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Hotelling's statistic, also called T2-statistic, is widely used in statistical process control as an extension of the
univariate student's chart to reliably detect out of control status in multivariate processes. Although it is a
very efficient tool for detection purposes, by itself, it offers no assistance about the origin of the declared
faulty status. Several different approaches have been proposed to estimate the variable values' effect on
the overall statistic's value. Some of these strategies work in the original measurement space, while others
interpret the results coming from the analysis in latent variable spaces using for example Principal Compo-
nent Analysis or Independent Component Analysis. With the same purpose, we present a novel approach,
based on finding the nearest in-control neighbor of the observation point, in this work. The distance between
both points is used to determine the contribution of each variable to the out of control state. Those variables
whose distance measures exceed a certain threshold value are considered as suspicious. The results of the
proposed strategy are compared with those obtained using other strategies that work both the original and
latent variable spaces for case studies extracted from the literature.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The aim of multivariate analysis is to provide a set of statistical anal-
ysis tools which are well suited to deal with data when they are collect-
ed for more than one variable. Its main advantage is in the treatment of
processwith correlated variables. There often exist relationships among
the variables of a data set, which make them mutually dependent,
therefore it is necessary to incorporate such interdependencewhen an-
alyzing those data sets. Taking into account such behavior is not a trivial
task, and it usually makes multivariate analysis quite different in ap-
proach and complexity than the corresponding univariate analysis,
when only one variable at a time is considered.

In this sense, Hotelling [1] introduced an extension of the student
statistic which enables hypothesis testing for the multivariate case.
The so called Hotelling's statistic (T2-statistic) is a quadratic form
based upon the Mahalanobis distance. The relationships among vari-
ables are taken into account by means of the covariance matrix, which
is used to weigh the relative distance between a given point and the
samplemean. Hotelling's statistic has been extensively used as a testing
tool that enables both, comparison among data populations and classi-
fication of observations as coming from one of several populations.

The formula for the T2-statistic is based on a covariancematrix that is
non singular and therefore can be inverted.When two ormore observed
variables are perfectly correlated or near correlated, the calculation of
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T2-statistic fails. For identifying collinearities it is recommended to
examine the condition indexes [2] of the sample covariance matrix, de-
fined as the square root of the ratio of themaximum eigenvalue to each
of the other eigenvalues. A condition index greater than 30 indicates the
presence of a severe collinearity. In this case, one of the variables in-
volved in the collinearity is removed. To determine the set of collinear
variables, the linear combination of variables provided by the eigenvec-
tor associated to the smallest eigenvalue is examined. After ignoring the
variables with small coefficients, the linear relationship between those
that are producing the collinearity problem is obtained. Anothermethod
to removing collinearities is to re-construct the inverse of the correlation
matrix by excluding the eigenvectors corresponding to the near zero
eigenvalues. Sample restrictions also originate the singularity of the co-
variancematrix. Even though different techniques formatrix regulariza-
tion are proposed to tackle this problem [3], it is necessary to evaluate if
the computation of the covariance matrix changes the performance of
the statistic.

From the monitoring standpoint, determining whether the process
can be considered as in-control at a given time t is just one step in the
procedure.Whenever one observation is believed to show an abnormal
behavior, all the effort must be oriented towards finding what the root
cause of the deviation is.

The activities related to isolating the variables that indicate the
faulty state conform what is known as the identification stage, which
is frequently performed by calculating the variable contributions to
the inflated statistic. The main purpose of evaluating those contribu-
tions is to compare the relative influence of each measured variable
on the final T2-statistic value. It is considered that the largest contribu-
tions help to reveal the faulty state. Different strategies have been
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proposed to assign variable-contribution values to the statistic taking
into account the multivariate nature of process data.

Mason et al. [4,5] proposed to decompose the T2-statistic value as a
summation of J independent parts (where J is the number of measured
variables). The partitioning begins by selecting any one of the J variables,
and calculating the first term of the sum squaring a univariate t statistic
for that variable. The jth term of the sum (j=2,…, J) corresponds to the
square of the jth variable adjusted by the estimates of themean and stan-
dard deviation of its conditional probability distribution given the (j−1)
variables previously taken into account in the sum. Since there exists no
fixed order for variables, J! different but non-independent partitions
can be obtained. As a possible solution for this problem, the authors
suggested to focus the interest in only two of those terms for each
partition: the one corresponding to the unadjusted contribution of a
single selected variable and, the term containing the adjusted contribu-
tion of this variable after the adjustment of the (J−1) remaining ones.
Nevertheless, when the inspection of this reduced set of terms is not
enough to come to a clear conclusion, all significant conditional terms
should be compared to a critical value, increasing the complexity of
the identification of the source fault.

An alternative straightforwardmethod to decompose the T2-statistic
as a unique sum of variable contributions was presented by Alvarez et
al. [6]. This method, called Original Space Strategy (OSS), also provides
an explanation about the physical meaning of the negative contribu-
tions. If the monitoring statistical technique reveals the process behav-
ior is abnormal, those variable contributions to the inflated T2-statistic
that are greater than a given control-limit, calculated using the refer-
ence population, are identified as suspicious. This strategy has been ap-
plied for monitoring batch processes [7] and to identify faulty sensors
[8].

Among the methods that work in latent variable spaces, it was
Jackson [9] who first proposed the decomposition of T2-statistic into a
sum of principal components (PCs) and performed the identification in
terms of the weight of each variable in the out-of-control component.
However, inmost of the industrial applications it is very difficult to asso-
ciate a physical meaning to each PC and, the variables associated with
out-of-control signals cannot be determined easily. Therefore, Miller et
al. [10] andMacGregor et al. [11] proposed to evaluate the contributions
of each process variable to the scores that are outside of their confidence
limits, and then Nomikos [12] presented an approach to calculate the
contributions of each process variable to T2-statistic instead of to the
scores, when latent variables cannot be associated to a meaningful
group of process variables. Westerhuis et al. [13] extended the theory
of contribution plots to latent variable models with correlated scores
and, introduced control limits for the contributions that help in finding
the variables whose behaviors are different with respect to those
contained in the reference data set.

In all the aforementionedmethods, the contribution of each variable
to the T2-statistic value is estimated considering that the remaining var-
iables are fixed at their measured values. Therefore, there is a sole para-
metric curve defining all the possible values of T2-statistic as function
only of the analyzed variable, as it was pointed out by Alvarez et al.
[6]. In thiswork, a new approach devoted to identify the set ofmeasure-
ments that reveal the faulty state and does not impose the aforemen-
tioned restriction is presented. The methodology consists in finding
the Nearest In-Control Neighbour (NICN) of the observation point by
solving a minimization problem. The distance between these points is
used to evaluate the relative influence of each measured variable on
the T2-statistic value. Those variables whose distance measures exceed
a certain threshold value help to isolate the root cause of the fault, and
are considered suspicious.

This work is organized as follows. In Section 2, previousmethodolo-
gies for calculating variable contributions to the T2-statistic are briefly
reviewed. The proposed approach is described in Section 3. Next, a per-
formance comparison among the new strategy and other existing
methodologies is presented. A conclusion section ends the article.
2. Existing Approaches to Estimate Variable Contributions
to T2-statistic

Let us consider a chemical process in which J variables aremeasured
and monitored over time, and let z be a process observation vector
containing all measurements for a given time instant t. The value of
T2-statistic for z is given by:

T2 ¼ z�zð ÞTS−1 z�zð Þ ð1Þ

where z is the estimate of the population mean (μ) and S is the estima-
tion for the variance–covariance matrix Σ. If it is possible to assume that
z follows a normalmultivariate distribution (z∼N(μ,Σ)), then T2-statistic
follows a [J(I2−1)/(I2− IJ)]FJ,I−J distribution,where FJ,I−J represents the
F distributionwith J and (I− J) degrees of freedom and I is the number of
observations of the reference population.

As can be seen in Eq. (1), the T2-statistic has a squared formwith the
minimumatz ¼ z. Sincematrix S is positive semidefinite, all the possible
values for zwill generate statistic's values that are greater than or equal
to zero. Standardized observation vectors x are obtained, such that
x∼N(0,R) where R is the correlation matrix of the reference population.
Therefore T2-statistic can be re-written as follows

T2 ¼
XJ
i¼1

XJ
j¼1

ai;jxixj ð2Þ

where aij denotes the elements of the inverse matrix of R

R−1 ¼
a1;1 ⋯ a1;J
⋮ ⋱ ⋮

aJ;1 ⋯ aJ;J

0
@

1
A: ð3Þ

This particular structure has been exploited in order to estimate
the influence of each measurement on the final statistic's value.

Mason et al. [4,5] proposed to decompose T2-statistic value as a
summation of J independent parts:

T2 ¼ t21 þ T2
2•1 þ T2

3•1;2 þ T2
4•1;2;3 þ…þ T2

J•1;2;…;J−1

¼ t21 þ
XJ−1

j¼1

T2
jþ1•1;…;j

ð4Þ

where t12 is the student value of thefirst selected variable and Tj+1•1,…, j
2 is

the contribution of the (j+1)th variable adjusted by using estimates of
the mean and standard deviation of its conditional probability distribu-
tion given the j previously considered variables. Since there exists
no fixed variable order, it is possible to obtain J! different (but non-
independent) partitions for T2-statistic.

Alvarez et al. [6] presented an alternative straightforwardmethod to
decompose the T2-statistic as a unique sum of variable contributions, as
follows:

T2 ¼
XJ
j¼1

aj;j x2j −x�j 2
� �

¼
XJ
j¼1

cj ð5Þ

x�j ¼ −

XJ
j ¼ 1
j≠k

ai;jxi

aj;j
ð6Þ

where xj⁎/2 is the xj value that minimizes T2-statistic given the
remaining J−1 variable values. This decomposition of T2-statistic also
allows to understand the meaning of a negative variable-contribution
and to estimate a bound for it. The variable contribution will take nega-
tive values if 0≤xj≤xj⁎. The minimum contribution value is ckmin that is
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located at xj=xj⁎/2. If xj is out of 0≤xj≤xj⁎, T2-statistic is positive and it
increases with |xj|. The value of variable xj contradicts the correlation
structure if xj≤0. On the other hand, a value of xj>xj ⁎ represents a
large positive deviation with respect to the mean, in the direction indi-
cated by the correlation matrix.

Severalmethods have been also presented to calculate the variables'
contributions when latent variable projection methods are used for
monitoring purposes. In the case latent variables cannot be associated
to a meaningful group of process variables, Nomikos [12] proposed an
approach to calculate the contributions of each process variable to the
T2-statistic (called D2‐statistic when projectionmethods based on Prin-
cipal Component Analysis (PCA) are applied) instead of to the scores.
Westerhuis et al. [13] presented an extended approach of the contribu-
tion plots proposed by Nomikos [12] to be applicable also to latent var-
iable models with correlated scores. They proposed to calculate the
contribution of the jth variable to the inflated statistic value (cj) as:

D2 ¼ tTS−1
L t ¼ tTS−1

L xTP
h iT ð7Þ

D2 ¼ tTS−1
L

XJ
j¼1

xjp
T
j

h iT ð8Þ

D2 ¼
XJ
j¼1

tTS−1
L xjp

T
j

h iT ¼
XJ
j¼1

cj ð9Þ

where t and SL are the coordinates of x in the considered latent space and
their variance–covariance matrix respectively, P is the loading matrix
with R retained PCs and pj represents the j-th column of matrix P. This
technique associates no interpretation to the negative values that can re-
sult from the calculations.

3. A New approach to estimate variable contributions
to T2-statistic

Assuming that no systematic errors in measurements are present, it
is still possible to obtain an observation point whose statistic value ex-
ceeds the critical distribution value for a given significance level. In
this case, one ormore variables in the observation vector do not behave
as the observations in the reference population do. The occurrence of an
anomalous event is declared, and the question of which variables reveal
the faulty state follows. In this work an answer based on the knowledge
of the nearest neighbor of the observation point that is in statistical con-
trol is provided. This information gives us an idea on how far from an in
control allocation the faulty observation is and which directions more
explain the occurrence of the anomalous situation.

The problem of finding the NICN can be stated as an optimization
problem, whose objective is to determine the coordinates of an alterna-
tive point that minimizes a distance measure to the observation point,
subject to the constraint that the T2-statistic value for the NICN is
equal to the critical statistic value for a given significance level α, TC2.
Therefore the optimization problem is formulated as follows

Min xNICN−xð ÞTΨ−1 xNICN−xð Þ
s:t:

xT
NICNR

−1xNICN ¼ T2
C

ð10Þ

where xNICN and x are the NICN and measurement vectors respectively,
Ψ is the matrix that defines the type of distance chosen to measure the
proximity to the faulty observation, and R is the correlationmatrix esti-
mated from the reference population. Reader should notice that the cal-
culated nearest neighbor is not an observation, but the closest point in
the curve for the critical distance.

If variables aremeasured in the same units, they are also uncorrelated
and have approximately equal variances, it is appropriate to use non-
standardized measurement vectors and the inverse of the covariance
matrix S to formulate the optimization problem, and to also select Ψ=
I. When different observations are noncommensurable and likely to
have very different variances, the use of the unweighted Euclideanmetric
is inadequate. In this case, the weighting matrix corresponds to the
sample correlationmatrix,Ψ=R, which is a diagonal matrix only if mea-
surements are uncorrelated.

The Lagrangian function, L, for the optimization problem stated in
Eq. (10) is defined as

L ¼ xNICN−xð ÞTΨ−1 xNICN−xð Þ−λ xT
NICNR

−1xNICN−T2
C

� �
ð11Þ

L ¼ xT
NICNΨ

−1xNICN þ xTΨ−1x−2xTΨ−1xNICN−λ xT
NICNR

−1xNICN−T2
C

� �
:

ð12Þ

A well known result from the theory of nonlinear constrained pro-
gramming is that any local minimum of problem (10) must satisfy the
following necessary conditions of optimality:

∂L
∂xNICN

¼ 2Ψ−1xNICN−2λR−1xNICN−2Ψ−1x ¼ 0 ð13Þ

∂L
∂λ ¼ xT

NICNR
−1xNICN−T2

C ¼ 0 ð14Þ

where λ is the vector of Lagrange multipliers.
If the distancemeasure to beminimized is chosen as theMahalanobis

distance between the observation and the NICN (i.e.Ψ=R), Eq. (13) can
be rewritten as:

∂L
∂xNICN

¼ 2 1−λð ÞR−1xNICN−2R−1x ¼ 0: ð15Þ

Using Eq. (15) the coordinates of the NICN are expressed in terms
of the observation vector and the Lagrange multipliers as follows

xNICN ¼ d x ð16Þ

where d=(1−λ)−1. Then d is calculated by replacing Eq. (16) in
Eq. (14)

d2 xR−1x
� �

−T2
C ¼ d2T2

x−T2
C ¼ 0 ð17Þ

d ¼ � T2
C

T2
x

 !1=2

ð18Þ

where Tx
2 is the T2-statistic for the observation vector x.

Considering that there are only two possible solutions, the compari-
son of the objective function at both solutions is much easier than eval-
uating the second order optimality conditions to decide which one is
the corresponding NICN.

The solution of the optimization problem for the more general situa-
tion, i.e.Ψ≠R, requires the use of non-linear programming techniques.
Nevertheless the computational cost of considering different distances
metrics does not increase significantly. The coordinates of the NICN
depend on the selection of this metric. To illustrate this issue, let us con-
sider the bidimensional case study represented in Fig. 1. It is assumed
that the reference population is centered in [0,0], and there exist two
out-of-control observation points, p1=[−1,2] and p2=[2,0]. The figure
shows three types of level curves. One of them corresponds to T2-statistic
value curves (full lines), which are ellipses around [0.0]. The others are
defined by the Euclidean distance (full lines), which are circles around
the two out-of-control observations, and the Mahalanobis distance
(dashed lines) from the out of control observations. Also the intersection
points between the T2-statistic value curves and the distance lines are
represented and joined by a line. It may be noticed that a straight line



Fig. 1. Different positions of NICN depending on the selection of the distance metric.

Table 1
Numerical example. Data reported by De Maesschalck et al. [14].

Observation x1 x2 x3 x4

1 4.00 3.00 1.00 2.00
2 5.00 4.00 2.00 3.50
3 8.00 7.00 3.00 4.00
4 8.00 6.00 5.00 4.00
5 9.00 7.00 2.00 3.00
6 6.00 3.00 5.00 3.00
7 6.00 5.00 3.00 2.50
8 10.00 8.00 2.00 3.00
9 2.00 3.00 1.50 3.40
10 4.00 4.00 3.00 3.00
11 6.00 6.00 6.00 4.00
12 6.50 4.50 0.00 2.00
13 9.00 8.00 5.00 5.00
14 4.00 5.00 1.00 1.00
15 4.00 6.00 3.00 5.00
16 6.00 7.00 2.00 4.00
17 2.50 4.50 6.00 4.00
18 5.00 5.50 8.00 3.00
19 7.00 5.50 1.00 2.50
20 8.00 5.00 3.00 3.00

Table 2
Test observations for Case Study I.

Test number Observation T2

TEST1 [−1.099 5.350 3.125 3.245] 24.029
TEST2 [13.09 5.350 3.125 3.245] 24.029
TEST3 [−1.099 6.124 3.125 3.245] 30.957
TEST4 [13.09 4.576 3.125 3.245] 30.957
TEST5 [7.996 6.991 12.88 5.003] 23.621
TEST6 [3.782 9.376 3.498 6.998] 31.299
TEST7 [0.454 6.898 8.317 44.228] 29.035

T2C,0.05=14.997. Values in bold and underline indicate that the corresponding statistic
detects a fault.
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is defined by the neighbors whenΨ=R. On the other hand, when the
Euclidean distance is considered the intersections follow a non-linear
curve.

After calculating the coordinates of the NICN, the influence of each
variable to the inflated statistic value is estimated. Since all the variables
have been previously standardized to be dimensionless, the distance in
which each measured variable should be modified to reach the NICN is
considered as the contribution of that variable to the statistic value, i.e.,

cj ¼ abs xj;NICN−xj
� �

; ð19Þ

where cj is the contribution of the j-th variable, and xj;NICN and xj are the
j-th elements of vectors x and xNICN, respectively. Therefore the resulting
movements in each direction can be applied in a similar way as classical-
ly used in contribution plots. The directions whose changes are greater
than their threshold values are considered as suspicious variables.

To determine the threshold value, a data-driven procedure is
implemented based on the information contained in the reference pop-
ulation. For each variable, its contribution to the inflated statistic for a
set of simulated fault cases, in which that variable is not faulty, is calcu-
lated. Then the empirical cumulative distribution function of that vari-
able contribution is obtained. The control limit is selected as the
variable-contribution value for which the cumulative probability is
(1−α), where α is the probability of wrongly identifying a variable as
faulty and is set in the range [0.05–0.1].

4. Case studies

In this section, the results of a performance comparison among the
new strategy and other methodologies are presented. Variable contribu-
tions to the T2-statistic are obtained by applying the NICN strategy, and
compared with those estimated by using the OSS (Alvarez et al. [6]),
and the ones calculated by using Eqs. (7) to (9) due to Westerhuis et
al. [13].

Regarding the NICN approach, the Mahalanobis and Euclidean dis-
tances are selected as objective functions of the optimization problem.
As it is expected, the identification performance of the procedure that
uses the Mahalanobis distance is better than the other, because vari-
ables are correlated for the analyzed case studies. Therefore, only the re-
sults obtained using theMahalanobis distance are included in thiswork.

With respect to the OSS and PCA strategies, a threshold value τj for
each variable is calculated using the information of the mean (�cj) and
standard deviation (sj) of the j-th variable contribution to the corre-
sponding statistics for the reference population samples, as follows

τj ¼ �cj þ βjsj: ð20Þ

Parameters βj are selected such that the best identification results
of both techniques are reported for the analyzed case studies.
The significance level for all statistical tests used for detection and
identification purposes is fixed at 0.05.

Application examples extracted from the literature are selected as
case studies. Even though sample populations must be regarded as
small, these are kept as originally published for the sake of both, sim-
plicity and reproducibility.
4.1. Case Study I

Let us consider the data set presented by De Maesschalck et al. [14]
as a reference population. It is constituted by 20 observations of four
variables which are reported in Table 1. The correspondingmean vector
is �x ¼ 6 5:35 3:125 3:245½ �. In addition, seven test observations in-
cluded in Table 2 are used to show how the three aforementioned iden-
tification strategies interpret their Hotelling-statistic's values. The
T2-statistic value for each test observation and the critical statistic
value are also reported in the same table.

The pair of measurements TEST1/TEST2 has a deviation of the same
magnitude but different sign for variable 1. Therefore these test mea-
surements have the same Euclidean distance from the mean vector
and also the same statistic value. It is independent of the deviation
sign because the three remaining variables are at their mean values.
The same behavior is noticed for the pair of measurements TEST3/
TEST4 even though two variables deviate with respect to their means.
In this case the deviations of variables 1 and 2 for TEST4 have the
same magnitude but different sign with respect to TEST3. Regarding
TEST5 to TEST7, variable 3 presents a significant deviation with respect
to the mean in TEST5, the same situation occurs for variables 2 and 4
in TEST6, and for variables 1 and 3 in TEST7, respectively.

image of Fig.�1


Table 3
NICN variable contributions for Case Study I.

Observation c1
T2 c2

T2 c3
T2 c4

T2

TEST1, TEST2 0.6720 0.0000 0.0000 0.0000
TEST3, TEST4 0.9727 0.1520 0.0000 0.0000
TEST5 0.1829 0.2154 0.9551 0.3599
TEST6 0.3077 0.8001 0.0554 1.1640
TEST7 0.7033 0.2813 0.7033 0.2787

Values in bold and underline indicate that the corresponding statistic detects a fault.

Table 5
D and SPE statistics when PCA is applied for Case Study I.

D SPE R

TEST1, TEST2 5.75 3.67 3
TEST3, TEST4 5.17 5.18 3
TEST5 23.62 0.01 3
TEST6 24.28 1.40 3
TEST7 7.79 4.27 3
TEST1, TEST2 3.46 3.17 2
TEST3, TEST4 2.66 4.52 2
TEST5 13.86 2.52 2
TEST6 6.72 8.95 2
TEST7 7.77 4.28 2
DC,0.05=11.2550 SPEC,0.05=0.8100 3
DC,0.05=7.8793 SPEC,0.05=2.3866 2

Values in bold and underline indicate that the corresponding statistic detects a fault.

Table 6
Variable contributions to D2 and SPE statistics for Case Study I (β=2).

Observation c1
D c2

D c3
D c4

D D R

TEST5 0.9895 −0.0597 24.283 −1.5957 23.62 3
TEST6 1.8727 3.1415 −0.4813 19.750 24.28 3
TEST5 −0.3388 0.4311 10.241 3.5294 13.86 2

124 M.V. Cedeño Viteri et al. / Chemometrics and Intelligent Laboratory Systems 118 (2012) 120–126
In Tables 3 and 4, the variable contributions to the T2-statistic calcu-
lated using the NICN and OSS approaches are reported. For TEST6 and
TEST7, OSS strategy gives ambiguous identifications [7]. These arise
when the original cause of the fault is pointed out as a suspicious vari-
able along with others, which influence can be explained based on the
engineering knowledge about the process. In contrast, the NICN meth-
odology provides precise identifications for all the test observations,
that is, only the faulty variables are indicated as the suspicious ones.

Furthermore, the decomposition method proposed by Mason et al.
[4], which also works in the original measurement space, is applied to
Case Study I. When the test significance level α is set at 0.05, the tech-
nique gives an ambiguous identification associated to variable 1 for
TEST6, and all other identifications are precise. In light of that meth-
odology, all tests are run using lower significance levels (α=0.01
and α=0.001). No suspicious variables are identified for α=0.001,
i.e., all identifications are void. Using α=0.01, the identifications
are precise for TEST5, ambiguous for Test6 and Test7 and void for the
remaining tests. Therefore, α=0.05 provides satisfactory results.

Since the strategy developed byWesterhuis et al. [13] uses a latent
variable model, a PCA model of the reference data was performed
considering 2 and 3 retained PCs, R, reaching a variance reconstruc-
tion of 82.6% and 95%, respectively. Table 5 shows the corresponding
values for D2 and SPE statistics. Values in bold and underline indicate
that the corresponding statistic detects a fault.

Detection capabilities of Hotelling's statistic are strongly affected
by the dimension reduction. Only TEST5 is detected as a faulty obser-
vation by the D2-statistic for R=2. If R increases to 3, both TEST5 and
TEST6 are indicated as faulty measurements. Consequently, only
values for those tests will be analyzed for identification performance
comparisons. Table 6 shows the values of the contributions to D2-
statistic calculated using Eqs. (7) to (9). A precise fault identification
for each test is obtained.

To complete the analysis, the performance of the SPE-statistic is
also evaluated. It exceeds the critical value for all tests, except the
TEST5 for R=3. Therefore the PCA procedure detects the out of con-
trol state for all the test observations, since it uses both the D2 and
SPE statistics. Regarding its identification performance, variable con-
tributions to this statistic are calculated using the methodology pro-
posed by Westerhuis et al. [13]. Table 6 shows that all contributions
are above their control limits for R=3, and many of them are also
greater than their threshold values for R=2. Therefore it is difficult
to determine the right set of faulty observations. Furthermore, the
identification is incorrect for TEST7 and R=2, because one of the
faulty variables is not highlighted as suspicious [7].
Table 4
OSS variable contributions for Case Study I (β=3).

Observation c1
T2 c2

T2 c3
T2 c4

T2

TEST1, TEST2 24.03 0.000 0.000 0.000
TEST3, TEST4 27.14 3.821 0.000 0.000
TEST5 1.065 −0.167 24.23 −1.511
TEST6 5.411 14.19 −0.401 12.09
TEST7 17.95 6.896 6.541 −2.357

Values in bold and underline indicate that the corresponding statistic detects a fault.
4.2. Case Study II

The second case study is a tubular reactor where the reaction
A+B→3C takes place. The set of measured variables is composed
by ten observations: the inlet composition of A, B and C compounds,
inlet reactor and refrigerant temperatures, inlet flowrate, reactor
temperature at axial positions corresponding to 1/3 and 2/3 of the re-
actor length, outlet reactor temperature and outlet composition of C
compound, which are identified as variables 1 to 10, respectively.
The reference population is formed by thirty seven observations
whose mean vector and covariance matrix are shown in Table 7.

Seven additional tests are considered to perform the same com-
parisons as in the previous case. The first six runs represent the pres-
ence of faults associated to the input variables 1 to 6, respectively. For
Run 7, faults are simulated for variables 4 and 5. The standardized ob-
servation vector and the T2-statistic value of each run are provided in
Table 8.

In Tables 9 and 10, the variable contributions to the T2-statistic
calculated using the NICN and OSS approaches are reported. For this
case study, only the faulty variables are identified as suspicious
using the NICN procedure, except for Run 1. In this test, the simulated
change in the inlet composition of A leads the outlet composition of C
to be out of the normal region. From Table 10, it can be seen that the
OSS strategy gives a precise identification for Run 5, ambiguous iden-
tifications for Runs 1, 2, 3 and 6, and incorrect identifications for Runs
4 and 7.

For this case study, the methodology presented by Mason et al. [4]
gives ambiguous identifications for five runs (Runs 1–4, Run 6), a pre-
cise identification for Run 5 and an incorrect identification for Run 7,
when it is run using α=0.05. For this α value, the ambiguous identi-
fications signal an average of four suspicious variables besides the
faulty one. The reduction of α value to 0.01 has no significant effect
c1
SPE c2

SPE c3
SPE c4

SPE SPE

TEST1, TEST2 1.3195 1.9035 0.0210 0.4317 3.6757 3
TEST3, TEST4 1.8612 2.6850 0.0296 0.6090 5.1848 3
TEST6 0.5061 0.7301 0.0081 0.1656 1.4098 3
TEST7 1.5335 2.2123 0.0244 0.5018 4.2720 3
TEST1, TEST2 2.2580 2.2223 0.3267 0.0014 4.8084 2
TEST3, TEST4 3.0122 3.0804 0.3359 0.0027 6.4313 2
TEST5 0.5595 0.0623 2.1838 2.0269 4.8326 2
TEST6 2.8639 1.3508 3.5944 2.2990 10.108 2
TEST7 1.4511 2.1809 0.0504 0.5998 4.2822 2

Values in bold and underline indicate that the corresponding statistic detects a fault.



Table 7
Tubular reactor example.

1 2 3 4 5 6 7 8 9 10

Mean 0.2108 4.0603 0.0019 624.32 624.79 0.0997 634.61 628.89 627.00 0.5718

Cov 1 2 3 4 5 6 7 8 9 10

1 0.0001 0.0002 0.0000 −0.0478 −0.0002 0.0000 0.0051 0.0023 0.0004 0.0002
2 0.0002 0.0202 0.0000 −0.7030 −0.0078 0.0001 0.0328 0.0065 −0.0135 0.0011
3 0.0000 0.0000 0.0000 −0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 −0.0478 −0.7030 −0.0004 111.79 2.5101 0.0003 −7.9096 −1.2522 1.4182 −0.1076
5 −0.0002 −0.0078 0.0000 2.5101 1.0006 0.0003 0.6604 0.6321 0.8944 0.0035
6 0.0000 0.0001 0.0000 0.0003 0.0003 0.0000 0.0003 0.0002 0.0003 0.0000
7 0.0051 0.0328 0.0000 −7.9096 0.6604 0.0003 1.3926 0.7216 0.6898 0.0144
8 0.0023 0.0065 0.0000 −1.2522 0.6321 0.0002 0.7216 0.7668 0.6041 0.0081
9 0.0004 −0.0135 0.0000 1.4182 0.8944 0.0003 0.6898 0.6041 0.8229 0.0041
10 0.0002 0.0011 0.0000 −0.1076 0.0035 0.0000 0.0144 0.0081 0.0041 0.0005

Table 8
Standardized runs and T2‐statistic for Case Study II.

Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 T2

R1 −3.977 0.441 −1.177 −0.839 1.542 −0.107 −0.356 0.278 0.190 −4.273 300.7
R2 −0.189 4.299 −1.367 −0.891 −1.037 −1.713 −0.017 −0.364 −0.374 0.690 168.9
R3 1.018 −1.203 −5.409 0.168 0.792 −0.949 0.426 0.625 0.425 0.828 76.03
R4 −0.494 0.499 −0.095 −1.700 −1.818 0.684 1.122 0.531 0.126 −0.579 372.9
R5 −0.494 0.499 −0.095 0.501 3.281 0.696 −0.164 0.375 0.371 −0.168 940.5
R6 −1.066 1.487 0.542 −0.048 −0.328 3.982 0.562 0.367 0.189 −0.299 105.9
R7 0.003 0.499 −0.095 −1.500 −2.633 0.694 1.038 0.416 0.029 −0.053 748.9

T2C,0.05=30.2. Values in bold and underline indicate that the corresponding statistic detects a fault.
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on the identification categories, but the ambiguous identifications
signal an average of two suspicious variables besides the faulty one
in this case. For α=0.001, the identification performance is worse
than that for α=0.01.

A PCA of the same data has been carried out giving a total variance
reconstruction of 74.5% and 64% for R=3 and R=2, respectively.
Cattell's criterion [9] has been used to choose the number of retained
P.C.s. No runs are detected as faulty observations by the D2-statistic
for R=2. When the PCA model built for R=3 is used to evaluate the
test observations, only R1 and R3 are pointed out as out-of-control ob-
servations by the D2 statistic. The variables' contributions are shown
Table 9
NICN variable contributions for Case Study II.

Run c1
T2 c2

T2 c3
T2 c4

T2 c5
T2 c6

T2 c7
T2 c8

T2 c9
T2 c10

T2

R1 2.717 0.302 0.804 0.573 1.053 0.073 0.243 0.189 0.129 2.919
R2 0.109 2.482 0.789 0.514 0.599 0.677 0.010 0.210 0.216 0.398
R3 0.376 0.445 2.001 0.062 0.293 0.351 0.158 0.231 0.157 0.306
R4 0.354 0.357 0.068 1.216 1.301 0.497 0.803 0.379 0.090 0.415
R5 0.406 0.410 0.078 0.410 2.693 0.569 0.135 0.308 0.305 0.138
R6 0.497 0.694 0.253 0.022 0.153 1.857 0.262 0.171 0.088 0.139
R7 0.002 0.399 0.076 1.199 2.105 0.555 0.829 0.332 0.024 0.043

Values in bold and underline indicate that the corresponding statistic detects a fault.

Table 10
OSS variable contributions for Case Study II (β=3).

Run c1
T2 c2

T2 c3
T2 c4

T2 c5
T2

R1 34.19 −11.41 2.819 49.39 262.2
R2 −0.895 108.0 3.479 −30.54 134.1
R3 −18.68 13.83 43.05 −1.213 48.97
R4 −2.308 14.64 0.116 −71.67 378.4
R5 12.18 −25.05 0.144 −37.73 1101
R6 19.84 17.70 −1.857 −1.741 26.51
R7 0.036 21.67 0.078 −98.58 785.9

Values in bold and underline indicate that the corresponding statistic detects a fault.
in Table 11. It can be seen that the main contributions correspond to
the actual simulated deviations but the identifications are ambiguous.
The SPE-statistic detects that the process is out of control for all the
test runs, but no identifications are precise, as it is reported in Table 11.

5. Conclusions

A novel method to estimate the variable contributions to the
T2-statistic is presented. Given a measured point whose T2-statistic
value exceeds the critical value TC

2, the contribution of each variable
is determined in terms of the minimum distance between the mea-
sured point and its closer neighbor whose T2-statistic value is equal
to TC

2. The variables that help to reveal the faulty state are those
whose contributions exceed their control limits. A data driven tech-
nique is devised to determine those threshold values. Results have
shown a good performance when this technique is applied in the
original variable space.

The calculation of the T2-statistic is based on the correlation ma-
trix that should be nonsingular to be inverted. Problems in applying
the proposed technique may arise when the number of variables is
large in comparison with the number of samples. In this case the cor-
relation matrix becomes ill-conditioned, and it is necessary to apply a
regularization procedure to tackle the problem. Also the presence of
collinear variables originates difficulties with the inversion of the
c6
T2 c7

T2 c8
T2 c9

T2 c10
T2

−0.493 13.97 2.207 −27.22 −24.97
3.892 −0.337 0.946 −43.54 −6.167

−0.705 4.017 2.885 −30.64 14.51
−0.752 23.52 −0.915 24.24 7.640

3.688 5.274 2.827 −117.0 −5.231
15.45 23.12 0.563 8.928 −2.529
−1.812 34.04 −1.690 8.115 1.121



Table 11
Variable contributions to D2 and SPE statistics for Case Study II (β=3).

Run c1
D c2

D c3
D c4

D c5
D c6

D c7
D c8

D c9
D c10

D D R

R1 6.391 0.185 −1.669 −0.215 0.670 0.062 0.036 0.040 0.060 5.863 11.42 3
R3 1.622 2.121 15.82 0.165 0.108 −0.719 −0.133 −0.042 0.108 1.086 20.13 3

c1
SPE c2

SPE c3
SPE c4

SPE c5
SPE c6

SPE c7
SPE c8

SPE c9
SPE c10

SPE SPE

R1 1.005 0.593 5.478 5.262 0.665 0.710 0.314 0.184 0.100 2.569 16.88 3
R2 0.497 9.702 4.889 0.179 0.012 1.296 0.016 0.027 0.550 0.077 17.25 3
R3 0.391 0.897 4.388 1.340 0.109 3.202 0.516 0.263 0.026 0.295 11.43 3
R4 0.555 0.086 0.672 0.759 1.798 0.529 0.771 0.417 0.343 0.667 6.599 3
R5 0.001 0.843 0.084 0.015 3.864 0.506 0.441 0.311 0.849 0.008 6.923 3
R6 1.146 0.925 0.034 0.173 0.202 16.22 0.023 0.008 0.004 0.145 18.88 3
R7 0.429 0.110 0.301 0.215 3.248 0.380 0.734 0.548 0.667 0.375 7.008 3
R1 4.371 3.242 0.262 7.844 0.748 0.126 0.594 0.299 0.119 6.215 23.82 2
R2 1.188 12.11 2.446 0.059 0.016 1.718 0.003 0.042 0.535 0.001 18.11 2
R3 1.744 0.802 28.80 0.063 0.058 0.844 0.117 0.091 0.012 1.099 33.63 2
R4 1.162 0.001 0.068 1.053 1.758 0.335 0.888 0.465 0.333 1.186 7.248 2
R5 0.014 1.014 0.018 0.028 3.880 0.449 0.417 0.300 0.854 0.000 6.975 2
R6 1.993 1.651 0.150 0.066 0.189 15.01 0.048 0.016 0.003 0.435 19.56 2
R7 0.645 0.037 0.090 0.283 3.224 0.303 0.784 0.572 0.661 0.537 7.136 2

DC,0.05=9.404 SPEC,0.05=5.378 3
DC,0.05=6.903 SPEC,0.05=6.707 2

Values in bold and underline indicate that the corresponding statistic detects a fault.
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correlation matrix. These cases should also be detected and then, an
adjustment for the presence of collinearities is required using the
techniques described by Mason and Young [2].

Some differences appear between the identification capabilities of
OSS and NICN strategies. They are due to the fact that all the directions
are modified when the NICN approach is applied in contrast to the
“fixed curve” approach given by the OSS, which can produce high neg-
ative values for some contributions.

The NICN approach works in the original variable space and there-
fore employs only the T2-statistic. This avoids the possible loss of infor-
mation originated by the projection into an incorrectly dimensioned
P.C. space, which may lead to detection faults (Type II Error), and false
alarms (Type I Error), as it was shown in previous works [6].
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