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Abstract. In this paper we have addressed the question of whether a simple set of functions being the
solution of a model, namely the damped harmonic oscillator with a general driving force, can satisfactorily
describe data corresponding to ocular movements produced during a visual search task. Taking advantage of
its mathematical tractability, we first focused on the simplest driving force compatible to the experimental
data, a step-like activation. Under this hypothesis we were able to further simplify the system, once data
from several experiments were fitted, producing an essentially parameter-free model that we plan to use in
future applications. To increase the quality of the description of individual movements, we expanded the
complexity in the forcing term and solved the inverse problem by using a proper mathematical formalism.
Furthermore, additional terms, those arising from ocular drift and tremor, may be included within the
same mathematical approach.

1 Introduction

The human being’s eye is a highly refined bio-mechanical
device. From the physical point of view, it is basically an
almost spherical rigid body interacting with six very spe-
cialized dynamical belts. All possible ocular movements
are regulated by the activities of the muscles bound to
the sphere and by the damping produced by the septum
around the eye. For static head and body conditions, eye
movements associated to gaze shifting are classified into
different categories depending on different sensory charac-
teristics and possibly, differences in the subsystems sub-
serving motor commands [1]. Smooth pursuit is the gaze
allocation to moving objects, which requires an estimation
of the object motion and the computation of the future
projection of the gaze in order to keep the object on the
fovea, where the eye has maximum resolution. Vergence
is the coordinated movement of both eyes produced to
keep a target in depth on focus. Finally, saccades are fast
rotational movements used by the brain to bring to the
fovea a relevant part of a fixed visual scene. These move-
ments are considerably different from the smooth pursuit,
as saccades are essentially sudden jumps in the position
of the eye which moves the center of the fovea from one
place to another. Closely related to the saccades are the
microsaccadic movements, which are tiny rotations of the
eye around a given point in the visual space [2]. In some ex-
tent arbitrary, these movements are assumed to be smaller
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than one sexagesimal degree. Both saccades and microsac-
cades are conjugated, e.g. they occur at the same time and
same direction in both eyes.

According to recent studies, saccadic and microsac-
cadic movements share several characteristics and, in fact,
there has been a long debate in literature whether saccadic
and microsaccadic movements are different phenomena or
not [3]. Based on their physical behavior, there seems to
be no difference from one another and, furthermore, both
may have the same neural substrate [4,5]. Importantly,
the classification of different movements according to their
amplitude has an impact on their projection on the retina.
While microsaccadic movements are regularly associated
to displacements of the center of the pupil on the order
of dozens to hundreds of photo-receptors, larger saccadic
movements range from hundreds to thousands [3]. Given
that retinal ganglion cells, the only output from retina
to cortex, have small receptive fields on the fovea [6], the
same or different cells may be activated between events
according to one or another type of movement.

Functionally, saccadic movements are associated to the
exploration of large portions of the visual field, while mi-
crosaccades are linked to the exploratory behavior in a
much smaller region of interest [7]. In view of this func-
tional equivalence, it seems to be natural to consider
both movements as a single phenomenon with a variable
size [4,5]. Functionally, there is another reason why mi-
crosaccades are important. When fixating, visual adapta-
tion fade out those portions that do not change their lu-
minosity in time. Apparently, to avoid this, microsaccades
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Fig. 1. Simple model of the eye. Muscle dynamics, consisting
of an active force generator and a parallel passive damping, is
in series to a nonlinear tendon.

bring a new set of photo-receptors to the light projection
and thus, counteract visual fading [3,8–11]. In addition,
microsaccades may be influenced by neural fluctuations.
But, in this sense, two other types of tiny movements are
continuously active, with completely different sizes and
characteristics [12,13]. On the one hand, drift is a small-
sized displacement with a much smaller velocity than
saccadic-type movements. Drift can be originated from the
imbalance of the action of the complementary muscles of
the eye and it can be considered at some extent spurious,
but also effective to prevent fading. On the other hand,
the smallest of all the movements is the tremor, which is a
high-frequency oscillatory eye rotation and its size corre-
sponds to a displacement of the light projection in about
a single photo-receptor [12,13].

All the movements described above are produced by
the same set of muscles and commanded by the brain. A
series of models designed to describe them separately has
been proposed [14–18]. Modeling the eye movements im-
plies to quantitatively characterize muscles, tendons, the
ocular globe and all the constraints that they have. Also,
it requires to describe neural activation and how neural
innervation is connected to the muscle fibers. Perhaps the
simplest way of representing the system is by consider-
ing the muscle as a mass-spring-damper ensemble in par-
allel with an neural active force, which is schematically
depicted in Figure 1 (see Ref. [14]). In this simple model,
the tendon is represented by a nonlinear elastic element
in series to the muscle. A more elaborate model has been
proposed by Enderle et al. [19–21], in which the muscle is
considered to be arranged by summing up many units sim-
ilar to that in Figure 1. This type of models attempts to
physically describe the dynamics of the eye and the mus-
cles associated in great detail and, naturally, they depend
on a large set of parameters to be adjusted after solving a
large set of ordinary differential equations.

With a completely different approach, very recently,
Bettenbühl et al. [22] introduced a way to mathemati-
cally represent the structure of the eye displacements cor-
responding to saccades, including microsaccades, using the
method of principal components. This approach showed to
be very efficient because with two parameters the authors
were able to faithfully describe the shape and magnitude

of the saccades. One of the functions obtained was associ-
ated to the jump observed in the saccade and the second
component was related to what is known as overshoot.
Physically, these two characteristics of the eye movement
are not separated. In this sense, the functions obtained
with the principal components method are a very efficient
phenomenological description, but it can not be directly
associated with the physical processes supporting the real
eye system. Additionally, data fitting is required a pri-
ori to define each component and therefore, this approach
can not be considered as a predictive model. Besides, the
authors also introduce a novel methodology to identify
the occurrence of saccadic movements, including microsac-
cades, by the use of wavelet transform. They recognized
that due to the abrupt nature of saccadic movements, the
change in the position of the eye can be associated to a
step function whereas its derivative, the velocity, can be
related to a Dirac delta function. Wavelet transform is per-
formed on finite time windows, and the singularities cor-
responding to jumps in the ocular position are identified
as high frequency events. No discussion was presented in
relation to a model representation for the drift or tremor.

In this work we aim to combine both approaches to de-
scribe the variations in the eye positions observed in eye-
tracking data. On the one hand, following the mechanistic
approach of detailed models, but considering the simplest
minimal system preserving intrinsic processes, we present
a description based on a driven harmonic oscillator. In
this model, driving terms representing the neural activa-
tions essentially produce all possible movements. Tempo-
ral profiles of eye displacements are shaped by the oscil-
lator frequency, the magnitude of the damping, and the
time-course of neural activations. Data obtained from the
eye-tracker is processed by a custom-defined algorithm to
detect saccades, including microsaccades, and each jump
is decomposed in terms of functions representing specific
contributions in the forced mass-spring-damper system,
which act as a sort of universal basis for the eye dynam-
ics. In detail, the shape of the saccadic movements is pro-
jected on quasi-sturmian functions, which were introduced
by Del Punta and co-workers in the context of atomic
physics [23]. These functions, which are the solutions of a
specific non-homogeneous equation with different forcing
terms, form a complete basis set that incorporates the par-
ticular physics of the problem under consideration. This
method can be naturally extended to include tremor and
drift movements. On the other hand, even when this dy-
namical model remains tractable up to any order (which
is useful to deal with the inverse problem of estimating
neural activations from ocular movements), following the
phenomenological approach of [22], next we focus on ob-
taining a minimal effective description, here constrained
by considering a specific neural activation. Whereas in [22]
any saccadic movement is essentially projected on two
principal components, here the system dynamics produces
these components with a proper combination of system
parameters. Under this hypothesis of a simple step-like
driving term, the dynamical model exhibits a concise solu-
tion, amenable for a fast estimation of parameters. Taking
advantage of this fact, from the evaluation of thousands of
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Fig. 2. Example of the visual search task. One of the pairs of images used for the experiment, with 10 s of the eye tracking
recording data superimposed on the scene, as observed from the subject’s point of view. Micro-movements during a relatively
quiet fixation period is zoomed in at the top encircled panel.

saccadic movements we are able to infer specific relation-
ships that further simplifies the dynamical description.

The organization of the paper is as follows. In Sec-
tion 2 we describe the experiment performed to collect
data corresponding to eye movements. A general charac-
terization of the different types of movements is included.
A custom-made procedure to detect the occurrence of sac-
cadic movements of any magnitude from the data is also
discussed. In Section 3 we describe the model used to fit
the data. Saccades, drift and tremor will be discussed sep-
arately. In Section 4 we present a general discussion about
the results obtained with the proposed methodology, in-
cluding also a possible application of the model and the
results obtained here.

2 Experiment

All data for this work was gathered from recordings
of human eye movements using a SR-Research EyeLink
1000 eye-tracking device, with sample rate of 1000 Hz. To
deliver and control the experiment, a custom-made code
was developed in MATLAB 2007 with PsychToolBox in-
stalled. Subjects were 13 males and 7 females, matched in
age (range: 20–40 years old). They were students or re-
searchers with different academic backgrounds, randomly
selected from the Universidad Nacional del Sur, where the
authors of this contribution ran the experiments.

To produce a large dataset for modeling purposes, our
goal when designing the visual experiment was to gather
as many saccadic and microsaccadic movements as possi-
ble. For this reason, our setup resembles the one described
by Otero-Millan et al. [4], where a paradigm of searching
for differences produces a large number of saccades and
microsaccades. Displacements due to tremor are in the
order of magnitude of the eye-tracker’s error, so its charac-
terization results inaccurate. On the other hand, the long
records produced in our experiments enable us to properly
describe drift movements between jumps.

In detail, the experiment consisted of two almost iden-
tical images next to each other, where some differences
were included in one of the images in order to boost vi-
sual search. Eight sets of two natural images as described
were presented to each subject for a time period of one
minute each. The complete sequence was repeated several
times, totalizing an overall recording time between ∼8 min
and ∼160 min for individual participants. The task con-
sisted of exploring to find the differences and, due to the
arrangement on the screen of these two images, large hori-
zontal movements were induced. For the experiment, sub-
jects rested their heads on a head support, at a distance
of 78 cm from a monitor 44 cm wide and 25 cm high. The
angular displacement between the centers of each image
was ∼16 deg. In Figure 2 we show a sample of one of
the pairs of images used. Superimposed to the images is
the trace of the gaze during an interval of 10 s.

http://www.epj.org
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Fig. 3. A typical eye-tracking recording, decomposed in canonical directions, whose axis are arranged on left and right margins,
respectively. Detailed zooms on particular events are displayed by encircled traces. Saccadic movements detected with the
custom-made algorithm are indicated by arrows at the bottom.

2.1 Physical characteristics of saccadic, microsaccadic,
drift, and tremor movements

In this section we summarize some features exhibited by
different ocular movements during search and fixation. A
typical eye-tracking recording is shown in Figure 3, where
the horizontal and vertical angular displacements are dis-
played as a function of time.

Due to the particular design of the visual task, hori-
zontal displacements are much larger than vertical ones,
see respective scales in Figure 3. As identified by arrows on
the temporal axis, the first and most significative structure
in the data is the presence of large jumps in the horizontal
position. After the jumps and for a while, the eye position
remains more or less stable; those periods are the fixations.
During these fixations, see Figure 3, we can observe the
presence of small ascending or descending trends in the po-
sition; these ramp-like modulations are identified as drift
movements. Finally, continuous high-frequency small fluc-
tuations known as tremor, with amplitudes in the order of
6′′ to 30′′ of angular displacement and frequencies around
40 to 100 Hz, are superimposed to the previous move-
ments. In our case, the eye-tracker we utilized was unable
to resolve tremor accurately. The tiny oscillations observed
in Figure 3 correspond to the noise generated by the eye-
tracker itself.

Also in Figure 3 we show in more detail some of the
jumps appearing in the horizontal movements. Here, we
can notice the structure following an ascending or de-
scending jump (i.e. to the right or to the left). Remark-
ably, different behaviors in the overshoot can be observed.
All the structures appearing in the data provided by the
eye-tracker are related to the physical characteristics of
the eyes, i.e. the size, the mass and the inertia moment
of the eye ball, the elastic and damping properties of the
muscles attached to the ball, the damping properties of
the septum supporting the eye ball, and to the neural

Fig. 4. Implementation of sequential filtering for detection of
saccades and microsaccades.

activations that command the movements. Irrespectively
of all the constitutive details of the eye system and the
neural activations, our aim is to describe the system with
a mathematically tractable simplified model, appropriate
to describe data provided by the eye-tracker, i.e. a set of
equations that allow us to generate movements similar to
those performed by the eyes, with particular emphasis in
saccades and microsaccades. The first fundamental task
in order to accomplish this objective is to reliably identify
the time at which jumps occur.

2.2 Saccades and microsaccades detection

Saccadic and microsaccadic movements were detected ac-
cording to a custom-made algorithm, based on ideas intro-
duced by Engbert and Kliegl [24]. The code was written in
MATLAB language, as an open package for online shar-
ing and distribution1. In our algorithm, we use a set of
ordered filters that sequentially analyze and refine detec-
tion of saccades and microsaccades from data (see Fig. 4).

In detail, the algorithm processes raw position data
by first calculating the velocity of the eye movements.

1 http://www.neufisur.uns.edu.ar/
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Since all recordings are spuriously contaminated with high
frequency background noise, and this noise is greatly am-
plified with the simple two-points derivative, we computed
velocity within a Bartlett window of seven points, a pro-
cedure that minimizes noise contribution. In order to dis-
card small spurious movements that can still be driven by
noise, a minimum threshold value was used in the veloc-
ity data. Following, a filter on the temporal length of se-
lected events is applied. Since saccadic and microsaccadic
movements occur in a finite time interval, all movements
having smaller durations than a minimum threshold are
disregarded. Next, a condition on the inter-saccadic inter-
val is considered. When a saccade or a microsaccade is
produced, then there is a refractory period during which
the generation of another movement is strongly inhib-
ited. For the type of visual tasks considered here, the
inter-saccadic interval is ∼200 ms on average, no matter
whether the events are saccadic or microsaccadic move-
ments. To filter out spurious movements, selected events
were conditioned to fulfill a minimum inter-saccadic in-
terval of 150 ms. Otherwise, the posterior event defining
the interval is disregarded. Finally, selected events were
restricted to be conjugate in order to be labelled as sac-
cadic or microsaccadic movements. In detail, events pro-
duced from separate streams corresponding to movements
on both eyes are confronted to each other. When temporal
overlap between events in both streams is observed, then
a saccade or microsaccade is finally declared.

3 Theoretical description

3.1 Driven harmonic oscillator representation
for eye movements

As mentioned in the introduction, our main interest is to
show that all structures observed in eye movements can
be represented by a driven harmonic oscillator:

[
d2

dt2
+ 2γ

d

dt
+ ω2

0

]
X(t) = Fs(t) + Ft(t) + Fd(t), (1)

where X represents the angular position of a given coor-
dinate (for example, the horizontal direction), γ = kv/J
where kv is the strength of a generic damping force and
J is a representative moment of inertia of the eye-ball,
ω2

0 = ke/J is the squared natural frequency of the sys-
tem, where ke is the strength of the restoring spring. The
driving force F(t), in equation (1), was separated in three
terms: the saccadic Fs(t), the tremor Ft(t), and the drift
Fd(t) contributions. We will show that simple force mod-
els for each type of movement can be used to globally
describe eye position changes.

The general solution of an inhomogeneous equation is
the sum of two functions: Xh(t), the solution of the ho-
mogeneous associated equation, and Xp(t), the particular
solution satisfying the non-homogeneity:

X(t) = Xh(t) + Xp(t). (2)

The solution of the homogeneous equation
[

d2

dt2
+ 2γ

d

dt
+ ω2

0

]
Xh(t) = 0, (3)

reads

Xh(t) = e−γt [A cos (Ωt) + B sin (Ωt)] , (4)

where Ω =
√

ω2
0 − γ2. A and B are coefficients to be

determined by given initial conditions.
The particular solution Xp(t) can be separated into

three individual contributions:

Xp(t) = Xs(t) + Xt(t) + Xd(t), (5)

accounting individually for each of the movements per-
formed by the eyes (s: saccadic, t: tremor, d: drift). Each of
these terms satisfies an equation identical to equation (1),
where the right-hand side only includes the corresponding
force. In the following subsections we will study each of
them separately.

3.2 Description of saccadic and microsaccadic
movements

In Figure 3 we can notice that saccadic movements are
sudden jumps between two fixated points. Different be-
haviors can be observed after the jumps. In some cases,
the final position Xf is reached after an overshoot with os-
cillations. In others, the final position is reached smoothly.

To analyze such different behaviors, we focused on two
levels of descriptions, with different degree of sophistica-
tion. On the one hand, we focus on the simplest driving
force compatible with the observed data: Fs(t) as a time-
step function with proper initial and final values. This
model will provide valuable information about parame-
ters of the dynamics. On the other hand, more complex
models can be derived by increasing the accuracy of the
description of Fs(t). In particular, we will show that its
representation in a proper basis set rapidly produces very
satisfactory results when fitting saccadic movements.

3.2.1 Step driving force

To model saccades and microsaccades we start with the
simplest possible representation of Fs(t), which corre-
sponds to a step:

Fs(t) =
{

0, t < ti
fs0, t ≥ ti,

(6)

where fs0 is a constant. To consider the effect of this force,
let’s suppose that the horizontal position of the eye at
times t < ti is stationary, and denoted by Xi. For t ≥ ti,
movement is governed by

[
d2

dt2
+ 2γ

d

dt
+ ω2

0

]
Xs(t) = fs0, (7)
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whose solution reads

Xs(t) =
fs0

ω2
0

+ e−γ(t−ti)

× [As cos (Ω(t − ti)) + Bs sin (Ω(t − ti))] . (8)

The effect of this force is to move the mass from the initial
position Xs(t = ti) = Xi to the final position Xs(t =
tf ) = Xf , after performing (or not) damped oscillations
produced by the spring and the absorber. At the initial
position the mass is at rest, Ẋs(t = ti) = 0. All these
considerations allow us to determine fs0, As and Bs. At
t = ti we have

Xs(t = ti) = Xi =
fs0

ω2
0

+ As, (9)

and
Ẋs(t = ti) = 0 = −γ As + Ω Bs. (10)

On the other hand, when the effects of the stabilization
finish, at t = tf , the eye ends up at the final position,
imposing the following condition

Xs(t = tf ) = Xf =
fs0

ω2
0

. (11)

Thus, finally:

fs0 = ω2
0 Xf , (12)

As = Xi − fs0

ω2
0

, (13)

Bs =
γ

Ω
As. (14)

In consequence, the final expression for the position of the
harmonic oscillator driven by a step function is

Xstep(t) = Xf + (Xi − Xf ) e−γ(t−ti)

×
[
cos (Ω(t − ti)) +

γ

Ω
sin (Ω(t − ti))

]
. (15)

The parameters γ and ω0 can be optimized to represent,
within this simple model, the data obtained from the eye-
tracker, as shown in Figure 5.

When using this simple model we are assuming that
a driven linear harmonic oscillator can globally represent
the saccadic movements in the set of data collected with
the eye tracker. In this sense, we are not pursuing the
best mechanistic representation of ocular movements, but
a phenomenological approach (with a physical interpreta-
tion) that allow us to simulate the observed movements. In
this simple model, only two parameters are undetermined,
ω0 and γ, which provide certain global information about
the elasticity and the damping of the ocular plant, and
have to be evaluated by fitting data. In Figure 6 we plot
the best fitting values of γ as a function of ω0, for all sac-
cadic movements detected for all participants. The very
first observation is the linear relationship between both
parameters, γ = Cs ω0, for large saccades (≥∼3 deg), and
the spread of values for small movements (≤∼3 deg). In-
terestingly, the same relation holds across participants.

Fig. 5. Sample saccadic movement described with a harmonic
oscillator model driven by a step function.

Fig. 6. Relation between the best fitting parameters γ and ω0

obtained with the harmonic system driven by a step function,
for all saccadic movements detected in the complete dataset (all
participants). Saccade magnitude is represented by the color
indicated at the right margin. Different symbols correspond to
different participants.

These parameters are physically relevant and are associ-
ated to the real dynamics underlying saccade generation.
They can be thought of as an alternative representation
for the c0 and c1 obtained by Bettenbühl et al. using a
principal components analysis [22]. In this case, different
combinations of γ and ω0 produce different temporal pro-
files in response to a step function, which is assumed in
this subsection as the fundamental driving force. The only
difference is that here, as shown above, both parameters
show certain dependence on the magnitude of the sac-
cade. This may be interpreted as one of the limitations of
this simple model. However, by considering a more com-
plex representation of the driving force, we may overcome

http://www.epj.org
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or reduce these limitations, which will be discussed in the
following subsection.

To take advantage of the analytical tractability and ex-
plore the limits of the simple harmonic system driven by
the step function, we will derive some useful relationships
that have an experimental counterpart. From equa-
tion (15) we can calculate the velocity and the acceleration
by taking the first and second derivatives with respect to
time. When the velocity reaches the first maximum, the
acceleration is zero (for the first time after the step). The
time at which this situation occurs can be obtained analyt-
ically and replaced into the velocity definition, to obtain
the peak velocity Vp:

Vp = (Xf − Xi) ω0

× exp

{
− γ√

ω2
0 − γ2

arctan

[√
ω2

0 − γ2

γ

]}
, (16)

which depends linearly on the saccade magnitude, Xf −
Xi. The multiplying factor depends both on γ and ω0.
However, if we use the linear relationship obtained before
from the data fitting, the peak velocity reduces to

Vp = (Xf − Xi) ω0

× exp

{
− Cs√

1 − C2
s

arctan

[√
1 − C2

s

Cs

]}
. (17)

As reported in references [4,25], peak velocity and ampli-
tude of the saccades are linearly related in a log-log rep-
resentation. The data collected in our experiments give
the same behavior, see Figure 7a, in agreement with the
main sequence reported in reference [25]. When plotting
the data on linear scales our experiments present the rela-
tionship observed in Figure 7b. To keep the model as sim-
ple as possible, we can describe this dependence between
both magnitudes by two different linear regimes, separated
at amplitudes of ∼3 degrees. Defining the slopes of these
two linear descriptions by K1 and K2, the multiplicative
factor in the linear relationship between Vp and (Xf −Xi)
given by equation (17), implies that ω0 is completely de-
termined within each region,

ω0,i =Ki exp

{
Cs√
1−C2

s

arctan

[√
1−C2

s

Cs

]}
with i=1, 2.

(18)
This simple model, then, can be used in these two differ-
ent regimes by assessing individual Ki (i = 1, 2). Within
this approach, only a single free parameter completely de-
termines a saccade, namely the saccade amplitude defined
by Xi and Xf , without any further information.

3.2.2 Smooth driving force

In this section, we extend the model to include a more
complex activation. In addition, by a proper analytical
procedure we formalize the solution to the inverse prob-
lem, i.e. the determination of the neural activation com-
manding movements from data (of course, under the hy-
pothesis and limitations of this particular system). Both,

Fig. 7. Peak velocity as a function of the amplitude of the
saccades. Data from different participants is represented by
different symbols. In (a) we present the data in Log-Log scale,
where a linear behavior is clearly observed, in agreement with
literature [25]. In (b) we present the data in linear scales, as
well aslinear fits on the different ranges considered.

the increase of the complexity and the solution to the in-
verse problem, allow us to explore the limits of the linear
representation.

To represent complex activations we use a convenient
set of functions, triggered at time ti:

Fs(t) = fs0 +
∑
n=1

fsn Fn(α, t) , t ≥ ti. (19)

The first term is just the contribution of the step function
already discussed, which is considered the zeroth order
term. The higher order term contributions, n ≥ 1, allow us
to represent more realistic neural activations. We will as-
sume that the {Fn(α, t)} form a complete basis set of func-
tions that could or could not be orthogonal. In such a way,
any function can be expanded in this series representation
with coefficients fsn appropriately determined. Actually,
there is no restriction and the sum can be equally turned
into an integral, extending its mathematical generality.

http://www.epj.org
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Fig. 8. Set of basis functions used to project saccadic acti-
vations. Red, orange, violet, and green lines are the four first
terms of this series representation, respectively, whereas the
cyan line corresponds to these four functions subtracted from
the step activation.

Because of the linearity of the system, from the solu-
tion to the set of equations[

d2

dt2
+ 2γ

d

dt
+ ω2

0

]
xn(α, t) = Fn(α, t), (20)

we can build the solution Xs(t) to a generic driving force,
given by equation (19), by superposition

Xs(t) = Xstep(t) +
∑
n=1

fsn xn (α, t) . (21)

As {Fn(α, t)} form a complete basis set, then {xn(α, t)}
has the same property and any function describing ocular
movements can be expressed in this series representation.
This set of functions is similar to the one recently dis-
cussed in reference [23] in the context of atomic physics.

To smooth the transition given by the abrupt step
function imposed by the zeroth order, a very convenient
set of basis functions is given by Fn(α, t) = tn−1e−αt, for
n ≥ 1. In Figure 8 we show the first 4 elements, as well as
the function 1 −

[
1 + αt + (αt)2

2! + . . .
]
e−αt. As observed,

a smooth transition can be easily represented with a few
terms within this set of basis functions.

To obtain the solutions xn(α, t) of equation (20), we
first solve the Green’s associated function and then express
xn(α, t) as a convolution. Explicitly,

xn(α, t) =
1
Ω

∫ t

ti

e−γ(t−t′) sin [Ω(t − t′)] tn−1e−αt′dt′.

(22)
The first order can be easily obtained by integration and
reads

x1(α, t) =
e−αt

α2 + ω2
0 − 2αγ

− e−αti

α2 + ω2
0 − 2αγ

e−γ(t−ti)

×
[
cos (Ω(t − ti)) +

γ − α

Ω
sin (Ω(t − ti))

]
.

(23)

Instead of performing the integration in equation (22) to
obtain the following terms, it is more convenient to pro-
ceed with a recursive scheme by taking derivatives with
respect to α. For example, the solution to the case n = 2
reads,

x2(α, t) = −dx1(α, t)
dα

= − 1
Ω

∫ t

ti

e−γ(t−t′) sin [Ω(t − t′)] t′e−αt′dt′. (24)

Since normally we only measure ocular movements, be-
ing neural activations intrinsic processes that remain un-
known, here we devise a method to extract this in-
formation from measurements. Naturally, these inferred
activations are only valid within the framework of the
proposed dynamics. Assuming that Ds(t) represents the
movement during a saccadic event, thus according to equa-
tion (21), we can decompose it as

Ds(t) = Xstep(t) +
∑
n=1

dn xn (t) , (25)

where we assume that the dynamical as well as the forcing
parameters (ω0, γ, and α) are already known. Since the
step function is the only function that survives at large
times, its explicit time-course can be independently eval-
uated and it is still given by equation (15). By subtracting
the real movement from the step solution, we define

D̃s(t) = Ds(t) − Xstep(t) =
∑
n=1

dn xn(t). (26)

Projecting to the left with the functions xn at both sides of
equation (26), and performing an integration in the time
interval where the saccadic motion occurs, we have

∫ tf

ti

xj(t) D̃s(t) dt =
∑
n=1

dn

∫ tf

ti

xj(t) xn(t) dt. (27)

Data for the saccadic motion Ds(t), or its deflection D̃s(t),
is obtained with the eye-tracker and it is given with a cer-
tain temporal resolution. In consequence, equation (27)
should be performed numerically with standard integra-
tion methods. By defining coefficients

Ds,j =
∫ tf

ti

xj(t) D̃s(t) dt, (28)

Ojn =
∫ tf

ti

xj(t) xn(t) dt, (29)

then, equation (27) can be summarized as a vectorial
equation

Ds = O · d (30)

which, by simple inversion, builds a procedure for deter-
mining coefficients dn

d = O
−1 · Ds. (31)

http://www.epj.org
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Fig. 9. Fit of saccadic movements with general activations. (a)
Representative examples (black symbols), as well as theoretical
descriptions up to different orders. Black, gray, and red con-
tinuous lines for forcing terms corresponding to a 0th, 1st and
2nd order series representations, respectively, fitted with the
procedure described in the main text. Adjustable parameters
were independent in each case (ω0, γ, α, ti). (b) Associated
activations, for the best fitting at different orders.

Once coefficients dn are obtained with the preceding
methodology for the particular saccadic movement under
analysis, its neuronal activation, within the framework of
the harmonic driven model, is given by

Fs(t) = ω2
0 Xf +

∑
n=1

dn Fn(t), t ≥ ti, (32)

where Fn(t) are the exponential basis functions defined
previously, Fn(t) = tn−1e−αt.

In Figures 9a and 9b we show some representative sac-
cadic movements fitted with this methodology at different
orders, and the associated activations, respectively. As ob-
served, with only a few orders the saccadic movements are
perfectly fitted.

Fig. 10. A sample of drift, fitted with a linear function. As
observed by the small slope of the fitted line, this type of move-
ment is of very low velocity.

3.3 Drift

Different types of interpretation have been considered for
the drift appearing during fixations [26–28]. Irrespective
of its cause, the effect is that the fixated image is slowly
moved across the retina, being the typical displacement of
about a dozen of photo-receptors [13]. The data collected
in our experiments show that the drift produces a displace-
ment of, e.g., the horizontal position, that grows linearly
in time, see Figure 10. This type of behavior appearing in
the data can be easily represented by our simple driven
harmonic model, equation (1).

As discussed in the previous subsection, saccades are
produced by a force that rapidly grows from one constant
value to another. Differently, drift appears as a tempo-
rally dependent non-constant force, which is continuously
shifting the equilibrium position of a spring-mass-damper
system. To generate this behavior, the force Fd(t) appear-
ing in equation (1) has to read

Fd(t) = Ad t. (33)

The solution of equation (1) with the forcing imposed by
Fd(t), given by equation (33), determines Xd(t). This so-
lution can be straightforwardly obtained from the Green’s
approach we previously presented, equation (22), consid-
ering the order two in the limit α → 0, i.e., by Xd(t) =
x2(α → 0, t):

Xd(t)
Ad

= −2γ

ω4
0

+
t

ω2
0

− ti e−γ(t−ti)

ω2
0

[
cos (Ω(t − ti))

+
γ

Ω
sin (Ω(t − ti))

]

+
e−γ(t−ti)

ω4
0

[
2γ cos (Ω(t − ti))

+
(

2γ2 − ω2
0

Ω

)
sin (Ω(t − ti))

]
. (34)

The values of γ and ω0 are first determined by adjusting
the saccades or microsaccades and then, the magnitude
Ad may be evaluated in those cases where drift appears,
see Figure 10.
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3.4 Tremor

Tremor is associated to unavoidable noise, possibly caused
by unbalanced tensions between the antagonist mus-
cles [29]. Uncontrolled or random neural activity may pro-
duce an uncontrolled muscular activation which may be
projected onto the eye movement as constant tremor. As
mentioned in Section 2, the accuracy of the eye-tracker
used here is not enough to properly record these very small
vibrations. However, we will show how tremor can be in-
cluded in our very simple model. For this purpose and as
a general example, we introduce the following representa-
tion for Ft(t) [30]:

Ft(t) =
a0

2
+

∞∑
n=1

[an cos(n Δω t) + bn sin(n Δω t)] . (35)

The coefficients are statistically independent, gaussian
variables of mean value zero, and 〈a2

n〉 = 〈b2
n〉 =

w(n Δω)Δω, where w(ω) is the spectral intensity of the
noise. This representation of the noise turns accurate in
the limit Δω → 0.

With this driving force, the position of the eyes are
governed by the equations:

[
d2

dt2
+ 2γ

d

dt
+ ω2

0

]
Xtn(t) =

⎧⎨
⎩

a0
2

cos(n Δω t)
sin(n Δω t)

⎫⎬
⎭ , (36)

where brackets indicate a complete set of basis functions.
The Xtn(t) functions also form a complete basis set; they
are quasi-sturmian functions, as those mentioned in the
previous sections. They are related to the sturmian func-
tions discussed recently by Rawitscher and Liss [31]. Given
the fact that tremor is always present, the transient solu-
tion, given by the homogeneous part, decays as a conse-
quence of the damping term. Then, the solution to con-
sider for tremor is:

Xt(t) =
a0

2ω2
0

+
∞∑

n=1

[
ω2

0−(n Δω)2
]
an−2γ n Δω bn

[ω2
0 − (n Δω)2]2 + (2γ n Δω)2

cos(n Δω t)

+
∞∑

n=1

[
ω2

0−(n Δω)2
]
bn+2γ n Δω an

[ω2
0 − (n Δω)2]2 + (2γ n Δω)2

sin(n Δω t).

Here we considered a particular kind of noise, but this is
not a limitation. Any type of noise can be included in the
description of the general displacement of the eye using the
function defined in equation (5), by taking into account a
proper characterization.

4 Discussion

The main objective of the present contribution was to
implement a method to represent, as easy and reliable

as possible, the data resulting from eye tracking record-
ings. Different approaches based on numerical methods
can be used to fit the data, as for example in the work of
Bettenbühl et al. [22]. However, we aimed to describe oc-
ular movements with a physical model, complex enough
to capture the basic phenomena, but simple in order to
bound mathematical complexity. Within this framework,
we proposed a minimal model and a proper series repre-
sentation, whose parameters can be globally fitted from
a complete dataset produced under different conditions.
The representation is essentially the solution to a damped
harmonic oscillator driven by an arbitrary function. This
simple description can be thought of as a lumped repre-
sentation of all the relevant physics behind the eye move-
ments (or, equivalently, it may be considered as a linear
version of a nonlinear complex system as those proposed
by Enderle and collaborators, see [19–21]), and for that
reason turned to be efficient. When considering a complex
activation, the parameters of the driving force were also
used as fitting parameters [32]. As we showed, just two
terms of the quasi-sturmian functions are enough to have
a quite refined representation of the data.

In order to capture the minimal description of the dy-
namics behind saccadic movements, we considered a fur-
ther simplification of the previous approach by assuming
the simplest driving force compatible with eye tracking
data, a step-like activation. Under this assumption, the
natural frequency, the damping strength, and the initial
and final conditions during each saccadic jump determine
completely its dynamical behavior. The simple mathemat-
ical description of this approach enable us to compare
thousands of saccadic events on the same grounds, namely
the specific values of the parameters that best describe the
temporal evolution of individual saccadic movements. As
we showed by fitting a large dataset of saccadic move-
ments, the simple picture of a damped harmonic oscilla-
tor driven by a step function leads to a systematic (effec-
tive) dependence between the natural frequency and the
damping strength, which turns out to be linear in a given
range of saccade magnitudes. This corresponds to horizon-
tal movements larger than ∼3 deg. For smaller saccades,
both parameters seem to scatter independently of each
other. A further analysis of the peak velocity as a func-
tion of the saccadic magnitude revealed a general effective
law relating the natural frequency with the initial and fi-
nal horizontal positions. Obviously, intrinsic properties of
the eye system can not be defined by the movement gen-
erated a posteriori. However, we wish to stress that, under
the assumption of a step-like driving force, we produced
an effective system which, with the relationships found,
turned out to be a completely parameter-free model. In
this sense, the model will produce a specific temporal pro-
file that depends on the saccade magnitude, maybe failing
in describing the finest details of the saccadic waveform,
but compatible with a minimal dynamical representation.

During reading, a normal condition of a normal subject
is to have a text at a given distance from the eyes. Mo-
tor commands produced by our brain, constrained by the
oculomotor plant and the reading distance, is such that
there are jumps from word to word (with skips) stopping
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Fig. 11. Comparison of a recording obtained in a reading experiment (blue line) and a simulation (orange line) in which we
used the previously obtained values for the parameters of the harmonic oscillator model.

on the center of mass of some of them. As reading goes,
there are different times associated to different compo-
nents of the reading process. There is a time involved in
the intrinsic dynamics of the ocular plant, which is as-
sociated to the inertia of the system. Another time will
be associated to the linguistic analysis of the information
provided by the text and the particular word that it is
being read. To proceed with the reading, the brain takes
the decision of where to jump, how far from the current
word, depending, for example, on the role of the word in
the phrase. With this in mind, the model we proposed in
this contribution is functional, on the one hand, to the
idea of realistically reproducing the time associated to the
dynamic inertia. On the other hand, we have a system-
atic procedure that generates the driving forces needed to
predict the positions when reading. As a long term goal,
we wish to consider a neural network that learns to pre-
dict reading by producing the proper activations on this
simple harmonic oscillator based on the linguistic context
and cognitive demands [15]. The network could learn to
identify the occurrence of different words under different
contexts and, by training, to select the parameters of the
following jump according to the ongoing reading. In Fig-
ure 11 we show the data obtained while a person is reading
a text. The conditions of the experiment were similar to
those of the previous experiments. The size of the text was
60 pt on screen. We can see that our fitting function re-
produce perfectly the positions and partially the shape of
the saccades produced by the eye while the reading pro-
cess takes place. As a continuation of the present work,
we expect that by training a neural network that defines
the driving term of the damped harmonic system we can
reproduce the characteristics of reading a simple text.

We want to thank the support by PGI (24/F049) of the Uni-
versidad Nacional del Sur.
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