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Highlights 1 

• We propose a new, additional community level property of pollination effectiveness 2 

• This will facilitate connections among pollinators, plants and the environment 3 

• This will require multiple methods and greater integration among research fields 4 
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ABSTRACT 15 

Effective pollination is a complex phenomenon determined by both species-level and 16 

community-level factors. While pollinator communities are constituted by interacting 17 

organisms in a shared environment, these factors are often simplified or overlooked when 18 

quantifying species-level pollinator effectiveness alone.  Here, we review the recent literature 19 

on pollinator effectiveness to identify the pros and cons of existing methods and outline three 20 

important areas for future research: plant-pollinator interactions, heterospecific pollen 21 

transfer and the variation in pollination outcomes.  We conclude that there is a need to 22 
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acknowledge a new, additional community level property of pollination effectiveness (i.e. 1 

pollinator community effectiveness) in order to account for the suite of plant, pollinator and 2 

environmental factors known to influence different stages of successful pollination. 3 

Introduction 4 

Pollinator communities include native and introduced bees, flies, beetles, moths, butterflies, 5 

and birds among other taxa. These taxa provide pollination services for between 78 and 94% 6 

of all wild flowering plants and about 75% of the leading global food crops [1-3]. While 7 

pollinator communities are constituted by interacting organisms in a shared environment, 8 

these factors are often simplified or overlooked when quantifying species-level pollinator 9 

effectiveness alone.   10 

Effective pollination is a complex phenomenon determined by both species-level and 11 

community-level factors. The effectiveness of a given pollinator species is influenced by 12 

species-level (e.g. pollinator density, morphology and behaviour; flower morphology and 13 

display size) as well as community-level factors (e.g. pollinator species diversity and species 14 

interactions; plant competition for pollinators; Fig. 1). Pollination failure can result from 15 

problems at any or all of these stages of pollination [4].   16 

Here, we review the recent literature on plant and pollinator factors that impact pollinator 17 

effectiveness at species and community levels. Given the breadth of pollination studies across 18 

a range of natural and modified ecosystems, we attempt to derive general patterns and 19 

provide future research directions by focusing on well-studied crop systems. We identify the 20 

pros and cons of existing methods to determine pollinator species–level effectiveness, discuss 21 

the need to adapt existing methods and develop new methods, and outline three important 22 

research areas: plant and pollinator community interactions, the importance of heterospecific 23 

pollen transfer and the need to account for the variation in pollination outcomes. We 24 
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conclude that there is a need to acknowledge a new, additional community level property of 1 

pollination effectiveness (i.e. pollinator-level community effectiveness; Fig. 1) in order to 2 

account for the suite of plant, pollinator and environmental factors known to influence 3 

different stages of successful pollination.  4 

Factors known to influence successful pollination 5 

It is well established that pollinators play a significant role in the provision of crop 6 

pollination ecosystem services worldwide [5]. However, there is less widespread appreciation 7 

that pollinator communities are not all equally effective at pollinating all plant species. 8 

Effective pollination results from a complex assortment of factors that influence different 9 

stages of the pollination process, operate at different spatial scales and stem from life history 10 

features of pollinators, plants and the complex interplay of these mutualisms.   11 

Plants and pollinators directly affect the timing, amount and quality of pollen deposited and 12 

ultimately, plant population dynamics over time [6-11]. While pollinator constancy to one 13 

plant species is thought to be common among bees and some non-bee taxa [12-13], different 14 

taxa, and even individuals within a given species, may switch from visiting one (specialists) 15 

to many plant species (become generalists) in response to flower availability, floral 16 

preferences, flower characteristics and reward quantity and quality [7, 14-16]. At broader 17 

landscape and regional scales, pollinators respond to their surrounding environment and the 18 

availability of floral and nesting resources, especially the presence (or lack) of specific 19 

landscapes elements and nesting and foraging habitat [17-19].   20 

After pollen deposition has occurred, pollen-pistil and pollen-pollen interactions on the 21 

stigma and in the style can have major impacts on final reproductive outputs [20-22]. Pollen 22 

grains deposited on stigmas represent populations of male gametophytes subjected to 23 

different density-independent and -dependent mortality processes that will determine ovule 24 
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fertilization success and seed output [23]. Critical factors affecting these postzygotic 1 

processes are the amount and timing of pollen deposition as well as the genetic composition 2 

of the stigmatic pollen load. 3 

 4 

Pros and cons of the visitation-based pollinator performance method 5 

Despite the complex set of factors known to impact pollinator performance, pollination 6 

efficiency and effectiveness, it is rare for studies to incorporate even a small number of these 7 

factors. The most common approach currently employed to study pollination effectiveness is 8 

the visitation-based pollinator performance method [24]. This method focuses on pollinator 9 

performance and relies on documenting relative differences in pollinator foraging behaviour, 10 

visit frequency and per-visit pollen deposition. Visit frequency is often reported as one of the 11 

most important variables for determining plant reproductive success on a per-interaction 12 

basis. Per-visit pollen deposition is a commonly used method to assess relative differences in 13 

the performance of individual pollinator taxa [24-27]. This involves allowing an animal 14 

pollinator to visit a flower once and counting the number of conspecific pollen grains 15 

deposited on the visited flower’s stigma(s) (i.e. per-visit pollen deposition). 16 

There are, however, several shortcomings with these approaches. First, per-visit methods are 17 

laborious and time-consuming to carry out. It can be challenging to coax pollinators to visit 18 

test flowers, and there is potential for pollinators to behave differently (timid and cryptic) in 19 

the presence of researchers. Second, increasing visitor frequency or the amount of pollen 20 

transferred does not always improve pollination. High visitation frequencies can fail to 21 

benefit plant reproduction when, for example, a single pollinator visit is sufficient for a given 22 

plant to set fruit [28], when the transfer of large amounts of pollen results in high rates of 23 

pollen tube abortion due to scramble competition (e.g. competition between pollen tubes 24 
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growing toward an ovary) [23], and/or when the transfer of low quality pollen results in 1 

reduced seed set [e.g. 6]. Finally, the benefits of increased visitation are dependent on the 2 

identities of the taxa involved [29] and can also be detrimental if visits increase the risk of 3 

pollen theft [6], nectar robbery [30], and flower damage [31-32]. 4 

While per-visit pollen deposition and visit frequency are valuable to compare the relative 5 

contributions of different pollinator taxa visiting common plant species [reviewed in 26], 6 

these approaches are not well suited to broader questions about pollinator performance and 7 

pollination success. First, visit frequency and per-visit pollen deposition alone are insufficient 8 

to ascertain whether the pollen transferred is of sufficient quality or quantity to result in plant 9 

reproduction. At the scale of individual plants, developing fruits may be aborted for reasons 10 

unrelated to pollen limitation [e.g. 22, 33-34]. In these cases, plants may re-allocate limiting 11 

resources and selectively mature fruits from flowers in which there has been greater pollen 12 

deposition and hence more pollen competition for access to ovules [35-36]. At broader scales, 13 

surrounding environmental and landscape conditions (e.g. drought, limiting nutrients) can 14 

also drive variation in fruit quality or quantity [22, 37-38; Fig 1].  15 

Comparing per-visit fruit set among taxa is effective only for those plants and pollinator taxa 16 

for which a single visit is sufficient to result in fruit set. Some plant taxa need a minimum 17 

number of pollen grains (and hence multiple visits by some pollinators or many grains 18 

deposited in a single visit) in order to set fully formed fruits. In such cases, multiple visit 19 

comparisons (whereby fruit set is measured per number of visits for each taxon) are required 20 

if the aim is to determine the most efficient taxa at a given time and place as measured by 21 

fruit/seed production.   22 

Important research directions  23 
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The standard approach to assessing pollinator effectiveness has many advantages and will 1 

undoubtedly remain a key component of pollination efficiency studies in the future. That 2 

said, the shortcomings with this method, detailed above, show that we lack knowledge about 3 

when and under what circumstances this method provides reasonable estimates of pollination 4 

efficiency and when alternative or modified approaches are needed. To improve upon the 5 

standard approach of assessing pollinator effectiveness we suggest three important research 6 

directions to fill gaps in our understanding of the factors affecting effective pollen transfer 7 

and to build a broader foundation of protocols for assessing pollination effectiveness across 8 

systems and taxa. 9 

1. Incorporating pollinator and plant community int eractions into assessments of 10 

pollinator effectiveness 11 

Across whole communities, competitive or facilitative interactions among pollinators can 12 

increase or decrease fruit set in plants [39-40]. This is because pollinators interact in a variety 13 

of ways while pollinating. Simple encounters between pollinators before visiting a specific 14 

flower can alter visitation sequence, or prevent a pollinator from visiting at all [39-41]. For 15 

example, other bees can cause honey bees to move more often between rows of sunflower 16 

(Helianthus annuus L.), increasing the number of seeds produced per visit [41]. Furthermore, 17 

several correlative studies at the community level suggest that the diversity of pollinator 18 

functional groups accounts for more of the variance in seed set than species richness or 19 

abundance [42-44].   20 

The acknowledged importance of pollinator interactions has resulted in an increasing number 21 

of studies on pollination interaction networks [e.g. 17, 45-46]. Most plant-pollinator network 22 

studies however, focus on visitation rates or pollen transfer alone in the absence of how these 23 

factors relate to plant reproduction per plant, or unit area [but see 17]. Incorporating 24 
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functionality measures into networks, such as average pollen deposition on stigmas [47], is a 1 

promising step forward. However, given the current limitations of pollen deposition studies, 2 

an additional approach may be to focus on per-visit or multiple visit fruit or seed set measures 3 

in plant-pollinator network studies and relate plant pollinator interactions directly to 4 

pollination success.   5 

2. Heterospecific pollen transfer  6 

In many cases, individual flowers are visited by more than a single pollinator during their 7 

receptive period. When this occurs, the identity of pollinators, their foraging behaviour and 8 

the sequence of different pollinators determines the quantity and composition of stigmatic 9 

pollen loads [7, 16, 48-50]. Pollinator sharing, which is the primary way that heterospecific 10 

pollen is transferred, can be beneficial to plant reproduction when the presence of other 11 

flowering plants attracts more pollinators to a plant community [51-55]. Pollinator sharing 12 

can also be detrimental when, for instance, heterospecific pollen transfer is extensive [20-21]. 13 

As the number of visited plant species increases [e.g. >8 species; 56] so does the probability 14 

that heterospecific pollen will negatively impact plant reproduction [57].  15 

Owing to the challenges of studying plant-pollinator interactions, pollination research has 16 

traditionally focused on specific stages of the pollination process or plant reproduction as a 17 

whole. For example, crop pollination studies have largely focused on the link between 18 

pollinator visitation rates and per-visit deposition on fruit set and quality [29, 58] and have 19 

overlooked the role of post-pollination processes, such as heterospecific pollen transfer on 20 

fruit quantity and quality [20-21]. Plant evolutionary ecology studies of pollination, on the 21 

other hand, tend to focus on post-pollination processes, such as selective seed abortion, but 22 

pay less attention to pre-pollination processes of visitation and per visit pollen transfer rates 23 

[e.g. 20-21]. Several studies have investigated the effects of heterospecific pollen transfer on 24 
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plant reproduction, but these have relied on hand pollination, an approach that fails to 1 

advance knowledge on impacts of pollinator behaviour [57]. Finally, many studies have 2 

looked at foraging behaviour but few of these have also examined resulting pollen deposition 3 

on stigmas [9]. In order to advance our understanding of the mechanisms governing 4 

pollination-mediated variation in fruit quantity and quality, studies are needed that combine 5 

studies of pre- and post-pollination processes along with pollinator foraging behaviour. 6 

Meta-barcoding pollen is one emerging technology that may provide a pathway for studying 7 

pre- and post-pollination within the same study system. Unlike traditional manual pollen 8 

identification methods [24], meta-barcoding can facilitate the faster identification of 9 

heterospecific pollen by allowing numerous samples to be run simultaneously. This method 10 

has recently been successfully used to quantify pollen loads on honey bees and wild bees [59-11 

60], but is yet to be used to identify heterospecific pollen on stigmas [61]. Meta-barcoding is 12 

still hampered by a number of limitations in that it cannot yet be used to identify or quantify 13 

amounts of conspecific pollen on floral stigmas of the same plant species, quantify 14 

abundances of heterospecific species and large reference collections are required. Thus, a 15 

combination of traditional light microscopy methods and meta-barcoding technology may be 16 

the best approach for detailed studies of pollen deposition in natural systems. 17 

3. Accounting for variation in pollination outcomes 18 

The importance of pollinators in shaping patterns of plant reproduction could diminish when 19 

fruit and seed production is strongly limited by plant resources. However, understanding the 20 

interaction between plant reproduction and resource limitation is challenging due to the 21 

diversity of reproductive strategies represented across plant species as well as the variability 22 

in the reproductive responses of plants to environmental stress [22, 62-64]. Depending on the 23 
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life history strategies of a species, plants can alter resource allocations to fruits and seeds 1 

[e.g., 65], depending on environmental conditions and regardless of pollination.  2 

Nutrient deficiencies [38] and pest damage [22, 66] are broadly recognised to result in fruit 3 

abortion in some species.  In some horticultural crops, notably kiwi, blueberry and oilseed 4 

rape, these factors have been successfully countered with fruit thinning, increased pest and 5 

disease management and the application of Nitrogen fertilizers [63, 67-68]. These solutions 6 

are largely crop species dependent, however, with the same approaches failing to reduce fruit 7 

loss in other crop species [64, 69].   8 

One way forward could include conducting a greater number of experimental studies that 9 

investigate the relative contribution of pollination-related factors versus environmental 10 

factors (soil nutrients and water availability; see Fig 1). In combination with experimental 11 

work, the use of more sophisticated statistical tools such as structural equation modelling 12 

could facilitate identification of the major factors impacting variation in fruit production [70-13 

71]. 14 

Conclusions 15 

In conclusion, a more holistic understanding of community ecology is required to understand 16 

the connections among pollinators, plants and the surrounding environment. This will require 17 

the use of multiple methods simultaneously and greater integration among research fields. 18 

Future studies are required to quantify the variability in the study system to better understand 19 

the underlying mechanisms by which environmental conditions, and plant/pollinator species 20 

and community factors impact pollen transfer and ultimately, plant reproductive success. 21 
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 1 

 2 

Box 1: Glossary of terms 3 

Pollination: Pollination in angiosperms involves the release of pollen from the male parts of 4 

a flower, transport from the pollen source to the pollen recipient and deposition of the pollen 5 

on a floral stigma 6 

Pollination success:  Pollination is successful when pollen deposition on the stigma is 7 

followed by germination of the pollen grain and then by fertilization of the ovule/s.  8 

Pollination success is often measured as pollen germination, seed set or fruit set  9 

Pollinator species-level effectiveness:  This is a pollinator species-level trait used to 10 

compare the relative performance of individual pollinators to a given plant species.  It 11 

describes the amount of pollen transferred to a floral stigma in a single visit and is usually 12 

measured either as the amount of pollen transferred or the fruit /seed set resulting after a 13 

single visit to a virgin floral stigma. This term is sometimes synonymous with pollinator 14 

efficiency, although pollinator efficiency considers the total contribution of a given pollinator 15 

species to pollination by multiplying pollinator effectiveness times visitation frequency.  16 

Pollinator community-level effectiveness: This term defines a pollinator community level 17 

trait that describes the effectiveness of an entire pollinator community at a given space and 18 

time for one plant species. A given pollinator community may be effective for some plants 19 

and not for others in the same area given not only to the matching of the average pollinator 20 

traits and the plant trait, but also to all the indirect interspecific effects that can modify 21 

pollinator behaviour and plant attraction.  This definition could be extended to the overall 22 

effectiveness of a given pollinator community to the whole plant community in the context of 23 

a plant-pollinator network and be taken as an overall measure of pollination efficiency. 24 

 25 
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