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Highlights

We propose a new, additional community level property of pollination effectiveness
This will facilitate connections among pollinators, plants and the environment

This will require multiple methods and greater integration among research fields
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ABSTRACT

Effective pollination is a complex phenomenon deieed by both species-level and
community-level factors. While pollinator commuegi are constituted by interacting
organisms in a shared environment, these fact@stien simplified or overlooked when
guantifying species-level pollinator effectivenedsne. Here, we review the recent literature
on pollinator effectiveness to identify the proslaons of existing methods and outline three
important areas for future research: plant-polbnainteractions, heterospecific pollen

transfer and the variation in pollination outcoméa/e conclude that there is a need to
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acknowledge a new, additional community level prgpef pollination effectiveness (i.e.
pollinator community effectiveness) in order to @act for the suite of plant, pollinator and

environmental factors known to influence differetdges of successful pollination.

Introduction

Pollinator communities include native and introdilidees, flies, beetles, moths, butterflies,
and birds among other taxa. These taxa providénptithn services for between 78 and 94%
of all wild flowering plants and about 75% of theadtling global food crops [1-3]. While
pollinator communities are constituted by intemnagtiorganisms in a shared environment,
these factors are often simplified or overlookedewlguantifying species-level pollinator

effectiveness alone.

Effective pollination is a complex phenomenon deieed by both species-level and
community-level factors. The effectiveness of aegiwollinator species is influenced by
species-level (e.g. pollinator density, morpholayd behaviour; flower morphology and
display size) as well as community-level factorg.(@ollinator species diversity and species
interactions; plant competition for pollinators;gFil). Pollination failure can result from

problems at any or all of these stages of polloraf4].

Here, we review the recent literature on plant potinator factors that impact pollinator

effectiveness at species and community levels. iGilre breadth of pollination studies across
a range of natural and modified ecosystems, wematte¢o derive general patterns and
provide future research directions by focusing al\studied crop systems. We identify the

pros and cons of existing methods to determinanadtir species—level effectiveness, discuss
the need to adapt existing methods and developmethods, and outline three important
research areas: plant and pollinator communityacteons, the importance of heterospecific

pollen transfer and the need to account for theatran in pollination outcomes. We
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conclude that there is a need to acknowledge a additional community level property of
pollination effectiveness (i.e. pollinator-levelmsmunity effectiveness; Fig. 1) in order to
account for the suite of plant, pollinator and eommental factors known to influence

different stages of successful pollination.
Factors known to influence successful pollination

It is well established that pollinators play a sigant role in the provision of crop
pollination ecosystem services worldwide [5]. Hoeeuthere is less widespread appreciation
that pollinator communities are not all equallyeetive at pollinating all plant species.
Effective pollination results from a complex asswht of factors that influence different
stages of the pollination process, operate atréffitespatial scales and stem from life history

features of pollinators, plants and the complearipitly of these mutualisms.

Plants and pollinators directly affect the timimgnount and quality of pollen deposited and
ultimately, plant population dynamics over time16f. While pollinator constancy to one
plant species is thought to be common among betts@ne non-bee taxa [12-13], different
taxa, and even individuals within a given specameay switch from visiting one (specialists)
to many plant species (become generalists) in respdo flower availability, floral

preferences, flower characteristics and reward tiyaand quality [7, 14-16]. At broader

landscape and regional scales, pollinators respmrleir surrounding environment and the
availability of floral and nesting resources, espic the presence (or lack) of specific

landscapes elements and nesting and foraging hfbitd 9].

After pollen deposition has occurred, pollen-pisiid pollen-pollen interactions on the
stigma and in the style can have major impactsiread feproductive outputs [20-22]. Pollen
grains deposited on stigmas represent populatidnsnale gametophytes subjected to

different density-independent and -dependent mtytptocesses that will determine ovule
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fertilization success and seed output [23]. Citi€actors affecting these postzygotic
processes are the amount and timing of pollen deémposs well as the genetic composition

of the stigmatic pollen load.

Pros and cons of the visitation-based pollinator péormance method

Despite the complex set of factors known to impaaliinator performance, pollination
efficiency and effectiveness, it is rare for stisdie incorporate even a small number of these
factors. The most common approach currently emplagestudy pollination effectiveness is
the visitation-based pollinator performance metfa4]. This method focuses on pollinator
performance and relies on documenting relativeetgfices in pollinator foraging behaviour,
visit frequency and per-visit pollen depositionsWifrequency is often reported as one of the
most important variables for determining plant osjuctive success on a per-interaction
basis. Per-visit pollen deposition is a commonlkydumethod to assess relative differences in
the performance of individual pollinator taxa [24}2This involves allowing an animal
pollinator to visit a flower once and counting thember of conspecific pollen grains

deposited on the visited flower’s stigma(s) (i.et-pisit pollen deposition).

There are, however, several shortcomings with tapgeoaches. First, per-visit methods are
laborious and time-consuming to carry out. It canchallenging to coax pollinators to visit
test flowers, and there is potential for pollinatobo behave differently (timid and cryptic) in
the presence of researchers. Second, increasiigrviequency or the amount of pollen
transferred does not always improve pollinationgHwisitation frequencies can fail to
benefit plant reproduction when, for example, a@l&mpollinator visit is sufficient for a given
plant to set fruit [28], when the transfer of lar@®ounts of pollen results in high rates of

pollen tube abortion due to scramble competitiony.(eompetition between pollen tubes
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growing toward an ovary) [23], and/or when the $fen of low quality pollen results in
reduced seed set [e.g. 6]. Finally, the benefitthofeased visitation are dependent on the
identities of the taxa involved [29] and can alsodetrimental if visits increase the risk of

pollen theft [6], nectar robbery [30], and floweardage [31-32].

While per-visit pollen deposition and visit frequgnare valuable to compare the relative
contributions of different pollinator taxa visitingpmmon plant species [reviewed in 26],
these approaches are not well suited to broadestigne about pollinator performance and
pollination success. First, visit frequency andyisit pollen deposition alone are insufficient

to ascertain whether the pollen transferred isufficsent quality or quantity to result in plant

reproduction. At the scale of individual plantsyeleping fruits may be aborted for reasons
unrelated to pollen limitation [e.g. 22, 33-34].tlhrese cases, plants may re-allocate limiting
resources and selectively mature fruits from flasvier which there has been greater pollen
deposition and hence more pollen competition foeas to ovules [35-36]. At broader scales,
surrounding environmental and landscape conditi@ag. drought, limiting nutrients) can

also drive variation in fruit quality or quantit2%, 37-38; Fig 1].

Comparing per-visit fruit set among taxa is effeetonly for those plants and pollinator taxa
for which a single visit is sufficient to result fruit set. Some plant taxa need a minimum
number of pollen grains (and hence multiple vidits some pollinators or many grains
deposited in a single visit) in order to set fuilymed fruits. In such cases, multiple visit
comparisons (whereby fruit set is measured per urobvisits for each taxon) are required
if the aim is to determine the most efficient tataa given time and place as measured by

fruit/seed production.

Important research directions
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The standard approach to assessing pollinatortefé@ess has many advantages and will
undoubtedly remain a key component of pollinatidicciency studies in the future. That
said, the shortcomings with this method, detaileova, show that we lack knowledge about
when and under what circumstances this method geesvieasonable estimates of pollination
efficiency and when alternative or modified apptues are needed. To improve upon the
standard approach of assessing pollinator effentis® we suggest three important research
directions to fill gaps in our understanding of flaetors affecting effective pollen transfer
and to build a broader foundation of protocolsdesessing pollination effectiveness across

systems and taxa.

1. Incorporating pollinator and plant community interactions into assessments of

pollinator effectiveness

Across whole communities, competitive or faciliwatiinteractions among pollinators can
increase or decrease fruit set in plants [39-4Bjs Ts because pollinators interact in a variety
of ways while pollinating. Simple encounters betwemllinators before visiting a specific
flower can alter visitation sequence, or prevepbbinator from visiting at all [39-41]. For
example, other bees can cause honey bees to maeeaften between rows of sunflower
(Helianthus annuus L.), increasing the number of seeds produced pér#i1y. Furthermore,
several correlative studies at the community lestgigest that the diversity of pollinator
functional groups accounts for more of the varianteseed set than species richness or

abundance [42-44].

The acknowledged importance of pollinator intex@tsi has resulted in an increasing number
of studies on pollination interaction networks [€l@, 45-46]. Most plant-pollinator network
studies however, focus on visitation rates or poliansfer alone in the absence of how these

factors relate to plant reproduction per plant, umit area [but see 17]. Incorporating
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functionality measures into networks, such as @eemollen deposition on stigmas [47], is a
promising step forward. However, given the curid@nttations of pollen deposition studies,
an additional approach may be to focus on per-wisimultiple visit fruit or seed set measures
in plant-pollinator network studies and relate plgollinator interactions directly to

pollination success.

2. Heterospecific pollen transfer

In many cases, individual flowers are visited byrenthan a single pollinator during their
receptive period. When this occurs, the identitypollinators, their foraging behaviour and
the sequence of different pollinators determines ghantity and composition of stigmatic
pollen loads [7, 16, 48-50]. Pollinator sharing,iethis the primary way that heterospecific
pollen is transferred, can be beneficial to plagroduction when the presence of other
flowering plants attracts more pollinators to anplaommunity [51-55]. Pollinator sharing
can also be detrimental when, for instance, hgbextc pollen transfer is extensive [20-21].
As the number of visited plant species increasgs 8 species; 56] so does the probability

that heterospecific pollen will negatively impatamt reproduction [57].

Owing to the challenges of studying plant-pollimatateractions, pollination research has
traditionally focused on specific stages of thelipation process or plant reproduction as a
whole. For example, crop pollination studies haaggély focused on the link between
pollinator visitation rates and per-visit deposition fruit set and quality [29, 58] and have
overlooked the role of post-pollination processes;h as heterospecific pollen transfer on
fruit quantity and quality [20-21]. Plant evolutimy ecology studies of pollination, on the
other hand, tend to focus on post-pollination psses, such as selective seed abortion, but
pay less attention to pre-pollination processesgigitation and per visit pollen transfer rates

[e.g. 20-21]. Several studies have investigatecetfexts of heterospecific pollen transfer on
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plant reproduction, but these have relied on haallingtion, an approach that fails to
advance knowledge on impacts of pollinator behavi@r]. Finally, many studies have
looked at foraging behaviour but few of these halge examined resulting pollen deposition
on stigmas [9]. In order to advance our understapddf the mechanisms governing
pollination-mediated variation in fruit quantity duguality, studies are needed that combine

studies of pre- and post-pollination processesgataith pollinator foraging behaviour.

Meta-barcoding pollen is one emerging technology thay provide a pathway for studying
pre- and post-pollination within the same studyteys Unlike traditional manual pollen
identification methods [24], meta-barcoding canilii@ate the faster identification of
heterospecific pollen by allowing numerous sampéebe run simultaneously. This method
has recently been successfully used to quantifepdbads on honey bees and wild bees [59-
60], but is yet to be used to identify heterospe@bllen on stigmas [61]. Meta-barcoding is
still hampered by a number of limitations in thatannot yet be used to identify or quantify
amounts of conspecific pollen on floral stigmas tbe same plant species, quantify
abundances of heterospecific species and largeeneie collections are required. Thus, a
combination of traditional light microscopy methaalsd meta-barcoding technology may be

the best approach for detailed studies of pollgrodigion in natural systems.

3. Accounting for variation in pollination outcomes

The importance of pollinators in shaping patterhplant reproduction could diminish when
fruit and seed production is strongly limited bymi resources. However, understanding the
interaction between plant reproduction and resolirogation is challenging due to the
diversity of reproductive strategies representedsacplant species as well as the variability

in the reproductive responses of plants to envimmal stress [22, 62-64]. Depending on the
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life history strategies of a species, plants cderaksource allocations to fruits and seeds

[e.g., 65], depending on environmental conditiomd segardless of pollination.

Nutrient deficiencies [38] and pest damage [22, &&] broadly recognised to result in fruit
abortion in some species. In some horticulturapsy notably kiwi, blueberry and oilseed
rape, these factors have been successfully codnteth fruit thinning, increased pest and
disease management and the application of Nitrdeeitizers [63, 67-68]. These solutions
are largely crop species dependent, however, Wweatsame approaches failing to reduce fruit

loss in other crop species [64, 69].

One way forward could include conducting a great@mber of experimental studies that
investigate the relative contribution of pollinaticelated factors versus environmental
factors (soil nutrients and water availability; d&ig 1). In combination with experimental
work, the use of more sophisticated statisticalstauch as structural equation modelling
could facilitate identification of the major facsoimpacting variation in fruit production [70-

71].

Conclusions

In conclusion, a more holistic understanding of noamity ecology is required to understand
the connections among pollinators, plants and tinesnding environment. This will require

the use of multiple methods simultaneously and tgreiategration among research fields.
Future studies are required to quantify the valitgtn the study system to better understand
the underlying mechanisms by which environmentalddmns, and plant/pollinator species

and community factors impact pollen transfer arisnately, plant reproductive success.
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Box 1: Glossary of terms

Pollination: Pollination in angiosperms involves the releasgatlen from the male parts of
a flower, transport from the pollen source to tbgm recipient and deposition of the pollen
on a floral stigma

Pollination success Pollination is successful when pollen depositorthe stigma is
followed by germination of the pollen grain andrthmy fertilization of the ovule/s.
Pollination success is often measured as pollemigation, seed set or fruit set

Pollinator species-level effectivenessThisis a pollinator species-level trait used to
compare the relative performance of individual ipaliors to a given plant species. It
describes the amount of pollen transferred toralflstigma in a single visit and is usually
measured either as the amount of pollen transfeméue fruit /seed set resulting after a
single visit to a virgin floral stigma. This ters sometimes synonymous with pollinator
efficiency, although pollinator efficiency considdhe total contribution of a given pollinator
species to pollination by multiplying pollinatorfettiveness times visitation frequency.

Pollinator community-level effectivenessThis term defines a pollinator community level
trait that describes the effectiveness of an eptiténator community at a given space and
time for one plant species. A given pollinator coomity may be effective for some plants
and not for others in the same area given nottnllge matching of the average pollinator
traits and the plant trait, but also to all theiiadt interspecific effects that can modify
pollinator behaviour and plant attraction. Thigimigon could be extended to the overall
effectiveness of a given pollinator community te thhole plant community in the context of
a plant-pollinator network and be taken as an diver@asure of pollination efficiency.
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Environmental and Plant Factors

Stress, water availability, nutrient limitation, plant/plant competition or facilitation, plant life stage, plant health, disease

Ny N
‘-‘\

[

’,

W

Y‘ Pre-pollination factors /ﬁ

Post-pollination factors

Pollinator No. of viabl
Richness & no. of species o. of viable
heterospecific _peet Order of plant conspecific pollen
interactions visits b > ) v
plants 1L Yy grains per stigma
. poTfinators Genetic diversity
Pollinator ; and composition of
No. of compatible morphology No. Of non—Vlal?le pollen loads on
& self- Pollinator or self-incompatible ]
se - . > stigma
incompatible visit congpemﬁc ppllen
conspecifics Pollinator frequency grains per stigma A
abundance
Richness & no. of
Plant flowering - Pollinator heterospgciﬁc
phenology POH.I nator pollen load pollen grains per p tion of
behav1oqr e.g. composition stigma ropor 10r} ov
grooming damaged pistils
Pollination related outcome
I v v
Genetic diversity No. of fruits/seeds pqefﬁ01ept of Fruit/seed quality
variation fruits/seeds factors
A

Page 19 of 19



