
The Journal of Systems and Software 111 (2016) 242–253

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Towards better Scrum learning using learning styles

Ezequiel Scott, Guillermo Rodríguez, Álvaro Soria∗, Marcelo Campo

ISISTAN Research Institute (CONICET-UNICEN), Campus Universitario, Paraje Arroyo Seco, Tandil, Buenos Aires, Argentina

a r t i c l e i n f o

Article history:

Received 19 March 2015

Revised 6 October 2015

Accepted 8 October 2015

Available online 23 October 2015

Keywords:

Agile software development

Software engineering education

Learning styles

a b s t r a c t

Considerable attention has been paid to teaching Scrum in software engineering education as an academic re-

sponse to the software industry’s demands. In order to reinforce and strengthen the understanding of Scrum

concepts, professors should personalize the learning process, catering for students’ individual learning char-

acteristics. To address this issue, learning styles become effective to understand students’ different ways of

learning. In this context, the meshing hypothesis claims that when both teaching and learning styles are

aligned, the students’ learning experience is enhanced. However, the literature fails to evidence support for

the meshing hypothesis in the context of software engineering education. We aim to corroborate the mesh-

ing hypothesis by using teaching strategies matching the Felder–Silverman Learning Style Model in a Scrum

course. Based on previous findings, we focused on the processing dimension of the model. To validate our

approach, two experiments were conducted in an undergraduate software engineering course in the aca-

demic years 2013 and 2014. We provided students with a Scrum class by applying teaching strategies suiting

students’ learning style. Test results corroborate that students’ outcomes improved when receiving the strat-

egy that match their learning styles. Our data highlight opportunities for improving software engineering

education by considering the students’ learning preferences.

© 2015 Elsevier Inc. All rights reserved.

i

B

P

p

m

t

p

e

I

l

m

c

h

b

b

2

i

1. Introduction

During recent years, agile methodologies have become increas-

ingly popular in both the software industry and academic research

(Dingsoyr et al., 2012). The main reasons that support industrial

adoption of agile practices are improved performance and fast re-

sponse time; additionally, agile methodologies allow for delivering

better outcomes than plan-driven ones. Accommodating industrial

requirements, universities have started to teach agile practices in

software engineering courses (Martin Kropp, 2013). Out of the variety

of agile methodologies, Scrum is in the cutting-edge of software en-

gineering education (Ambler, 2006; Hossain et al., 2009; Paasivaara

et al., 2009; Salo and Abrahamsson, 2008; VersionOne, 2012) because

its widespread adoption in the industry (VersionOne, 2012). As uni-

versity level teaching aims at preparing students for both facing com-

mon software engineering challenges and facilitating their insertion

in professional contexts, the software engineering curricula should

respond by providing students with knowledge and experiences on

how to use Scrum in practice.
∗ Corresponding author. Tel.: +54 249 443 9681 Ext. 32

E-mail addresses: ezequiel.scott@isistan.unicen.edu.ar (E. Scott), guillermo.

rodriguez@isistan.unicen.edu.ar (G. Rodríguez), alvaro.soria@isistan.unicen.edu.ar

(Á. Soria), marcelo.campo@isistan.unicen.edu.ar (M. Campo).

m

i

l

c

d

f

http://dx.doi.org/10.1016/j.jss.2015.10.022

0164-1212/© 2015 Elsevier Inc. All rights reserved.
After exploring several research works that aim to teach Scrum

n software engineering undergraduate courses (Smith et al., 2011;

roman et al., 2012; Damian et al., 2012; Scharf and Koch, 2013;

aasivaara et al., 2014; Lu and DeClue, 2011), we identified the need to

rovide students with relevant personalized learning scenarios that

ight offer more meaningful learning experiences. The personaliza-

ion of the learning process is aligned with learner-centered princi-

les, in which professors should consider students’ learning prefer-

nces, their strengths and weaknesses (McCombs and Whisler, 1997).

n this context, learning styles are not only useful tools to detect how

earners perceive, interact with, and respond to the learning environ-

ent, but also valuable indicators for the cognitive, affective, and psy-

hological students’ behaviors (Keefe, 1988). Moreover, the meshing

ypothesis states that learners have different ways of learning, and

y considering these preferences, students’ learning experiences may

e enhanced along with their educational outcomes (Pashler et al.,

008).

Pashler et al. (2008) have also summarized both concepts and ev-

dence related to the meshing hypothesis. Their findings show that

ost of the research works reviewed disregarded both adequate ev-

dence and rigorous experimental designs to justify the impact of

earning styles on students’ learning experience. Although a signifi-

ant relation between students’ learning style and the way these stu-

ents learn Scrum was reported (Scott et al., 2014a), the research

ailed to provide evidence of the fact that students’ learning style

http://dx.doi.org/10.1016/j.jss.2015.10.022
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.10.022&domain=pdf
mailto:ezequiel.scott@isistan.unicen.edu.ar
mailto:guillermo.rodriguez@isistan.unicen.edu.ar
mailto:alvaro.soria@isistan.unicen.edu.ar
mailto:marcelo.campo@isistan.unicen.edu.ar
http://dx.doi.org/10.1016/j.jss.2015.10.022


E. Scott et al. / The Journal of Systems and Software 111 (2016) 242–253 243

m

c

w

(

p

s

T

i

t

t

s

I

c

p

g

w

d

a

o

p

d

S

a

T

b

t

l

s

r

f

v

S

2

a

t

c

m

s

i

b

t

o

n

a

m

s

o

e

l

w

c

d

2

c

S

m

e

S

m

c

o

w

m

i

t

s

t

t

c

t

(

i

d

d

i

s

d

k

h

s

i

a

p

t

n

a

a

b

d

M

e

s

B

c

M

e

i

u

r

2

o

t

A

t

o

m

u

t

P

e

d

s

p

s

e

f

t

s

l

t

ight impact on students’ learning experience. As a consequence, we

laim that more research is required on effective approaches in soft-

are engineering education to validate the use of teaching strategies

i.e. instructional methods) that fit students’ learning styles.

Based on the suggestions made by Pashler et al. (2008), we

resent an appropriate methodology that evidences encouraging re-

ults when teaching Scrum by considering students’ learning styles.

o validate the meshing hypothesis, an experiment was conducted

n the academic year 2013, and replicated in 2014 in the context of

he Software Engineering course at Universidad Nacional del Cen-

ro de la Provincia de Buenos Aires (UNCPBA). The experiment con-

isted of three steps. Firstly, students were required to complete the

ndex of Learning Style questionnaire (Felder and Soloman, 1991). By

onsidering previous findings (Scott et al., 2014a), we focused on the

rocessing dimension that was applied to divide students into two

roups, each one containing active and reflective students. One group

as given a class on basic Scrum concepts suitable for reflective stu-

ents, and the second group was given the same concepts in a suit-

ble manner for active students. Secondly, the students conducted a

ne-Sprint capstone project to reinforce the concepts learned in the

revious step. Thirdly, at the end of the Sprint both groups of stu-

ents were evaluated by means of a test to assess students’ learning of

crum. The results showed that students who received the class suit-

ble for their learning styles achieved better educational outcomes.

his contribution is a step forward to improve the teaching of Scrum

y considering the learning preferences of students.

The remaining of this paper is organized as follows. Section 2 in-

roduces the background topics in the area of Scrum teaching and

earning styles, as well as related works in the context of learning

tyles in teaching. Section 3 presents our research approach to cor-

oborate the meshing hypothesis. In Section 4, the results obtained

rom the experiments are presented. Section 5 analyzes the most

aluable findings, lessons learned and threats to validity. Finally, in

ection 6, we state our conclusions and identify future lines of work.

. Background

In recent years, software industries have grown rapidly and they

re demanding for skilled software engineers in a challenging con-

ext in which the increasing complexity of software development,

onstant changes in system requirements, and mobility of developers

ay take place. Nowadays, agile software development has received

ignificant academic attention because of its widespread application

n the commercial world as an effective vehicle towards an optimal

alance between fast software development and software quality. For

his reason, software engineering courses have to be continuously re-

riented to cater for the demands of the software industry without

eglecting academic quality. Students should both really understand

nd assimilate agile methodologies, and enrich their knowledge by

eans of hands-on experiences. Thus, showing students advisable

oftware engineering practices is crucial, so that they are capable of

ngoing success in the software engineering field (von Wangenheim

t al., 2013). However, students learn in many ways and have singular

earning preferences, so professors need to know their strengths and

eaknesses in order to enhance their learning experience. Thus, the

hallenge is how to personalize the learning process catering for in-

ividual learning characteristics of students by using learning styles.

.1. Teaching Scrum

Out of the various agile approaches, Scrum has gained wide ac-

eptance in the software industry because of various reasons. First,

crum concentrates on project management practices and includes

onitoring and feedback activities that focus on transparency, team

ffort, effective time management and personal interactions. Second,
crum facilitates the process of prioritizing and satisfying require-

ents. Third, the retrospective meetings and continual customer

ontact allow for early detection of impediments and rearrangements

f working plans (Schwaber and Beedle, 2002).

In an educational context, all the aforementioned aspects are

elcome because they enable students to get acquainted with agile

ethods and, at the same time, provide mechanisms for evaluating

ndividual agile concepts. According to the recommendations from

he Software Engineering 2004 Curriculum (LeBlanc et al., 2006),

oftware engineering is an activity that requires students to acquire

eamwork-related skills. In this line, Scrum promotes a work model

o produce high-quality software and permits quick adaptation to

hanging requirements, allowing students to acquire skills beyond

echnical and scientific scenarios, such as teamwork-related abilities

Diaz et al., 2009). Moreover, since agile methods support learn-

ng processes, we endorse the idea that teaching agile software

evelopment might reduce the cognitive complexity of software

evelopment processes and foster the acquisition of skills by mak-

ng Scrum more comprehensible and suitable for undergraduate

tudents (Nerur and Balijepally, 2007). Learning agile software

evelopment methodologies will unquestionably increase the mar-

etability of students as professional software engineers. However,

ow agile methods should be taught at the undergraduate level is

till a challenging issue (Lu and DeClue, 2011).

The use of capstone projects has gained considerable attention

n software engineering education as a strategy to teach Scrum and

ll possible issues that commonly arise in real software engineering

rojects, such as delayed deadlines, cancellation of projects, errors in

he application, application not suiting the customer, changing busi-

ess requirements, and personnel turnover (Mahnic, 2010; Devedzic

nd Milenkovic, 2011; Schroeder et al., 2012; Mahnic, 2012). In Coupal

nd Boechler (2005), an experience comparing a project developed

y students following an agile approach to their previous projects

eveloped in a traditional way has been reported. In Devedzic and

ilenkovic (2011), the authors described their eight years of experi-

nces in teaching agile software methodologies to various groups of

tudents at different universities by weaving together Scrum and XP.

ased on the experience acquired, they recommended how to over-

ome potential problems in teaching agile software development. In

ahnic (2011) the achievement of teaching goals and the empirical

valuation of students’ progress in estimation and planning skills us-

ng Scrum have been discussed. Also, the behavior of students when

sing Scrum for the first time has been observed (Mahnic, 2012). Rico

eported a capstone course based on agile methods (Rico and Sayani,

009), in which the students were able to choose an agile method

ut of Scrum, XP, Feature-driven development (FDD), Dynamic Sys-

ems Development Method (DSDM) and Crystal Clear, among others.

pedagogical approach was reported in Tan et al. (2008), in which

he authors proposed a hybrid course of Information Systems based

n XP, Scrum and FFD. By simulating a software engineering environ-

ent as close to real world as possible, Scharf et al. presented a Scrum

ndergraduate course complemented with useful tools to implement

his agile method (Scharf and Koch, 2013). Following the same line,

aasivaara et al. introduced a simulation game to teach Scrum roles,

vents and related concepts achieving promising results through stu-

ents’ feedback (Paasivaara et al., 2014). Particularly, a previous re-

earch work has revealed promising evidence of the use of a capstone

roject to teach Scrum (Soria et al., 2012). For this reason, we con-

idered the teaching model proposed in the research to support our

xperiments and introduced personalized teaching strategies to cater

or individual learning preferences.

However, the teaching model proposed, in line with most of

he works mentioned above, disregards individual characteristics of

tudents that could affect their learning experience. Since students

earn in many ways, professors should know the students’ profile,

heir strengths and weaknesses in order to help them to learn agile



244 E. Scott et al. / The Journal of Systems and Software 111 (2016) 242–253

Table 1

Dimensions of Felder’s learning styles.

Dimension Values

Perception Sensing-Intuitive

Understanding Sequential-Global

Processing Active-Reflective

Input Visual-Verbal

w

E

i

l

i

C

P

a

c

t

m

O

s

M

a

t

m

s

c

w

t

o

t

s

p

o

e

p

o

t

i

c

e

h

s

l

t

3

b

i

o

t

t

n

t

t

s

d

q

practices. The challenge of personalizing the teaching of Scrum is for

the professors to teach Scrum concepts catering for individual learn-

ing characteristics of students. To address this issue, the professors

should obtain insights of students’ preferences to design teaching

strategies suitable for these preferences (Felder and Silverman, 1988).

2.2. Overview of learning styles

A widely accepted tool to obtain insights of students’ preferences

when learning is the learning style, which is increasingly being incor-

porated into technology-enhanced learning. A learning-style model

classifies students according to a number of scales that represent

the ways in which they receive and process information. Out of the

learning-style models, the Felder–Silverman Learning Style Model

(FSLSM) is designed for traditional learning and is the most used

model in technology-enhanced learning. Moreover, the selection of

FSLSM is supported by numerous reasons. First, previous evidence on

the relationship between Scrum and learning styles in the context of

an undergraduate software engineering course was found (Scott et al.,

2014a). Second, we found that the processing dimension bore the

most statistically significant relation to Scrum practices (Scott et al.,

2013). Third, FSLSM has been widely used in the context of Computer

Science education (Graf and Liu, 2009). Fourth, the learning styles can

be obtained by means of the Index of Learning Styles (ILS) instrument,

a questionnaire based on 44 items to which each student responds

according to their learning preferences (Felder and Spurlin, 2005).

The results obtained from the ILS distinguish the learners’ prefer-

ences according to the four dimensions of the model, and they al-

low for describing trends about stronger and weaker preferences by

means of a numeric scale. Finally, several approaches have tackled

the automated detection of learning styles, which could replace the

questionnaire (Feldman et al., 2014).

The FSLSM comprises 16 learning styles. Table 1 shows the di-

mensions of the learning styles in this model, namely perception,

input, processing, and understanding, together with the values that

each dimension may take. The perception dimension indicates the

type of information the student prefers to receive: sensory (exter-

nal) such as sights, sounds, physical sensations; or intuitive (internal)

such as possibilities, insights, and hunches. The understanding di-

mension shows how the student progresses towards understanding:

sequentially in continual steps, or in fits and starts. The processing

dimension indicates how the student prefers to process information:

actively through engagement in physical activity or discussion, or re-

flectively through introspection. Finally, the input dimension models

the sensory channel through which external information is most ef-

fectively perceived by the student: visual pictures, diagrams, graphs,

demonstrations, or auditory words, and sounds.

In this context, sensing students prefer to learn using concrete

material, while intuitive students prefer more abstract material. Se-

quential students learn better in linear and well-defined steps, while

global students prefer long steps with more freedom. Active students

prefer doing tasks or talking about concepts, while reflective students

are likely to manipulate and examine the information introspectively.

Lastly, visual students prefer to learn through images or other visual

representations, instead of narratives or sounds that explain concepts

as verbal students do (Felder and Silverman, 1988). This learning-

style model allows for a better understanding of students’ differences
hen learning. Bearing students’ preferences in mind for Software

ngineering courses would eventually enhance the students’ learn-

ng experience.

Numerous research works have been conducted to incorporate

earning styles and provide courses suitable for the individual learn-

ng styles of students (Graf and Liu, 2009; Essalmi et al., 2010;

arver et al., 1999; Kuljis and Liu, 2005). However, according to

ashler et al. (2008), the literature has failed to evidence suitable

nd appropriate support for applying learning-style assessments in

ourse designs. At most one arguable research work has contributed

o the idea that providing students with a suitable instructional

ethod improves the students’ performance (Sternberg et al., 1999).

ther revised works reported appropriate and well-designed re-

earch methods, but the results rejected the hypothesis. For instance,

assa and Mayer (2006) conducted an experiment in the context of

n electronics course, in which they were able to reject the hypothesis

hat suitable instructional methods should improve students’ perfor-

ance by taking into account the input dimension of their learning

tyle. In line with visual/verbal dimension, but in a non-educational

ontext, Constantinidou and Baker (2002) carried out an experiment

ith adult users and found no evidence to support relation between

he students’ input dimension and the learning of items by means

f visual or auditive strategies. Likewise, in a medical-education con-

ext, Cook et al. (2009) have focused on corroborating the hypothe-

is that providing students with a suitable method according to their

erception dimension of their learning style would impact positively

n students’ performance; however, the authors have failed to found

vidence.

Based on previous evidence of the relation between the Scrum

ractices and the dimensions of the Felder–Silverman learning styles

f the students (Scott et al., 2013; 2014a), we aim to demonstrate

he use of learning styles to achieve personalized software engineer-

ng courses. To address this issue, the present work relies on a spe-

ific version of learning-style hypothesis widely addressed within the

ducational literature. We refer to this hypothesis as the meshing

ypothesis, which states that if students are provided with an in-

truction suitable for their learning preferences (e.g., for an “active

earner,” emphasizing hands-on tasks), the students could enhance

heir learning experience (Pashler et al., 2008).

. Research approach

The goal of our work is to corroborate the meshing hypothesis

y conducting an appropriate experiment with software engineer-

ng undergraduate students; we rely on the professor’s background

n learning styles, her/his teaching strategies and their implementa-

ion in the classroom. To achieve our goal, we propose the study of

he application of suitable instructional methods to software engi-

eering undergraduate students and the impact of these methods on

he students’ learning of Scrum. In particular, we focus on measuring

he knowledge obtained by the students after receiving a class with

uitable strategies depending on the processing dimension of the stu-

ents’ learning style. Thus, we aim to address the following research

uestions:

• How should Scrum concepts be taught to suit the processing di-

mension of each student’s learning style? To address this question,

the professor should design a set of classes based on the learn-

ing characteristics of active and reflective students (Felder and

Silverman, 1988). For instance, when teaching the widespread es-

timating technique called Planning Poker, the professor should

design learning activities that contain, on the one hand, theoreti-

cal and abstract concepts of Planning Poker for reflective students,

and on the other hand, hands-on tasks and simulations for active

students. We attempt to answer this question in Section 3.1.



E. Scott et al. / The Journal of Systems and Software 111 (2016) 242–253 245

p

c

a

i

i

I

m

m

t

d

t

m

t

m

i

s

l

a

i

p

i

t

t

s

3

T

t

a

t

a

m

3

f

t

t

a

t

I

t

a

t

i

a

2

d

a

e

s

3

u

p

t

t

w

i

n

s

s

t

fi

i

a

b

u

s

r

n

o

s

e

i

t

r

r

a

s

h

s

a

t

t

a

d

i

t

d

o

b

o

d

P

o

i

a

g

g

• How do students apply the concepts learned in a software engi-

neering context? To deal with this issue, professors should define

a scenario along the course so that students can handle software

engineering practices by simulating a professional context. For

example, students should play different roles, face typical chal-

lenges that occur in software development, estimate software

complexity and deal with customer issues, among others. Our

proposed approach attempts to shed some light on this question

in Section 3.2.
• How should the students’ learning be assessed? And, how should

the students’ test results be compared? The professors should de-

sign an evaluation instrument to assess students’ learning and

find differences between test results obtained by active and reflec-

tive students. This instrument should be the same for both types

of students and designed so that none of the learning styles is fa-

vored. This issue will be addressed in Section 3.3.

To address the above-mentioned research questions, we have im-

lemented a methodology as suggested by Pashler et al. (2008) in the

ontext of an undergraduate Software Engineering course following

teaching model proposed in Soria et al. (2012); Scott et al. (2014b),

n which a Scrum-based capstone project is conducted. By follow-

ng this teaching model, we particularly modified the phase named

nitial Phase that aims to both teach basic Scrum concepts and fa-

iliarize students with the Scrum framework. In the first step of the

ethodology, we provide students with Scrum concepts by following

eaching strategies that were designed aligned with the processing

imension of the FSLSM. Therefore we organized the teaching prac-

ices into two instructional methods: passive and active instructional

ethod (Felder and Silverman, 1988); as discussed in Section 3.1.2,

he passive instructional method aims to teach practices by maxi-

izing reflective students’ learning experience, whereas the active

nstructional method aims to teach practices by maximizing active

tudents’ learning experience.

In the second step of the methodology, a capstone project is fol-

owed according to the teaching model. At this point, the students

re organized into teams and engaged to put the learned concepts

nto practice during one Sprint. Here, we measure the impact of the

ersonalized teaching on students’ outcomes.

The third step of the proposed methodology consists in assess-

ng the students’ learning of Scrum concepts by means of a test at

he end of the Sprint. We gather the scores and analyze relations be-

ween these scores and students’ learning style. In the following sub-

ections, the steps of the methodology are described in detail.

.1. Step 1: conducting the teaching of Scrum concepts

The first step of our proposed methodology is to set up the course.

o address this issue, we firstly need to detect students’ learning style

o allocate them to groups; and secondly, we provide each group with

class about basic Scrum concepts suitable for either active or reflec-

ive learning style. That is to say, a group will be taught by means of

n active instructional method, and the other group will be taught by

eans of a passive instructional method.

.1.1. Group formation

Since we aim to corroborate the meshing hypothesis, we need to

orm students’ groups, and thus, we use the ILS values taken from

he Index of Learning Styles (ILS) (Felder and Soloman, 1991) adapted

o the Spanish language 1. The students complete the questionnaire

nd, then, we process the answers. As a result, we obtain the values of

he four dimensions of the students’ learning style (See Section 2.2).

n our work, we only consider the processing dimension because of

wo main reasons. Firstly, we decided to use only one dimension so
1 http://www.ua.es/dpto/dqino/RTM/Invest_docente/ilsweb_es.html.

n

m

(

s to perform a better and deeper analysis of the impact of suitable

eaching strategies on students’ performance. Secondly, and more

mportant yet, promising evidence of the relation between Scrum

nd the processing dimension of the FSLSM was found (Scott et al.,

013).

Once the students’ learning style is detected, we divide the stu-

ents into two groups, each of which containing a balance between

ctive and reflective students (Pashler et al., 2008). Then, we provide

ach group with a suitable instructional method to teach essential

oftware engineering practices commonly used in Scrum.

.1.2. Using suitable instructional methods

To teach Scrum practices, we design the classes in the context of

ser story definition, user story splitting, user story estimation and

lanning. We choose these practices because of their scaffolding na-

ure as a first step to corroborate the meshing hypothesis. In fact,

he Scrum practices included in this study are based on a previous

ork (Scott et al., 2014b). According to it, the first phase of Scrum

ncludes practices ranging from User Story definition to Agile Plan-

ing. These practices are important since they are the basis for sub-

equent practices such as Sprint review, Daily Scrum, andSprint retro-

pective meetings. For example, students will only be able to perform

he Daily Scrum as long as they have planned their User Stories. Our

ndings are only concentrated on this first phase nevertheless other

mportant practices are performed by the students in Step 2 of our

pproach.

The goal of the course is that students learn to define user stories

y interacting with the Product Owner, identify epics and describe

ser stories correctly. The students should learn that a correct user

tory description must have role, desired feature, acceptance crite-

ia and an adequate level of granularity; moreover, it may include

on-functional requirements when necessary (Cohn, 2004). In case

f complex user stories or epics, students should learn to apply user

tory splitting to obtain simpler user stories. Regarding user stories

stimation, Release and Sprint plans are created by the Team dur-

ng their respective planning meetings using the estimates assigned

o the user stories (Cohn, 2005; Schwaber and Beedle, 2002). As a

ule, these estimates are described by means of story points, which

epresent the complexity of a User Story. Students should learn that

t the beginning of each Sprint, the Team estimates the number of

tory points that can be developed during a Sprint. Once a Sprint

as started, the Team further decomposes each User Story into con-

tituent tasks that must be performed to deliver a required function-

lity by the end of the Sprint. Students should also understand that

he team is responsible for assigning the estimated duration in hours

o each task of the Sprint. At this point, students are encouraged to

nalyze the relationship between story points and working hours. In

oing so, they should become aware of the fact that this relationship

s not a fixed one (e.g. 1 point does not equal to 8.3 hours). Moreover,

hey should learn the importance of estimating tasks in hours in or-

er to confirm whether they have assigned an appropriate amount

f work to the sprint. Another thing we mention is that tasks are to

e carried out by one student at the time as they emerge through-

ut the Sprint. Regarding user stories planning, we provide the stu-

ents with the well-established group estimation technique called

lanning Poker recommended by agile software development meth-

ds for estimating the size of user stories and developing release and

teration plans (Mahnic and Hovelja, 2012).

Following our methodology, we provide the groups with the

forementioned Scrum concepts by instructional methods. One

roup is taught with a passive instructional method, and the other

roup with an active instructional method. Table 2 shows the orga-

ization of the topics by instructional methods; these instructional

ethods were designed by considering the FSLSM and related works

Graf et al., 2007; Felder and Silverman, 1988).

http://www.ua.es/dpto/dqino/RTM/Invest_docente/ilsweb_es.html


246 E. Scott et al. / The Journal of Systems and Software 111 (2016) 242–253

Table 2

Organization of the Scrum topics by instructional method.

Main topic Sub-topic Practices for Reflective Students (Passive

teaching style)

Practices for Active Students (Active teaching

style)

After explain the concept, the professor takes a

pause and allow students to think about…

After a brief explanation of the topic, the

professor helps to …

1. Where we stand in the

Scrum framework?

-

2. User stories 2.1. User stories parts … different roles that could need something

from the system

… identify user stories’ parts (e.g. role,

acceptance criteria)

2.2 When should you stop to

disaggregate?

… a single feature to be developed … elaborate user stories from a given

requirement. Then, disaggregate them

correctly

2.2. Functional and non-functional

requirements on user stories

… how to specify quality attributes in US … add to the US quality attributes

2.3. Epics … if it is possible to develop the US … identify a potential Epic from the USs

3. Agile estimating 3.1. Size, velocity and duration of

sprints

… how much work can the team complete along

the Sprint?

… suppose different values of size, velocity of

each team and calculate the number of Sprints

estimated

3.2. Story points and working hours … why is important to understand that Story

Points cannot be mappable to working hours

… discuss within the team about the relationship

between story points and working hours

4. Agile planning 4.1. Planning poker introduction … a consensus-based game

4.2. Complexity units in the estimation … a matter of comparing different opinions on

the effort required by a task

… discuss within the team about the use of a

fixed scale or a Fibonacci’s scale

4.3. How to proceed to perform

planning poker?

… the synergy generated in the game and the

estimation results

… perform planning poker in the group for

assigning story points to each US previously

identified

4.4. Release plan … how the team should organize all the features

to be developed along the iterations

… organize the estimated US along the number

of iterations previously calculated

i

G

e

i

T

s

f

t

a

i

S

3

P

i

B

a

(

i

t

T

e

t

f

o

i

F

t

s

i

p

p

t

n

c

c

• Passive instructional method

The passive instructional method is suitable for reflective stu-

dents, who are enthusiastic about examining and manipulating the

information introspectively. They prefer to think about and reflect on

the material in-depth rather than put the concepts into practice. Be-

sides, they work better alone or at most with one co-worker that can

be an acquaintance or friend. As can be appreciated, the four main

topics covered are an introduction to Scrum framework, user story

parts and their disaggregation, agile estimating and agile planning.

For each topic, we provide the students with a theoretical explana-

tion of each sub-topic depicted in the Table 2. After the explanation,

we take a short pause in order to let students think about the topic.

Additionally, we trigger the reflection through an instructional inter-

vention, such as “Can you imagine different kind of actors for the

User Story?”. Then, a student may answer the question and the pro-

fessor makes a correction or explains the concept in-depth if neces-

sary. Next, the professor continues with the same strategy for each

sub-topic, explaining a concept, and then, making a short pause that

allows students to reflect on the given idea.

The teaching of practices starts with an overview of the Scrum

framework. Then, an introduction to user story specification and re-

quired information takes place. The professor takes a pause to engage

students to think about different roles that could need something

from the system used as example (Table 2 row 2, column 3). The next

topic is user story splitting that consists in explaining different pat-

terns to break down complex user stories or epics into simpler user

stories. Here, the instructional intervention is “When should you stop

to disaggregate user stories?”, by which students think about differ-

ent alternatives following their instinct. Then, the professor gives the

students the appropriate answer to the question: a single feature to

be developed is a possible way to detect a potential user story (row

3, column 3). After that, the next sub-topic is related to the manage-

ment of functional and non-functional requirements within the user

stories. In this context, an instructional intervention is “How can you

model non-functional requirements?” so as to motivate students to

use also the user story as a means to represent quality-attribute prop-

erties and technical constraints (row 4, column 3). After providing

user story properties, the professor introduces the concept of Epics,
.e. large user stories that lack enough information to be developed.

iven a requirement specification, students have to discuss if it is an

pic or a user story by considering if they could develop it with the

nformation provided (row 5, column 3).

Once user stories are defined, they are ready to be estimated.

hus, the professor introduces agile estimating and related concepts

uch as size, velocity and Sprint duration. The professor considers the

ollowing question: “How much work can the team complete along

he Sprint?” (row 6, column 3). The professor focuses on the idea that

story point is a relative measure used for estimating size and the

nstructional intervention is Why is important to understand that

tory Points cannot be mappable to working hours?” (row 7, column

). After discussing the idea, the professor presents the Planning

oker technique as a consensus-based game (row 8, column 3), and

ntroduces the aforementioned story points as complexity units.

ased on the complexity units, team members are engaged to discuss

nd exchange opinions to achieve the estimate of a given user story

row 9, column 3). In this context, the professor makes other two

nstructional interventions: “Can you use the technique to estimate

asks?” and “What should you do when there is no agreement?”.

he former aims to indicate that Planning Poker is unsuitable to

stimate tasks’ working hours, whereas the latter aims to show that

he Scrum Master is in charge of making a decision when the team

ails to achieve an agreement when estimating. The professor insists

n the idea that the synergy generated during the estimation process

s crucial to achieve more accurate estimates (row 10, column 3).

inally, the last topic is agile planning that introduces students to

he concept of release plan. Here, instructional intervention is “How

hould the team organize all the features to be developed along the

terations?” (row 11, column 3). After the students’ feedback, the

rofessor teaches the concept of velocity, i.e. the number of story

oints that a team can achieve at the end of each Sprint. Having

his idea in mind, teams are able to plan how many iterations are

ecessary to complete the required user stories.

• Active instructional method

As for active students, we designed an instructional method by

onsidering that these students prefer doing tasks or talking about

oncepts, and tend to directly process the information in order to



E. Scott et al. / The Journal of Systems and Software 111 (2016) 242–253 247

r

t

w

t

d

t

S

g

t

a

t

e

p

i

s

d

u

e

n

f

a

b

i

t

s

t

s

6

t

s

l

h

s

t

4

t

b

p

c

4

p

e

4

e

b

w

t

F

t

d

(

l

a

m

t

c

f

i

t

m

c

c

b

t

b

c

3

l

s

S

d

s

t

b

m

n

a

3

i

s

m

l

a

d

t

f

3

t

u

t

a

m

T

t

c

t

“

a

s

m

m

t

a

a

t

o

v

S

i

b

S

p

3

a

t

s

t

c

s

esearch on it, validate it or experiment with it. Likewise reflec-

ive students, topics covered are an introduction to Scrum frame-

ork, user story parts, user story disaggregation, and agile estima-

ion and planning; however, the teaching strategies are significantly

ifferent.

As shown in Table 2 (column 4, Practices for Active Students),

he instructional method starts with a brief introduction to the

crum framework. Unlike reflective students, active students are

iven an opportunity to a hands-on experience along the instruc-

ional method. First off, they are organized into 5-member teams and

re given a sample user story so as to detect its parts within 3-min

ime box (row 2, column 4). Afterwards, the teams are engaged to

laborate a user story for a requirement specification provided by the

rofessor. Then, the professor introduces user story splitting, explain-

ng alternatives to break down epics and complex user stories into

impler ones, and provides teams with a sample epic to be broken

own into simpler user stories within 5-min time box (row 3, col-

mn 4). Later, the professor proposes adding quality-attribute prop-

rties to the user story within 2-min time box (row 4, column 4). The

ext step consists in showing students how to detect potential epics

rom a set of requirement specifications and deal with them to cre-

te user stories representing a single functionality within 7-min time

ox (row 5, column 4).

As in the case of reflective students, the professor introduces ag-

le estimating and sizing to estimate the user stories. However, unlike

he passive instructional method, the professor motivates students to

uppose different values of size of user stories and the velocity of the

eam to calculate the number of Sprints needed to complete the user

tories; this task should be performed within a 5-min time box (row

, column 4). The professor explains that user story size is related

o user story complexity, and measures this complexity in terms of

tory points. At this stage, teams of students are encouraged to ana-

yze and discuss the relationship between story points and working

ours. In doing so, the students should become aware of the impos-

ibility to directly translate story points into working hours. This ac-

ivity should be performed within a 5-min time box (row 7, column

). In order to train students in widely used estimation techniques,

he professor briefly explains Planning Poker and introduces the Fi-

onacci’s sequence to compare user stories. For active students, the

rofessor takes a 3-minute time box to let the teams of students dis-

uss the use of a fixed scale or a Fibonacci’s sequence (row 9, column

). Afterwards, the professor provides each team with a set of 6 sam-

le user stories belonging to the capstone project and asks teams to

stimate those user stories within a 15-min time box (row 10, column

). Team members are engaged to exchange opinions to achieve the

stimates for the given user story. The technique requires team mem-

ers to propose possible estimates for the user stories using cards

ith the Fibonacci’s sequence 0.5, 1, 2, 3, 5, 8, 13, and 20 to anticipate

he complexity of user stories. The professor explains that the use of

ibonacci’s sequence, to establish orders of magnitude, is based on

he idea that the ability of developers to accurately discriminate size

ecreases as the difference between the story points becomes larger

Miranda et al., 2009). Following Planning Poker, team members se-

ect their cards simultaneously and those members with the highest

nd lowest story points have to justify their estimates. Then, all team

embers propose and estimation again until consensus is reached or

he Scrum Master decides to finish the process after three iterations,

hoosing the average of story points as the estimate. Finally, the pro-

essor teaches agile planning and introduces the concepts of veloc-

ty and release plans. In contrast to the passive instructional method,

he 5-min time-boxing hands-on activity consists in planning how

any iterations are necessary to complete the given user stories. To

arry out this activity, teams are asked to determine their velocity by

onsidering team-member skills, commitment and experience. Then,

earing in mind the number of story points achievable at the end of

he Sprints, each team elaborates a release plan including the num-
er of Sprints and the user stories assigned to each Sprint (row 11,

olumn 4).

.2. Step 2: conducting the capstone project

The second step of the proposed methodology consists in simu-

ating a professional software engineering context by means of a cap-

tone project. Based on our previous experiences (Scott et al., 2014b;

oria et al., 2012) we agree with the idea that this project allows stu-

ents to get a deeper understanding of Scrum. In this experiment,

tudents can internalize the concepts learned in the previous step as

hey extrapolate them to a real small project by means of a balance

etween activities suitable for active and reflective students. Further-

ore, students are encouraged to exercise skills different from their

atural their learning preferences and face common issues that arise

long a software development project in professional contexts.

.2.1. Scrum teams formation

Prior to conducting the capstone project, students are organized

nto Scrum teams. In line with the idea of simulating a real profes-

ional context, we re-arranged students into Scrum Teams of 7–8

embers at random in order to keep diversity and resemble real-

ife teams. Moreover, we made sure that each team had both active

nd reflective students by assigning them at random. This way, stu-

ents can work in heterogeneous teams and they have the chance

o broaden their understanding of Scrum. Once the Scrum teams are

ormed, they are ready to start the capstone project.

.2.2. Describing the capstone project

The capstone project starts with the Sprint Planning phase. During

his phase, the Product Owner and the Scrum Team select a subset of

ser stories from the Product Backlog to build the Sprint Backlog. The

eams use Planning Poker, which demands individual commitment,

s those responsible for developing a user story are the ones who esti-

ates its complexity. The next phase is Development, in which Scrum

eams develop tasks associated with the user stories estimated in

he previous phase. Each user story goes through a development pro-

ess which consists in analyzing, designing, building and testing. In

his context, the concept of “done” arises; a user story is considered

done” if the whole development process is fulfilled with the required

rtifacts.

At this stage, teachers introduce other important Scrum practices

uch as Daily Meeting, Sprint Review and Sprint Retrospective. A 15-

inute Daily Meeting is held to report the project status; in this

eeting, either face to face or on-line, students answer three ques-

ions: “What did you do yesterday? What will you do today? Are there

ny impediments in your way?”. Twice a week, the Scrum Teams have

face-to-face meeting called Weekly Meeting (up to 15 min long) so

hat the students can show their tasks and estimates as well as reflect

n impediments and improvements. In the next phase, the Sprint Re-

iew and Sprint Retrospective meetings are conducted. During the

print Review, the Scrum Team displays the user stories done dur-

ng the Sprint by a demo to examine the work done and get feed-

ack from the Product Owner. During the Sprint Retrospective, each

crum team reflects on what happened during the Sprint and pro-

oses strategies to improve the performance in subsequent Sprints.

.3. Step 3: assessing the students’ learning of Scrum

To assess the students’ learning, we utilize a test elaborated by the

uthors, who have experience in software engineering teaching. The

est is designed by using different kind of items to evaluate particular

tudents’ abilities. Fig. 1 shows the three types of exercises used in the

est: multiple-choice, true-or-false quizzes and crossword. Multiple-

hoice items (Fig. 1a) allow professors to evaluate the ability to as-

ociate and compare basic Scrum artifacts, namely User Story, Scrum



248 E. Scott et al. / The Journal of Systems and Software 111 (2016) 242–253

Fig. 1. Examples of assignments used in the test.

d

s

m

t

u

s

t

b

w

t

t

T

t

a

t

f

o

v

t

e

e

s

s

4

I

(

T

t

t

a

r

g

m

s

c

o

d

t

m

s

o

i

T

o

m

s

roles, Product Backlog and Sprint Backlog, among others. Crossword

(Fig. 1b) is used to evaluate the ability to learn and retain terminol-

ogy commonly used in Scrum, such as velocity, story point, epic, user

story splitting and focus, among others. True-or-false quizzes (Fig. 1c)

are useful to evaluate the ability to reason and justify learned con-

cepts; here, the exercises aim to measure how well Scrum practices

are performed by the proposition of hypothetical scenarios.

To assess the quality of the test, we use item analysis. Using item

analysis (Thorndike and Hagen, 1961) allows for retaining the test

items that exert impact on the students’ scores, and discarding those

noisy items that fails to provide the research with valuable insights.

In item analysis, the quality of an item is given by its difficulty and

its discrimination index. The item difficulty (ρ) indicates the propor-

tion of students who answered the item correctly, whereas the dis-

crimination index (�) shows the correlation between the item per-

formance and the overall test score. Therefore, the item difficulty is

given by

ρ = n

N
(1)

where n is the number of students who responded the item correctly,

and N the total number of students. The discrimination index is de-

termined by

� = Mcorrect − Mtotal

SDtotal

·
√

ρ

1 − ρ

where Mcorrect is the mean score of whose answer correctly; Mtotal is

the mean score total; SDtotal is the standard deviation of all the scores;

and ρ is given by Eq. 1. Items with extreme low (ρ < .2) or high

(ρ > .8) difficulty, as well as items with low discrimination indexes

(� ≤ 0) were discarded.

According to Pashler et al. (2008), the meshing hypothesis re-

ceives support, if and only if, the experiment reveals what is com-

monly known as a cross-over interaction between learning style and

instructional method. Particularly in our approach, the cross-over in-

teraction occurs when active/reflective students being taught with a

suitable instructional method outscore active/reflective students be-

ing taught with an unsuitable method.

4. Application and evaluation of the approach

We applied our research approach in the context of the Software

Engineering Workshop course. This one-semester elective course

can be taken in the last year of the Systems Engineering BSc pro-

gram at the Faculty of Exact Sciences (Department of Computer

Science-UNCPBA) and aims to strengthen students’ understanding of

Scrum, to introduce the basics of Agile Methodologies, as well as,

to get them acquainted with a professional context. In the previous

years of the program students learn about software system design,

object-oriented programming, operating systems and networks, and
atabase management in order to guarantee all the students have the

ame prior knowledge. Thirty-five students took part in the experi-

ent in 2013; then, we replicated it in the academic year 2014 with

hirty-eight students.

We carefully applied our proposed methodology as follows. We

sed the ILS questionnaire and, by considering the processing dimen-

ion of the students’ learning style, divided students into groups. Al-

hough we designed the experiment taking into account a balance

etween the number of active and reflective students in each group,

e considered for the experiment only the students who attended

he class. Secondly, we provided students’ groups with the instruc-

ional methods and engaged students to carry out a capstone project.

hirdly, we designed a test containing 30 items: 5 multiple-choice, 10

rue-or-false, and 15 crossword items. Then, we conducted the item

nalysis and provided the students with the test, which finally con-

ained 22 items, scored as 1 point each: 4 multiple-choice, 9 true-or-

alse, and 9 crosswords. However, to achieve a better understanding

f the scores, they were normalized into a 10-point scale. Finally, to

isually corroborate our hypothesis, we utilized a graphic that shows

he aforementioned cross-over interaction, as suggested by Pashler

t al. (2008). This concept depicts the types of students’ learning pref-

rences (active or reflective) in the horizontal axis, and the average

cores obtained by means of the instructional method (active or pas-

ive) in the vertical axis.

.1. Results of academic Year 2013

The first step to apply the methodology consisted in utilizing the

LS to obtain the students’ learning style. We found that 8 students

22.85%) were reflective, whereas 27 students (77.15%) were active.

hen, we divided the students into two groups. The first group con-

ained a total of 14 students, 2 of whom were reflective (14.28%) and

he remaining were active (85.72%); and the second group contained

total of 21 students, 6 of whom were reflective (28.57%) and the

emaining were active (71.43%). To corroborate our hypothesis, we

athered the scores obtained in the tests and calculated the arith-

etic mean for reflective and active students by considering the in-

tructional method provided. Fig. 2a illustrates the aforementioned

ross-over interaction; the vertical axis shows the arithmetic mean

f the test scores, whereas the horizontal axis shows the processing

imension values. The instructional method that improved the mean

est score of one group of students is different from the instructional

ethod that improved the mean test score of the second group of

tudents. To reinforce the figure, Table 3 shows the results in terms

f arithmetic mean (x̄) and standard deviation (s2) of scores for each

nstructional method applied to each students’ learning preference.

he standard deviation highlights how scattered are the exam scores

f all students who received the class with the same instructional

ethod. Regarding reflective students, the ones that were given the

uitable instructional method (passive method) obtained a score of



E. Scott et al. / The Journal of Systems and Software 111 (2016) 242–253 249

5.2

5.4

5.6

active reflective active reflective

Felder−Silverman’s Processing Dimension

M
ea

n 
Te

st
 S

co
re

Instructional method

active method

passive method

3.8

4.0

4.2

4.4

Felder−Silverman’s Processing Dimension

M
ea

n 
Te

st
 S

co
re

Instructional method

active method

passive method

Fig. 2. Test mean scores of learning-style groups after the cross-over interaction with two learning-style-based instructional methods.

Table 3

Mean and standard deviation for the academic year 2013.

Reflective students (x̄ ± s2) Active students (x̄ ± s2)

Passive method 5.45 ± 0.64 5.04 ± 1.26

Active method 5.30 ± 1.24 5.76 ± 1.50

5

2

m

s

s

(

d

g

o

c

t

t

a

c

a

4

d

d

d

o

i

1

w

a

w

h

t

m

s

m

Table 4

Mean and standard deviation for the academic year 2014.

Reflective students (x̄ ± s2) Active students (x̄ ± s2)

Passive method 4.39 ± 1.40 3.91 ± 1.00

Active method 3.73 ± 1.80 4.17 ± 1.22

m

t

m

a

t

a

t

m

o

u

w

t

t

m

b

t

t

p

l

5

e

g

P

c

e

c

e

o

p

a

.45 on average with a standard deviation of 0.64 (row 2, column

), whereas the students that were given the unsuitable instructional

ethod (active method) obtained a score of 5.30 on average with a

tandard deviation of 1.24 (row 3, column 2). With regard to active

tudents, the ones that were given the suitable instructional method

active method) obtained a score of 5.76 on average with a standard

eviation of 1.50 (row 3, column 3), whereas the students that were

iven the unsuitable class (passive method) obtained a score of 5.04

n average with a standard deviation of 1.26 (row 2, column 3).

Our data demonstrated that students who were given the Scrum

lass by means of the suitable instructional method obtained bet-

er score on average. As we argued before, we found evidence of the

ype of interaction between instructional method and assessment of

n individual’s learning style to support personalized teaching. Basi-

ally, we found that a student’s learning experience was enhanced by

suitable instructional method.

.2. Results of academic Year 2014

Similar to the academic year 2013, we firstly obtained the stu-

ents’ learning style by means of the ILS, and we found that 11 stu-

ents (28.95%) were reflective and 27 (71.05%) were active. Then, we

ivided the students into two groups: the first group contained a total

f 21 students, 6 of whom were reflective (28.57%) and the remain-

ng were active (71.43%), and the second group contained a total of

7 students, 5 of whom were reflective (29.41%) and the remaining

ere active (70.59%). Fig. 2b illustrates the crossover interaction; the

rithmetic mean of the test scores are depicted in the vertical axis,

hereas the values of the processing dimension are shown in the

orizontal axis. The instructional method that improved the mean

est score of one group of students is different from the instructional

ethod that improved the mean test score of the second group of

tudents. In this line, Table 4 shows the results in terms of arithmetic

ean (x̄) and standard deviation (s2) of scores for each instructional
ethod applied to each students’ learning preference. As for reflec-

ive students, the ones that were given the suitable class (passive

ethod) obtained a score of 4.39 on average with a standard devi-

tion of 1.40 (row 2, column 2), whereas the students that were given

he unsuitable class (active method) obtained a score of 3.73 on aver-

ge with a standard deviation of 1.80 (row 3, column 2). With regard

o active students, the ones that were given the suitable class (active

ethod) obtained a score of 4.17 on average with a standard deviation

f 1.22 (row 3, column 3), whereas the students that were given the

nsuitable class (passive method) obtained a score of 3.91 on average

ith a standard deviation of 1.00 (row 2, column 3).

These results reinforce the evidence that students who were given

he Scrum class by means of the suitable instructional method ob-

ained better score on average. In agreement with the first experi-

ent, we found that a student’s learning experience was enhanced

y a suitable instructional method. After examining the results ob-

ained from the experiments, it is possible to state that an instruc-

ional method was proven effective for students with certain learning

references fail to be a one-fits-all method for students with different

earning preferences.

. Analysis of results

The proposed work aimed to corroborate the meshing hypothesis

laborated in the context of Software Engineering. To achieve this

oal, we implemented an appropriate methodology as suggested by

ashler et al. (2008), which was applied in two experiments in the

ontext of an undergraduate Scrum-based course. Firstly, we ran the

xperiment with 35 students of the Software Engineering Workshop

ourse in the academic year 2013; and secondly, we replicated the

xperiment with 38 students in the academic year 2014. We have not

nly found evidence for the meshing hypothesis, but also provided

rofessors with two instructional methods suitable for reflective

nd active students to teach user story splitting, agile estimating and



250 E. Scott et al. / The Journal of Systems and Software 111 (2016) 242–253

0

2

4

6

8

10

−11 −9 −7 −5 −3 −1 1 3 5 7 9 11

Values of the Felder−Silverman’s Processing Dimension

Te
st

 S
co

re
Line of best fit

active

passive

Instructional method

active

passive

Fig. 3. Distribution of test scores from the academic years according to students’ Processing Dimension.

Table 5

Mean test scores and standard deviation of students according to the instruc-

tional methods for both academic years.

Reflective students (x̄ ± s2) Active students (x̄ ± s2)

Passive method 4.66 ± 1.30 4.41 ± 1.24

Active method 4.59 ± 1.66 5.05 ± 1.58

c

t

s

t

i

o

t

s

e

t

d

w

4

d

a

g

(

d

a

s

a

h

o

s

s

t

i

agile planning. Besides, these instructional methods are aligned with

the types of activities related to the processing dimension proposed

by the FSLSM.

We recap the test scores from both experiments and organize

them into a graphic to arrive at valuable conclusions. Fig. 3 summa-

rizes the cross-over interaction of both case studies. Different from

Figs. 2a and b, 3 shows the individual scores and allows for appreci-

ating how the learning experience of a student is enhanced by being

taught with the suitable instructional method when the processing

dimension value is maximized. The scores are shown in the verti-

cal axis and dots indicate the scores obtained by students who re-

ceived the active instructional methods whereas triangles indicate

the scores obtained by students who participated in the passive in-

structional method. The processing dimension values are shown in

the horizontal axis: values from −11 to −1 mean reflective students,

whereas values from 1 to 11 mean active students. Then, the dis-

persion of points across the graphic shows the students’ preferences

to learn: dots outliers on the right show that active students were

taught by means of the active method and obtained the highest

scores, whereas triangles on the left show that reflective students

were taught by means of the active method and obtained the lowest

scores.

With the aim to statistically corroborate the relation between the

values of processing dimension of the students’ learning style and the

student’s test scores by following the suitable instructional method,

we analyzed Pearson’s correlation coefficient (r) for both groups of

students: those who received the active instructional method, as well

as, those who received the passive one. To depict these relationships,

we drew a line of best fit per instructional method over the dots

in Fig. 3. The lines are the best approximation for the given sets of

data and depict the correlation between the variables. Although the

correlation values are slightly significant, the full line shows a posi-

tive correlation for the students who received the active instructional

method (r = 0.169 ), whereas the dashed line shows a negative cor-

relation for the those who received the passive one (r = −0.151). In

other words, if we concentrate on students who received the active

instructional method, the stronger the preference for active process-

ing they have, the higher test scores they obtain. Similarly, if we con-
 d
entrate on students who received the passive method, the stronger

he preference for reflective processing they have, the higher test

cores they obtain. It is worth nothing that the point cloud around

he zero in the horizontal axis shows that those students behave sim-

larly with the active or passive method. Furthermore, we can also

bserve that the cross-over interaction remains acceptable by the in-

ersection between the dashed line and the full line provides sub-

tantial evidence to corroborate the meshing hypothesis in the two

xperiments.

Accompanying the Fig. 3, Table 5 summarizes the results of the

wo experiments together, by showing the arithmetic mean and stan-

ard deviation of test scores. As for reflective students, the ones that

ere given the suitable class (passive method) obtained a score of

.66 on average with a standard deviation of 1.30, whereas the stu-

ents that were given the unsuitable class (active method) obtained

score of 4.59 on average with a standard deviation of 1.66. With re-

ard to active students, the ones that were given the suitable class

active method) obtained a score of 4.41 on average with a standard

eviation of 1.24, whereas the students that were given the unsuit-

ble class (passive method) obtained a score of 5.05 on average with a

tandard deviation of 1.58. By analyzing the experiments both jointly

nd separately, we observed two interesting findings. On the one

and, we observed that reflective students obtained higher scores

n average than active students when taught by means of the pas-

ive instructional method, whereas active students obtained higher

cores on average than reflective students when taught by means of

he active instructional method. This finding corroborates the mesh-

ng hypothesis. On the other hand, it is worth to note that active stu-

ents, who were taught by means of the active instructional method,



E. Scott et al. / The Journal of Systems and Software 111 (2016) 242–253 251

Fig. 4. Q-Q Plots of test score distributions.

o

t

s

c

a

e

w

t

B

s

fi

l

s

v

w

s

a

i

I

a

e

q

i

a

d

0

s

A

t

t

(

o

r

(

c

e

s

e

a

i

p

m

e

t

s

t

t

M

i

m

l

s

u

w

m

c

c

d

p

o

t

o

s

s

o

t

i

b

o

s

w

t

t

l

w

btained higher scores on average than reflective students being

aught by means of the passive instructional method; however, the

tandard deviation of the active students’ scores is also higher. In this

ontext, a line of research worth pursuing further is the study and

nalysis of this finding to obtain valuable insights.

Additionally, we studied the statistical significance of the differ-

nce in the mean scores of the two groups: students who were taught

ith suitable instructional methods (group A) and students who were

aught in a way that did not correspond to their learning style (group

). To test this hypothesis, we carried out a t-test for independent

amples that has several assumptions (Montgomery et al., 1984). The

rst one is that both samples are drawn from independent popu-

ations. The second assumption is that the populations can be de-

cribed by a normal distribution. The third assumption refers to the

ariance homogeneity of both groups. The experimental design that

as followed according to the suggestions of Pashler et al. (2008)

atisfies the first assumption. To verify the second assumption, we

nalyzed the results from the Shapiro-Wilk normality test, conclud-

ng that both groups comes from a normally distributed population.

t is worth noting that group A (W = 0.939, p = 0.054) has shown

less significant result than group B (W = 0.974, p = 0.535). How-

ver, the normality can also be graphically supported by the quantile-

uantile (QQ) plot against the standard normal distribution as shown

n Fig. 4a and 4b. Regarding the third assumption, to test the vari-

nce homogeneity, we carried out an f-test that shows reasonable evi-

ence about the equality of variances in both groups (F = 1.2512, p =
.504). After checking the assumptions, we conducted the t-test to

tatistically analyze the difference between the means of both groups.

lthough the mean of group A (x̄A = 4.96) is slightly greater than

he mean of group B (xB = 4.46), the results of the t-test show that

here is no statistically significant difference between both means

T = 1.489, p = 0.1408). Moreover, to estimate the cost-effectiveness

f aligning instructional methods with different learning styles, we

esorted to Cohen’s size of effect (d = 0.241). According to Cohen

1988), this value of d shows a small size effect on the students’ out-

omes obtained by applying the instructional methods. The size of

ffect of our experiment also supports that the t-test fails to reveal a

ignificant difference between the means since the lower the size of

ffect is, the greater the size of the sample is needed. For all of the
bove, we consider that an issue worth pursuing further is augment-

ng the sample size.

Overall, we found evidence on the fact that students’ learning ex-

erience is enhanced when they receive the suitable instructional

ethod. However, there are a number of threats to validity in the

valuation of the proposed methodology. The first threat to validity is

hat we have only considered the processing dimension of the FSLSM

ince our study is based on a statistically significant relationship be-

ween the way Scrum practices are performed by the students and

heir processing dimension of the learning style (Scott et al., 2014a).

oreover, the second threat to validity is the lack of evidence of the

mpact of other instructional methods for the remaining FSLSM’s di-

ensions on the students’ outcomes. . Another threat to validity is re-

ated to the generalization of our results; since we used a 73-student

ample, we are only able to draw conclusions for this particular pop-

lation. That is to say, we have only studied the meshing hypothesis

ith Software Engineering students at UNICEN University (Depart-

ent of Computer Science – UNCPBA, Tandil, Argentina). Thus, we

an state that differences in cultural and educational backgrounds

ould impact on the suitability of instructional activities for the stu-

ents. In a parallel way, the teaching was delivered by experienced

rofessors on Scrum and learning styles. We consider that the impact

f the teachers’ ability and background on the design and implemen-

ation of instructional methods according to learning styles is worthy

f further research.

After conducting our research, we are able to provide other profes-

ors with findings from the experimentation such as the teaching of

ome Scrum concepts (Table 2) by using suitable instructional meth-

ds. By considering our findings, students are expected to improve

heir outcome at the end of Scrum courses that include learning-style

nterventions. As a final note, we are still unable to assess costs and

enefits of teaching Scrum by using our approach on a course as we

nly conducted an experiment to corroborate the meshing hypothe-

is. In fact, as future work, we are working on the design of a guide

ith suggestions to aid professors in aligning Scrum concepts with

he FSLSM. Moreover, we are planning to obtain these insights in fu-

ure research. Overall, the findings of our study allow for shedding

ight on the potential of using learning styles in the teaching of soft-

are engineering practices in the context of Scrum.



252 E. Scott et al. / The Journal of Systems and Software 111 (2016) 242–253

D

D

E

F

F

F

F

G

G

H

K

K

L

L

M

M

M

M

M

M

M

M

M

N

P

P

P

R

S

S

S

S

S

S

S

6. Conclusions

Teaching Scrum in undergraduate software engineering courses

is an effective way to upgrade and add practical value to profes-

sional training. In this paper, we have corroborated that the students’

knowledge of Scrum was improved when students were given suit-

able instructional methods according to the processing dimension of

the students’ learning styles. The experiments were carried out in the

context of an undergraduate software engineering course and have

provided evidence to support the meshing hypothesis. Particularly,

the experiments have revealed that students who were provided

with learning opportunities in line with their learning’ preferences

achieved better educational outcomes. Based on the experiments,

a novel model of software engineering education, with pedagogical

background in the FSLSM, was introduced. Furthermore, we provide

professors with teaching strategies suitable for active/reflective stu-

dents so that they improve their learning experience in the context of

the Scrum methodology.

We consider that our findings represent a step towards bet-

ter scrum learning by using learning styles, yet more experiments

are needed to generalize our results. In this line, we are plan-

ning to widen the evaluation results by replicating more experi-

ments in the software engineering course to enlarge our sample size.

Hence, we expect to improve our findings by obtaining statistical

significant results. Additionally, we are incorporating other assess-

ment methods that consider performance metrics along the capstone

project development. Furthermore, we are planning to consider other

learning style dimensions as students’ learning includes a combi-

nation of these preferences: input (visual/verbal), perception (sens-

ing/intuitive), processing (active/reflective), and understanding (se-

quential/global). Another line of research worth pursuing is the study

of alternative learning style models, which would allow us to obtain

additional information about the personality of students in order to

create optimal working teams. Along this line, we will analyze the

performance of more experienced professional teams in software de-

velopment so as to validate our hypothesis in other software engi-

neering contexts.

Acknowledgments

We acknowledge the financial support provided by doctoral grants

from Consejo Nacional de Investigaciones Científicas y Técnicas

(CONICET). We also thank to the students who participated in the

experiments. Furthermore, we wish to thank the reviewers for pro-

viding valuable feedback to improve our work.

References

Ambler, S.W., 2006. Survey says: Agile works in practice. Dr. Dobb’s J. 31 (9), 62–64.

Broman, D., Sandahl, K., Baker, M., 2012. The company approach to software engineer-
ing project courses. IEEE Trans. Educ. 55 (4), 445–452.

Carver Jr, C.A., Howard, R.A., Lane, W.D., 1999. Enhancing student learning through
hypermedia courseware and incorporation of student learning styles. IEEE Trans.

Educ., 42 (1), 33–38.
Cohen, J., 1988. Statistical Power Analysis for the Behavioral Sciences. Lawrence Earl-

baum Associates.

Cohn, M., 2004. User Stories Applied for Agile Software Development. A-Wesley.
Cohn, M., 2005. Agile Estimating and Planning. Prentice Hall.

Constantinidou, F., Baker, S., 2002. Stimulus modality and verbal learning performance
in normal aging. Brain Lang. 82 (3), 296–311.

Cook, D.A., Thompson, W.G., Thomas, K.G., Thomas, M.R., 2009. Lack of interaction be-
tween sensing–intuitive learning styles and problem-first versus information-first

instruction: A randomized crossover trial. Adv. Health Sci. Educ. 14 (1), 79–90.

Coupal, C., Boechler, K., 2005. Introducing agile into a software development capstone
project. In: Proceedings of the Agile Conference, 2005. IEEE, pp. 289–297.

Damian, D., Lassenius, C., Paasivaara, M., Borici, A., Schroter, A., 2012. Teaching a glob-
ally distributed project course using scrum practices. In: Proceedings of the Col-

laborative Teaching of Globally Distributed Software Development Workshop (CT-
GDSD), 2012, pp. 30–34.

Devedzic, V., Milenkovic, S.R., 2011. Teaching agile software development: A case study.

IEEE Trans. Educ., 54 (2), 273–278.
iaz, J., Garbajosa, J., Calvo-Manzano, J.A., 2009. Mapping CMMI level 2 to scrum prac-
tices: An experience report. In: Software Process Improvement. Springer, pp. 93–

104.
ingsoyr, T., Nerur, S., Balijepally, V., Moe, N.B., 2012. A decade of agile methodologies:

towards explaining agile software development. J. Syst. Softw. 85 (6), 1213–1221.
ssalmi, F., Ayed, L.J.B., Jemni, M., Graf, S., et al., 2010. A fully personalization strategy

of e-learning scenarios. Comput. Hum. Behav. 26 (4), 581–591.
elder, R.M., Silverman, L.K., 1988. Learning and teaching styles in engineering educa-

tion. Eng. Educ. 78 (7), 674–681.

elder, R.M., Soloman, B.A., 1991. Index of Learning Styles. North Carolina State Univer-
sity. Retrieved October 22, 2015 from http://www.ncsu.edu/felder-public/ILSpage.

html.
elder, R., Spurlin, J., 2005. Applications, reliability, and validity of the index of learning

styles.. Intl. J. Eng. Educ. 21(1), 103–112.
eldman, J., Monteserin, A., Amandi, A., 2014. Detecting students’ perception style by

using games. Comput. Educ. 71, 14–22.

raf S., K., Liu, T.-C., 2009. Supporting teachers in identifying students’ learning styles
in learning management systems: An automatic student modelling approach.

Educ. Technol. Soc. 12 (4), 3–14.
raf, S., Viola, S.R., Leo, T., et al., 2007. In-depth analysis of the Felder–Silverman learn-

ing style dimensions.. J. Res. Technol. Educ. 40 (1), 79–93.
ossain, E., Babar, M.A., Paik, H.-y., 2009. Using scrum in global software development:

a systematic literature review. In: Fourth IEEE International Conference on Global

Software Engineering, 2009. ICGSE 2009. IEEE, pp. 175–184.
eefe, J.W., 1988. Profiling and Utilizing Learning Style. ERIC.

uljis, J., Liu, F., 2005. A comparison of learning style theories on the suitability for
elearning. In: Proceedings of the IASTED Conference on Web Technologies, Appli-

cations, and Services, pp. 191–197.
eBlanc, R.J., Sobel, A., Diaz-Herrera, J.L., Hilburn, T.B., et al., 2006. Software Engineer-

ing 2004: Curriculum Guidelines for Undergraduate Degree Programs in Software

Engineering. IEEE Computer Society.
u, B., DeClue, T., 2011. Teaching agile methodology in a software engineering capstone

course. J. Comp. Sci. Coll. 26 (5), 293–299.
ahnic, V., 2010. Teaching scrum through team-project work: students’ perceptions

and teacher’s observations. Int. J. Eng. Educ. 26 (1), 96–110.
ahnic, V., 2011. A case study on agile estimating and planning using scrum. Elektron-

ika ir Elektrotechnika 111 (5), 123–128.

ahnic, V., 2012. A capstone course on agile software development using scrum. IEEE
Trans. Educ., 55 (1), 99–106.

ahnic, V., Hovelja, T., 2012. On using planning poker for estimating user stories. J.
Syst. Softw. 85 (9), 2086–2095.

artin Kropp, A.M., 2013. Swiss agile study - einsatz und nutzen von agilen methoden
in der schweiz. Retrieved October 22, 2015 from www.swissagilestudy.ch.

assa, L.J., Mayer, R.E., 2006. Testing the ati hypothesis: Should multimedia instruction

accommodate verbalizer-visualizer cognitive style? Learn. Individ. Differ. 16 (4),
321–335.

cCombs, B.L., Whisler, J.S., 1997. The Learner-Centered Classroom and School:
Strategies for Increasing Student Motivation and Achievement. Jossey-Bass San

Francisco.
iranda, E., Bourque, P., Abran, A., 2009. Sizing user stories using paired comparisons.

Inf. Softw. Technol. 51 (9), 1327–1337.
ontgomery, D.C., Montgomery, D.C., Montgomery, D.C., 1984, Vol. 7. Design and Anal-

ysis of Experiments. Wiley New York.

erur, S., Balijepally, V., 2007. Theoretical reflections on agile development methodolo-
gies. Commun. ACM 50 (3), 79–83.

aasivaara, M., Durasiewicz, S., Lassenius, C., 2009. Using scrum in distributed agile
development: A multiple case study. In: Fourth IEEE International Conference on

Global Software Engineering, 2009. ICGSE 2009. IEEE, pp. 195–204.
aasivaara, M., Heikkila, V., Lassenius, C., Toivola, T., 2014. Teaching students scrum

using lego blocks. In: Proceedings of the 36th International Conference on Software

Engineering, pp. 382–391. URL: http://doi.acm.org/10.1145/2591062.2591169.
ashler, H., McDaniel, M., Rohrer, D., Bjork, R., 2008. Learning styles concepts and evi-

dence. Psychol. Sci. Publ. Interest 9 (3), 105–119.
ico, D., Sayani, H., 2009. Use of agile methods in software engineering education. In:

Proceedings of the AGILE ’09., pp. 174–179.
alo, O., Abrahamsson, P., 2008. Agile methods in european embedded software de-

velopment organisations: a survey on the actual use and usefulness of extreme

programming and scrum. Softw., IET 2 (1), 58–64.
charf, A., Koch, A., 2013. Scrum in a software engineering course: An in-depth praxis

report. In: Proceedings of the IEEE 26th Conference on Software Engineering Edu-
cation and Training (CSEE T), 2013, pp. 159–168.

chroeder, A., Klarl, A., Mayer, P., Kroiß, C., 2012. Teaching agile software development
through lab courses. In: Proceedings of the Global Engineering Education Confer-

ence (EDUCON), 2012 IEEE. IEEE, pp. 1–10.

chwaber, K., Beedle, M., 2002, Vol. 1. Agile Software Development with Scrum. Pren-
tice Hall Upper Saddle River.

cott, E., Rodríguez, G., Soria, Á., Campo, M., 2013. El rol del estilo de aprendizaje en la
enseñanza de prácticas de scrum: Un enfoque estadístico. In: Proceedings of ASSE

2013 Argentine Symposium on Software Engineering.
cott, E., Rodriguez, G., Soria, A., Campo, M., 2014a. Are learning styles useful indicators

to discover how students use scrum for the first time? Comput. Hum. Behav. 36,

56–64.
cott, E., Rodríguez, G., Soria, Á., Campo, M., 2014b. Experiences in Software

Engineering Education: Using Scrum, Agile Coaching, and Virtual Reality. In: Yu, L.
(Ed.), Overcoming Challenges in Software Engineering Education: Delivering Non-

Technical Knowledge and Skills. IGI Global, Hershey, PA, pp. 250–276.

http://dx.doi.org/10.13039/501100002923
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0015
http://www.ncsu.edu/felder-public/ILSpage.html
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0028
http://www.swissagilestudy.ch
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0034
http://doi.acm.org/10.1145/2591062.2591169
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0037
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0037
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0037
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0038
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0038
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0038
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0040
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0040
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0040
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0040
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0040
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0041
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0041
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0041
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0042
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0042
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0042
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0042
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0042
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0043
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0043
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0043
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0043
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0043
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0044
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0044
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0044
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0044
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0044


E. Scott et al. / The Journal of Systems and Software 111 (2016) 242–253 253

S

S

S

T

T

V

v

E

C
r

2

w

c
o

s

G

c

a
h

o
H

Á

C
P

b
c

F

M

d
P

e
a

I

s

mith, T., Cooper, K.M., Longstreet, C.S., 2011. Software engineering senior design
course: Experiences with agile game development in a capstone project. In: Pro-

ceedings of the 1st Int. Work. on Games and Software Engineering, pp. 9–12.
URL: http://doi.acm.org/10.1145/1984674.1984679

oria, A., Campo, M.R., Rodriguez, G., 2012. Improving software engineering teaching
by introducing agile management. In: Proceedings of ASSE 2012 Argentine Sympo-

sium on Software Engineering, Vol. 8, p. 12.
ternberg, R.J., Grigorenko, E.L., Ferrari, M., Clinkenbeard, P., 1999. A triarchic analysis

of an aptitude-treatment interaction.. Eur. J. Psychol. Assess. 15 (1), 3–13.

an, C.-H., Tan, W.-K., Teo, H.-H., 2008. Training students to be agile information sys-
tems developers: A pedagogical approach. In: Conf. on Comp. Pers. Doc. consorti.

and Research, pp. 88–96.
horndike, R.L., Hagen, E., 1961. Measurement and Evaluation in Psychology and Edu-

cation. Wiley.
ersionOne, 2012. State of agile development survey results. Retrieved October 22,

2015 from https://www.versionone.com/pdf/7th-Annual-State-of-Agile-

Development-Survey.pdf
on Wangenheim, C.G., Savi, R., Borgatto, A.F., 2013. Scrumia: An educational game for

teaching scrum in computing courses. J. Syst. Softw. 86 (10), 2675–2687.

zequiel Scott received the Computer Engineer degree from Universidad Nacional del

entro de la Provincia de Buenos Aires (UNICEN), Tandil, Argentina, in 2012. He is cur-
ently pursuing the Ph.D degree in Computer Science at the same University. Since

012, he has been part of ISISTAN Research Institute (CONICET - UNICEN), where has

orked on projects related to software engineering, virtual reality and games for edu-
ation. His research interests include virtual learning environments and agile method-
logies. Mr. Scott has obtained a scholarship from CONICET to complete his doctoral

tudies.

uillermo Rodríguez received the Computer Engineer degree from Universidad Na-

ional del Centro de la Provincia de Buenos Aires (UNICEN), Tandil, Argentina, in 2010,

nd the Ph.D degree in Computer Science at the same university in 2014. Since 2008,
e has been part of ISISTAN Research Institute (CONICET - UNICEN), where has worked

n projects related to software engineering, virtual reality and games for education.
is research interests include software architecture materialization.

lvaro Soria received the Computer Engineer degree from Universidad Nacional del

entro de la Provincia de Buenos Aires (UNICEN), Tandil, Argentina, in 2001, and the
h.D degree in Computer Science at the same university in 2009. Since 2001, he has

een part of ISISTAN Research Institute (CONICET - UNICEN). His research interests in-
lude Software Architectures, Quality-driven Design, Object-oriented Frameworks and

ault Localization.

arcelo Campo received the Computer Engineer degree from Universidad Nacional

el Centro de la Provincia de Buenos Aires (UNICEN), Tandil, Argentina, in 1988, and the
h.D degree in Computer Science from Instituto de Informática de la Universidad Fed-

ral de Rio Grande do Sul (UFRGS), Brazil, in 1997. He is currently an Associate Professor
t Computer Science Department and Director of the ISISTAN Research Institute (CON-

CET - UNICEN). His research interests include intelligent aided software engineering,

oftware architecture and frameworks, agent technology and software visualization.

http://doi.acm.org/10.1145/1984674.1984679
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0046
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0046
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0046
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0046
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0047
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0047
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0047
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0047
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0047
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0048
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0048
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0048
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0048
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0049
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0049
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0049
https://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0050
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0050
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0050
http://refhub.elsevier.com/S0164-1212(15)00226-5/sbref0050

	Towards better Scrum learning using learning styles
	1 Introduction
	2 Background
	2.1 Teaching Scrum
	2.2 Overview of learning styles

	3 Research approach
	3.1 Step 1: conducting the teaching of Scrum concepts
	3.1.1 Group formation
	3.1.2 Using suitable instructional methods

	3.2 Step 2: conducting the capstone project
	3.2.1 Scrum teams formation
	3.2.2 Describing the capstone project

	3.3 Step 3: assessing the students’ learning of Scrum

	4 Application and evaluation of the approach
	4.1 Results of academic Year 2013
	4.2 Results of academic Year 2014

	5 Analysis of results
	6 Conclusions
	 Acknowledgments
	 References


