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Abstract Heavy metal soil contamination is one of the

most serious environmental problems, considering both

their persistence and progressive accumulation which

makes possible the transference to other systems, and could

potentially affect human health and ecosystems function-

ing. The total concentration of lead (Pb) and zinc (Zn) in

soil and plant samples from Festuca arundinacea and

Cynodon dactylon naturally developed (in situ) and within

experimentally contaminated soils (ex situ) was measured.

Pb and Zn obtained results showed that the average values

in industrial soils were significantly higher (p\ 0.0001)

than those corresponding to controls values (472 % more

for Pb and 288 % more for Zn). There was a positive

significant correlation between Pb levels in soil and roots

(r = 0.99) and leaves (r = 0.98) of C. dactylon, and

between Zn levels in soil and roots (r = 0.94) and leaves

(r = 0.91) of C. dactylon. Festuca arundinacea plants

were experimentally exposed to Pb-contaminated soil

during different times (0, 5 and 10 days). Two indicators

were calculated: the bioaccumulation factor (BCF) and

translocation factor (TF). Five day BCF was 0.25, while for

10 days one was 0.72. This showed that the value of BCF

varied according to the exposure time, and F. arundinacea

showed to be highly tolerant to Pb species. TF was low (T1:

0.18 and T2: 0.09) because the higher accumulation

occurred in roots. Considering that roots of F. arundinacea

and C. dactylon were their largest metals reservoir, they

could be used as indicators of metal contamination within

soils.
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Introduction

Urban ecosystem has been characterized as a complex of

both natural and anthropic factors (Karim et al. 2014).

According to Xiao et al. (2013), trace metals occur within

nature as sediments, rocks and soil components. Anthropic

activities have produced a significant increase in trace

metal concentration within soils and waters up to levels of

toxicity or very close to (Bai et al. 2009, 2011). So,

mining exploitation (Lv et al. 2014; Odumo et al. 2014),

energy production (Rodrı́guez Martin et al. 2013), other

industrial activities (Kaitantzian et al. 2013), burning of

fossil fuels within vehicular traffic (Argyraki and Kele-

pertzis 2014), pesticides and fertilizers application (Koch

and Rotard 2001), or soils and waters pollution due to

e-waste recycled (Wu et al. 2015) are good examples of

such activities.

Trace metals are considered to be toxic pollutants due to

their persistence within the environment, their bioaccumu-

lation ability (Bai et al. 2012) and their potentiality to pro-

duce teratogenic, mutagenic and carcinogenic effects on the

biota (Vithanage et al. 2012), affecting both human and

animal health (Ok et al. 2004). Heavy metals, such as zinc,

lead, cadmium, copper or nickel, are environmental
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pollutants of great concern (United States Environmental

Protection Agency 1997). The European Commission

Directive (Directive 86/278/EEC 1986) declares that these

substances cause hazard to the life of plants or animals when

their concentrations surpass certain values. By the way,

levels of 375 lg g-1 DM for lead (Pb) and 600 lg g-1 DM

for zinc (Zn) corresponding to soils with agricultural use and

1000 lg g-1 DM for Pb and 1500 lg g-1 DM for Zn for

industrial soils have been proposed in Argentina (Decreto

No. 831/1993).

On the other hand, increasing interest in using biological

indicators such as plants for monitoring soil, air and water

pollution has been observed in recent years (Bonanno and

Lo Giudice 2010; Peng et al. 2008). Plants absorb trace

metals (i.e., cadmium, lead, chromium or zinc) which do

not have known biological functions and could be toxic at

low concentrations. Plants capture soil minerals in response

to concentration gradients and induced by ion-selective

uptake via roots or by diffusion of elements in the soil.

Moreover, accumulation level differs between and within

the different species (Huang and Cunningham 1996;

McGrath et al. 2002). Within this framework, it is impor-

tant to highlight that phytoremediation—especially phy-

toextraction—is a decontamination of soils methodology,

which uses plants to remove inorganic contaminants, pri-

marily heavy metals (Garbisu and Alkorta 2001; Yang

et al. 2005).

Tandil is a town located in the southwest of Buenos

Aires Province, in Argentina. Metallurgical production

(including smelting) is the main industrial activity within

this city. Foundry processes present different methods,

applied technologies and type of metal such as ferrous

(steel and Fe) and non-ferrous (Pb, Zn, Cu, Ni). Within

these processes, the sands are used to make molds and

replicate a metal piece. Molding sands are the main waste

generated by the mentioned foundries, which have been

used for many years for filling surfaces. Moreover, waste

foundry sands are recovered and reused for the mentioned

productive process. However, a significant volume of sands

used in the molding process is not recovered; instead, these

sands are abandoned in diggings, quarries and brick fac-

tories or are alternatively used to level the soil surface.

The aims of the present study were as follows: (a) to

determine Pb and Zb concentrations within soil and plant

root samples from different areas of Tandil (in situ study);

(b) to assess Pb uptake by roots and leaves of two plant

species planted in soils with trace metal levels (ex situ

study). Heavy metal concentrations were analyzed in all

samples in order to evaluate the quality of the terrestrial

environment within the study area; in addition, the use-

fulness of the two plant species as indicators of metal

contamination within the study area was also verified.

Materials and Methods

Sampling procedure

In situ experiments

Soils samples were collected in different sites close to

Tandil city, Buenos Aires Province, Argentina (Fig. 1).

The study area includes as follows: (A) the Industrial

Park of Tandil (IPT); (B) the Urban Area (UA); y

(C) places far from both A and B (C).

1. The IPT is located near the urban area, about 4 km

from the city center. The site is bounded by strategic

access routes and occupies an area of *1 km2. The

samples collected in areas from IPT were considered

I1, I2 and I3.

2. Soil samples (UA1, UA2 and UA3) of land whose

surfaces were covered with the remains of foundry

waste (molding sand) were obtained within the urban

area. Moreover, soil samples were taken from a distant

land (200 m of the place that had remains of foundry

waste) to perform the analysis of control soil (UAC)

within this area.

3. Samples collected in three sites further from IPT, UA

and cultivated land were considered control ones (C1,

C2 and C3).

All samplings were performed in triplicate. Samples

were obtained at 0–20 cm depth, were mixed to obtain a

homogeneous sample (1 kg) and were preserved in plastic

bags. Forage samples (Cynodon dactylon) were collected

from urban area and preserved in plastic bags. Roots and

leaves were separated for the study of the plants.

Ex situ experiments

Soil Soil from the control zone (C) was obtained to build

up the ex situ experiments, and it was dried, homogenized

and passed through a 2-mm sieve. This soil was considered

control sample and attained a final concentration of 600 lg
Pb g-1 DM. Control and contaminated soils were placed in

plastic pots (1 kg/pot). Both pots (with control and con-

taminated soil) were analyzed for triplicate to determine

their metal content.

Forage Seeds of Festuca arundinaceawere germinated in

a germination chamber alternating temperatures of 16 h in

the dark at 20 �C and 8 h at light at 30 �C during 14 days

(ISTA 2012). After this procedure, germinating seeds were

transplanted into pots with control soils during 14 days.

In addition, seedlings of F. arundinaceawere transplanted

into pots exposed experimentally to Pb-contaminated soil to
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start the treatment during different times (T0: 0 day; T1:

5 days andT2: 10 days). Pots of day 0were considered control

treatment. Roots and leaves were separately analyzed during

forage study.

Samples preparation and analysis

Heavy metal determination

Plant (previously washed with distilled water) and soil

samples were dried in a heater (70 �C) up to constant

weight, and subsequently ground and homogenized. 0.5 g

of homogeneous sample was mineralized through acid

digestion with 0.5 ml HNO3 and HClO4 (3:1) during 6 h at

room temperature, and 12 h at 95 �C to destroy the whole

organic matter content in order to determine the trace

metals concentrations. Samples were centrifuged at 1200 g

during 15 min. After the extracted supernatant, samples

were diluted to measure metals with the analytical instru-

ments. Pb and Zn content in soil and forage was deter-

mined by atomic absorption spectroscopy (AAS, GBC 906,

Australia) (Dean and Rains 1975; Price 1979).

Bioaccumulation factor (BCF), translocation factor (TF)

and removal percentage

Bioaccumulation factor (BCF) and translocation factor

(TF) are widely used in phytoremediation studies (Tu et al.

2003; Zhuang et al. 2007) to evaluate the ability of

different plant tissues assimilating trace elements from soil

as well as their ability to translocate these elements from

roots to aboveground tissues, respectively.

Translocation factor

Plants were analyzed to determine the translocation factor

(TF) of metals from roots to aerial parts, which has

demonstrated to be extremely useful in phytoremediation

studies (Jadia and Fulekar 2009).

The BCF and TF formulas are given as follows (Rauf

et al. 2011; Ghosh and Singh 2005):

BCF ¼ Cplant tissue

Csoil

where Cplant tissue (mg/Kg) is Pb concentration in plant

tissue (i.e., leaves and roots) and Csoil (mg/kg) is Pb con-

centration in soil.

TF ¼ Cabove ground

Croot

Where Cabove ground (mg/Kg) and Croot (mg/kg) are Pb

concentrations in the aboveground plant tissues and plant

roots, respectively.

Removal percentage

The removal percentage was used to calculate the effi-

ciency of phytoremediation on Pb-contaminated soils. It

was calculated following the algorithm:

Industrial 
Control 

Urban area 

Fig. 1 Location map of sampling sites in soils and plant samples collected in Tandil (Bs. As, Argentina). Control soils (C), industrial soils (IPT)

and urban area (UA)
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%Removal ¼ ½ðCi� CfÞ � 100�
Ci

where: Ci is the starting metal concentration in the soil and

Cf is the final metal concentration in the soil (Prasad and

Frietas 2002).

Statistical analysis

Statistical analyses were performed using the program

GraphPad InStat 3.0. The results were assessed through

parametric tests: t test and analysis of variance (ANOVA).

The variance homogeneity was checked by Bartlett’s test.

Logarithmic transformations performed by the post hoc

Tukey or nonparametric tests were applied in cases where

the data were not normally distributed. The significance

level was p\ 0.05. Pearson’s correlation coefficient

(1986) was applied to perform a correlation analysis of Pb

and Zn concentrations within soil and forage (root and

leaves).

Results

In situ experiments

IPT and Control

Pb average valueswithin industrial soils (I) have showed to be

significantly higher (p\ 0.0001) than those corresponding to

control (C) ones. A similar situation has been observed within

Zn concentrations in control and industrial soils samples,

where (I)-Zn average values were significantly higher

(p\ 0.0001) than those recorded in (C). The increasing per-

centages of values above described were 472 % within Pb

concentration, and 288 % in Zn concentrations, being in both

cases major in industrial soils than in control ones (Fig. 2).

The same kind of analysis has been performed within

the study of forage (Cynodon dactylon), considering sep-

arately the roots and leaves. Values of Pb and Zn in roots of

C. dactylon corresponding to contaminated soils (I) were

higher than roots from control soils (C). Roots showed

higher Pb values (p\ 0.001) than Zn ones (p\ 0.05).

Roots of grasses, corresponding to industrial soil, surpassed

551 % Pb concentration, and 258 % Zn concentration, in

relation to the control samples (Fig. 3). Significant differ-

ences were statistically greater for Pb (p\ 0.001) than

those for Zn (p\ 0.05).

Urban area

The results of Pb and Zn concentrations as obtained were

quite high because metal values in soil and remains of

molding sand (S1,2,3) that belongs to an urban area were

higher than those from control soils (Sc). This remarks the

higher differences in concentration of Pb and Zn in soil in

comparison with control ones (***p\ 0.001).Waste

molding sands showed higher differences in the concen-

tration of Pb (***p\ 0.001) than Zn (*p\ 0.05). The

levels of Pb in soil samples from the affected area exceeded

742 % those from control one, and waste molding sand did

by 766 %. In relation to Zn concentrations, the levels in

soils were 509 %, and waste molding sand 258 % higher,

respectively, than the reference soil (Fig. 4).

Another test was conducted in an urban area directed to

study the correlation of metals (Pb and Zn), between the

roots (R) and the leaves (L) of the forages from both the

control site (Sc) and contaminated ones (S1, S2 and S3).

Average concentrations of Pb (lg Pb g-1DM) in soils and

roots of C. dactylon samples from the same sites (Fig. 5)

showed a correlation coefficient of r = 0.99 in relation to

Pb Zn
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Fig. 2 Concentration of Pb and Zn in Controls and Industrial soils.
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Fig. 3 Concentrations of Pb and Zn (lg g-1 D.M.) in roots of

Cynodon dactylon from control and contaminated soils. Pb

***p\ 0.001; Zn *p\ 0.05
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the concentration of soil, while an r = 0.98 has been

obtained for leaves of C. dactylon. In addition, a positive

correlation analysis between Pb concentrations from dif-

ferent soil sampling sites and parts of the plants has also

been recorded.

Besides, bioaccumulation factor was estimated consid-

ering the concentration of Pb in roots and soils of each

sampling site. The results were as follows: Sc: 0.33; S1:

0.23; S2: 0.30 and S3: 0.48. Greater metal accumulation

was observed in plant roots than in leaves. Average con-

centrations of Zn (lg Zn g-1DM) in samples of soils (Sc;

S1; S2 and S3) and roots of C. dactylon from these same

sites (Fig. 6) had an r = 0.94 in relation to soil concen-

tration, whereas that leaves of C. dactylon had an r = 0.91

in relation to soil concentration. Bioaccumulation factor

calculated with concentrations of Zn in root of the plants

and soils was Sc: 0.98; S1: 0.43; S2: 0.62; and S3: 0.45. A

positive correlation between the concentrations of Zn

obtained from different soil sampling sites and in different

parts of the plants has also been observed.

Ex situ experiments

Plants F. arundinacea were experimentally exposed to Pb-

contaminated soil during different times (T0: 0 day; T1:

5 days; and T2: 10 days). The study started with a Pb initial

concentration within soil T0: 611.23 ± 5.99 lg Pb g-1

DM. At the same time, roots and leaves presented lower

metal concentrations (i.e., 7.67 ± 0.35 and 0.69 ± 0.23 lg
Pb g-1 DM, respectively). After five days, soils concen-

tration was reduced to 595.17 ± 21.64 lg Pb g-1 DM,

while in roots and leaves was increased to 150.06 ± 0.83

and 27.4 ± 2.16 lg Pb g-1 DM, respectively. After

10 days, soil concentration showed 437.35 ± 50.07 lg
Pb g-1 DM; meanwhile, root levels notoriously increase up

to 314.2 ± 19.18 and leave levels were similar

(28.66 ± 1.18 lg Pb g-1 DM) than the time before

(5 days before) Pb concentration in soil decreased during

the process (r = 0.90), while in plants Pb concentration

increased. The roots accumulate higher concentrations of

metal in relation to the time exposure and had a r = 0.99,

while that increase in the leaves means an r = 0.87. The

reduction in Pb concentrations in soil throughout the days

is expressed by a removal percentage of the metal of 28 %

(Fig. 7). Two indicators were calculated to evaluate the

efficiency of phytoremediation of F. arundinacea: the

bioaccumulation factor (BCF) and the translocation factor
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Fig. 4 Concentrations of Pb and Zn (lg g-1 D.M.) in control soil

(Sc), contaminated soil and remains of molding sand from urban area
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Fig. 5 Correlation analysis of Pb (lg g-1 D.M.) between the roots

and the leaves of Cynodon dactylon from different sampling sites (Sc,
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Fig. 6 Correlation analysis of Zn (lg g-1 D.M.) between the roots
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(TF). BCF was 0.25 to five, and 0.72 to ten days. This fact

showed that the value of BCF varied according to the time,

and F. arundinacea is a species that tolerates high Pb

concentration. TF was low (T1: 0.18 and T2:0.09) because

the much higher accumulation occurred in roots.

Discussion

Total contents of Pb and Zn within samples from both

industrial and urban zones have exceeded the correspond-

ing soil background values. Similar results have been

reported by other authors within soils, wetlands and urban

sediments from different environments (i.e., Xiao et al.

2012, 2013; Bai et al. 2015; Mahar et al. 2015). In addition,

reference values of 375 lg g-1 DM for lead (Pb) and

600 lg g-1 DM for zinc (Zn) within soils with agricultural

use, and 1000 lg g-1 DM of Pb and 1500 lg g-1 DM of

Zn within industrial soils have been proposed in Argentina.

Within this framework, it could be observed that the

values of Pb (212.4 ± 4.95 lg Pb g-1 DM) and Zn

(268.77 ± 13.59 lg Zn g-1 DM) as recorded in soils

nearby to industries within the study area did not exceed

the admitted values of Argentina’s legislation. Neverthe-

less, the obtained results within present study have showed

to be higher than acceptable values from other countries;

i.e., the Netherlands legislation establishes maximum val-

ues up to 85 lg Pb g-1 DM and 140 lg Zn g-1 DM

(NMHPPE 1991), while Chile’s one does at 75 lg Pb g-1

DM and 175 lg Zn g-1 DM (INN 2004).

It had been accepted that plants can be effectively used

as biomonitors of heavy metal environmental pollution

(Rossini and Mingorance 2006). The content of lead and

zinc in the root of Cynodon dactylon growing in soils

nearby to industries was superior to the values determined

in roots of specimens growing in control soil (Fig. 3).

These results are indicative of the ability of the plant C.

dactylon to take up metal ions from soils contaminated

with heavy metals. Similar results have been reported by

Kim et al. (2003) and Halasz et al. (2012) who have studied

Pb and Zn contents in Polygonum thunbergii. In addition,

Pederson et al. (2002) have presented the levels of these

metals in numerous adventive plants (Urtica spp., Arte-

misia spp., Stenactis annua (L), Nul polygonum sachali-

nense Fr. Scidt, etc.) as well as in samples of sixteen

different forages, which have showed similar levels than

those here reported.

Concentrations of Pb and Zn in samples of soils and in

roots and leaves of Cynodon dactylon obtained from urban

areas are shown in Figs. 5 y 6. The bioaccumulation of Pb

and Zn has decreased according to the following order:

soil[ roots[ leaves. Positive linear correlations were

found when Pb concentrations obtained from samples of

different soil sites and roots of C. Dactylon (r = 0.99) or

leaves (r = 0.98) were plotted. Similar positive correla-

tions were also reported by Madejon et al. (2002).

The bioaccumulation factor demonstrated that Zn has

greater power of translocation from the roots to the leaves in

comparison with Pb. There was also a significant positive

correlation between Zn levels in soil and roots or leaves of

C. dactylon (r = 0.94 and r = 0.91, respectively). Madejón

et al. (2002) have demonstrated that there was a significant

positive correlation between Pb and Zn levels in samples of

soil (EDTA values) and C. dactylon (r = 0.63 and

r = 0.845). C. dactylon had higher tolerance to Pb, Zn and

Cu accumulation when the metal concentrations in soils

were increased (Shu et al. 2002; Leung 2013).

Furthermore, it has been demonstrated that Pb is bioac-

cumulated by F. arundinacea within the study conditions

(Fig. 7). During the 10-day period, the plant absorbed Pb

from the soil. Thus, Pb concentration in the soil was

decreased during the same time. Two indicators were cal-

culated to evaluate the efficiency of phytoremediation of

F. arundinacea: the bioaccumulation factor (BCF) and

translocation factor (TF). BCF was 0.25 to five and 0.72 to

ten days. This showed that the value of BCF varied according

to the exposure time, aswell as thatF. arundinacea is species

which tolerates high Pb concentration. Liu et al. (2008) in a

comparable study have demonstrated that in all samples they

have reviewed, the BCF has varied between 0.002 and 0.9,

but always showed to be\1. On the other hand, the Pb BCF

as obtained in the study of Yoon et al. (2006) was lower than

that found by Kim et al. (2003), which varied between 5 and

58, and simultaneously was higher than those reported by

Stoltz and Greger (2002) (BCF = 0.004–0.45). BCF is a
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Fig. 7 Concentrations of Pb (lg g-1 D.M.) in control soil (Sc),

contaminated soil (611.23 lg Pb g-1 D.M.) and in roots and leaves of

Festuca arundinacea exposed during distinct time intervals to

experimental soils. Pb concentrations in soil showed a negative

tendency (r = 0.90) while in the roots and leaves were positive

(r = 0.99 and r = 0.87, respectively)
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significant factor to be taking into account when considering

the phytoremediation potential of plant species (Zhao et al.

2003).

TF values were low (T1: 0.18 and T2:0.09) because the

higher accumulation occurred in roots. Liu et al. (2008)

have reported Pb translocation factors ranging from 0.02 to

0.93. The international literature largely reported that

translocation of Pb from roots to leaves tends to be gen-

erally very low, due to its strong binding at root surfaces

and cell walls (Jarvis and Leung 2002; Pourrut et al. 2013).

Both bioconcentration factors (BCF) and translocation

factors (TF) can be used to estimate a plant’s potential for

phytoremediation purpose.

Conclusions

Based on current studies carried out in Tandil city, in

nearer areas to the industries, it was shown that potentially

toxic trace metal (Pb, Zn) values as recorded in soils and

plants from the area intensified the need to propose short-

term remediation tools, which could allow the improve-

ment of the environmental condition, avoiding effects

which nowadays could impact on local society.

Obtained results within this study have allowed the

proposal of phytoremediation as a possible tool to amend

trace metals soil contents, considering those previously

described within in situ and ex situ experiments, as well as

field observations on metals of concern.

This study pointed out that C. dactylon presented a

linear behavior between concentrations of Pb and Zn and

soil ones at urban areas. Although both metals were

absorbed by the plants, the assimilation of Zn was greater

in their tissues. In relation to the species F. arundinacea, it

can be concluded that they have a great potential for Pb

accumulation, even considering that the study was carried

out during 10 days of exposure. The main reservoirs were

the roots. Accordingly, a significant decrease in the Pb

concentration in soil was observed.

This study pointed out that F. arundinacea and

C. dactylon can be used as indicators of metal contami-

nation within soil, and the roots have demonstrated to be

the largest reservoirs of metals.
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