i

1 +
1

p−d


y

i∈J1

siλi
λi−σ 2 +


i∈J2

si(1 +
√
y)2 −


i∈J2

si
λi
σ 2

 → 0.
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This can be seen through the fact that the numerator goes to 0 and the denominator goes to 1 using again [3]. As a
consequence, the difference between the termBm,p,d for µ̂m,p,d and µm,p,d is in the terms involving J2 and it converges to

−


i∈J2

si(1 +
√
y)+


i∈J2

si
λi

σ 2
. (26)

Eqs. (25) and (26) give us (24) since σm,p,d →
√

−2{y + ln(1 − y)}.
2. Case p > m + d. In this case, in part (b) of Proposition 1 ln(B∗

m,p,d) can be replaced by
i∈J1

si
λi

λi − σ 2
+


i∈J2

si
(1 +

√
y)2

y
−


i∈J2

si
λi

yσ 2
+ (m − d) ln


m − d
m


and ln(D∗

m,p,d) by

h
i=1

si ln

1 +

λi

σ 2(y − 1)


−


i∈J1

si ln

λi


1 + y

σ 2

λi − σ 2


−


i∈J2

siσ 2(1 +
√
y)2

with J1 and J2 as before. The proofs of these observations are completely analogous to the previous case. From this, and
since the other terms do not involve λi,

µ̂m,p,d − µm,p,d →


i∈J2

si


λi

yσ 2
−

1 +
√
y

y
− ln

σ 2(y − 1)+ λi

σ 2√y(1 +
√
y)


and σm,p,d goes to

√
−2 {1/y + ln(1 − 1/y)} < ∞ when both p and m tend to infinity.

A.3. Proof of Proposition 2

Calling r = min(m, p), we can write

LRTd = LRTd1 λ̂d+1 × · · · × λ̂d1


1

r−d1

r
i=d1+1

λ̂i

r−d1


1

r−d

r
i=d+1

λ̂i

r−d when d < d1, (27)

LRTd = LRTd1
1

λ̂d1+1 × · · · × λ̂d


1

r−d1

r
i=d1+1

λ̂i

r−d1


1

r−d

r
i=d+1

λ̂i

r−d when d > d1. (28)

Using Proposition 1

ln(LRTd1)− µm,p,d1

σm,p,d1
 N (0, 1), (29)

and since for i ∈ J1,k,λi → λi{1 + yσ 2/(λi − σ 2)} and for i ∈ J2,k,λi → σ 2(1 +
√
y)2 when p,m → ∞ and p/m → y,

ln(λ̂d+1 · · · λ̂d1)−

h1
i=h0+1

si ln(σ 2ki) → 0, when d < d1, (30)

ln(λ̂d1+1 · · · λ̂d)− (d − d1) ln{σ 2(1 +
√
y)2} → 0, when d1 < d ≤ q0, (31)

where (31) follows from the fact that since d1 < d all the population eigenvalues λd1+1, . . . , λd are equal to σ 2.
Consequently, since d ≤ q0 fixed independent on m and p, λ̂j → σ 2(1 +

√
y)2 as p,m grow to infinity and p/m → y

for j = d1 + 1, . . . , d ≤ q0. On the other hand we have
1

r−d1

r
i=d1+1

λ̂i

r−d1


1

r−d

r
i=d+1

λ̂i

r−d = ABC . (32)
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With

A =


r

i=d1+1
λ̂i

r
i=d+1

λ̂i


r−d

→


exp


−

1
ỹ

h1
i=h0+1

siki


if d < d1, (a)

exp

1
ỹ
(d − d1)(1 +

√
y)2


if d < d1, (b)

(33)

B =


1

r − d1

r
i=d1+1

λ̂i

d−d1

→

ỹσ 2d−d1

, (34)

C =


r − d
r − d1

r−d

→ exp(d1 − d), (35)

where ỹ = max(1, y), and to prove (33)(a) and (b) we use the limit result (1 + at/t)t → exp{a}when at is such that at → a
as t grows to infinity, taking

at = −


d1

i=d+1

λ̂i


r

i=d+1

λ̂i/(r − d)


and

at =


d

i=d1+1

λ̂i


r

i=d+1

λ̂i/(r − d)


,

respectively. The result follows from (29)–(35) applied to (27) for the case d < d1 and applied to (28) for the case d > d1.

A.4. Proof of Proposition 3

Since all the eigenvalues are greater than the threshold, it is equivalent (asymptotically) to use µ̂m,p,d or µm,p,d. Using
Proposition 2 for d1 > d, we get for Z ∼ N (0, 1),
• Case p < m:

Ψ (d1) = Pr{ln(LRTd) < µm,p,d + zασm,p,d|d = d1}

= Pr

Z <

µm,p,d − µm,p,d,d1 + zασm,p,d
σm,p,d1



= Pr

Z <

µm,p,d − µm,p,d1 +

h1
i=h0+1

si(ki − ln ki − 1)+ zασm,p,d

σm,p,d1

 .
• Case p > m + d1:

Ψ (d1) = Pr{ln(LRTd) < µm,p,d + zασm,p,d|d = d1}

= Pr

Z <

µm,p,d − µm,p,d,d1 + zασm,p,d
σm,p,d1



= Pr

Z <

µm,p,d − µm,p,d1 +

h1
i=h0+1

si


ki
y − ln ki

y − 1


+ zασm,p,d

σm,p,d1

 .
The result follows since µm,p,d − µm,p,d1 converges to

−

h1
i=h0+1

si


ln

λi

σ 2


−
λi

σ 2


−

h1
i=h0+1

si(ki − ln ki) (36)

when p < m and to

−

h1
i=h0+1

si


ln

1 −

1
y

+
λi

yσ 2


− 1 +

1
y

−
λi

yσ 2


−

h1
i=h0+1

si


ki
y

− ln
ki
y


(37)

when p > m + d1.
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Now, from the proof of Lemma 1, for p < m, ln(Bm,p,d) is asymptotically equivalent to
hk

i=1 si(ki − λi/σ
2) from where

(36) follows directly. Now for p > m + d1 (37) follows from

µ̃∗

m,p,d − µ̃∗

m,p,d1 = (p − m)

ln

1 −

m
p − d1


− ln


1 −

m
p − d


−


d1 +

1
2


ln

1 −

m
p − d1


+


d +

1
2


ln

1 −

m
p − d


∼

d − d1
y

+ (d − d1) ln(1 − m/p),

ln(B∗

m,p,d)− ln(B∗

m,p,d1) ∼ −

h1
i=h0+1

si


ki
y

−
λi

yσ 2


− (d − d1),

ln(C∗

m,p,d)− ln(C∗

m,p,d1) ∼ (d − d1) ln(yσ 2),

ln(D∗

m,p,d)− ln(D∗

m,p,d1) ∼ −

h1
i=h0+1

si


ln

1 +

λi

σ 2

1
p/m − 1


− ln σ 2ki


where ∼ means asymptotic equivalent.

A.5. Proof of Proposition 4

Since λi > σ 2(1 +
√
y) we get J2,1 = J2,0 = ∅. Using (9) and (10) we have that for d ≥ d1, g(d) = µm,p,d1 − (d − d1)ϵ.

Therefore g is a decreasing function for d ≥ d1. Now, for d < d1, using again ỹ = max(1, y), the function g(d) is given by

g(d) = µm,p,d1 +

h1
i=h0+1

si


ln

ki
ỹ

−
ki
ỹ

+ 1


− (d − d1)

(1 +

√
y)2

ỹ
− ln

(1 +
√
y)2

ỹ
− 1 + ϵ



= µm,p,d1 −

h1
i=h0+1

si[h(λi)− h{σ 2(1 +
√
y)} − ϵ].

Since λi > λ∗ > σ 2(1+
√
y) and h is a strictly increasing function, using the definition of ϵ, h(λi)−h{σ 2(1+

√
y)}−ϵ > 0.

Therefore for d ≤ d1 as d increases we are adding less negative terms and therefore g increases for d < d1. This allows us to
conclude.

A.6. Proof of Proposition 5

The proposition follows if we prove that for all δ > 0 there exist m0, pm0 such that for m > m0, p > pm0 and p/m close
to y

Pr(∩q0
d=0 Ad) ≥ 1 − δ

where

Ad = Ad(p,m, ϵ) =


{F(d, p,m, ϵ)− F(d − 1, p,m, ϵ) > 0} if 0 ≤ d ≤ d1,
{F(d, p,m, ϵ)− F(d − 1, p,m, ϵ) < 0} for d1 < d ≤ q0,

with F(d, p,m, ϵ) = ln(LTRd) − (d − d1)

h{σ 2(1 +

√
y)} + ϵ


. Let us call r = min(m, p). We consider first d ≤ d1. From

the definition of F(d, p,m, ϵ),

F(d, p,m, ϵ)− F(d − 1, p,m, ϵ) = ln


LRTd
LRTd−1


− h


σ 2(1 +

√
y)


− ϵ.

We can now write

LRTd
LRTd−1

=
1

λ̂d


1

r − d + 1

r
i=d+1

λ̂i


1

1 +
1

r−d

r−d

1 +
λ̂d
r

i=d+1
λ̂i


r−d

.

Using again ỹ = min(1, y), we then deduce that

LRTd
LRTd−1

→
ỹσ 2

λd


1 +

yσ 2

λd−σ 2

 exp(−1) exp

λd

ỹσ 2


1 +

yσ 2

λd − σ 2


.
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Therefore ln(LRTd/LRTd−1) → h(λd) and, since λd > λ∗, the monotonicity of the function h implies that for large enough
p,m (if d ≤ d1),

Pr {F(d, p,m)− F(d − 1, p,m) > 0} > 1 −
δ

q0
.

The case d > d1 is very similar. We only have to notice that, in this case, ln(LRTd/LRTd−1) → h{σ 2 (1 +
√
y)}. So, for large

enough p,m, we get

Pr{F(d, p,m)− F(d − 1, p,m) < 0} > 1 −
δ

q0
.

As a consequence Pr(∩q0
d=1 Ad) ≥ 1 − δ and the result follows by noticing that for ĝ(y) = ln(LRTd)− (d − d1){h(y)+ ϵ},

∩
q0
d=1 Ad ⊆


ĝ(y) is increasing for d ≤ d1 and decreasing for d ≥ d1


.

Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.jmva.2017.04.001.
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