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Abstract The profusion of mobile devices over the
world and their evolved computational capabilities
promote their inclusion as resource providers in tra-
ditional Grid environments. However, their efficient
exploitation requires adapting current schedulers to
operate with computing capabilities limited by energy
supply and mobile devices that cannot be assumed
to be dedicated, among other concerns. We pro-
pose a two-phase scheduling approach for running
CPU-intensive jobs on mobile devices that combines
novel energy-aware criteria with job stealing tech-
niques. The approach was evaluated through an event-
based simulator that uses battery consumption pro-
files extracted from real mobile devices. CPU usage
derived from non-Grid processes was also modelled.
For evaluating the first phase we compared the number
of finalized jobs by all energy-aware criteria, while for
the second phase we analyzed the performance boost
introduced by job stealing. While the best first phase
criteria finalized up to 90 % of submitted jobs, job
stealing increased this percentage by up to 9 %.
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1 Introduction

Undoubtedly, mobile devices have evolved to small
computers able to handle complex computations. Tak-
ing this fact into account, some studies [1, 2] have
proposed to use mobile devices for processing and
visualizing scientific and medical data, while delegat-
ing some of the necessary heavy computations to a
fixed server. This technique is known as offloading [3,
4]. Moreover, other studies [5—7] have taken a step
further and have proposed to perform all the heavy
processing in the mobile devices.

Mobile devices represent one of the commonest
kind of computational device in the world. The num-
ber of mobile devices over the world is steadily
increasing and exceeded the world population during
2014 (7.3 billion). According to the Android Web site,
more than one million Android devices are activated
each day.

As a result of their capabilities and number, there
is a great deal of joint computational power in
mobile devices, mostly underused. Therefore, many
researchers [7-12] have pointed out that unused
mobile device capabilities can be scavenged for per-
forming heavy computations, such as the ones com-
monly found in scientific computing [5]. To this
end, several authors [10] have proposed develop-
ing distributed computing environments using mobile
devices. This allow mobile device resources to be
scavenged, and also make them able to perform com-
putations that a single mobile device could not handle
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otherwise by sharing their workload and operate coop-
eratively [10, 13].

In this context, one promising research line in
Mobile Computing is integrating mobile devices to
traditional cluster/Grid Computing platforms or cre-
ating new cluster/Grid Computing platforms tailored
for mobile devices [10]. Although these goals present
similar challenges to the ones found in traditional
distributed computing platforms, mobile devices also
introduce new challenges. Firstly, traditional plat-
forms assume that computing nodes are connected
to wired networks, which are fairly reliable, sta-
ble, and fast. In contrast, mobile devices are con-
nected to wireless networks that are comparatively
less reliable/stable and slower, and thus communica-
tion protocols need to be redesigned. Another major
difference with traditional cluster/Grid nodes is the
energy supply because mobile devices rely on bat-
teries. Therefore, a heavy computation executing on
a mobile device might drain its battery if the energy
consumption is not well managed. This is not a triv-
ial problem mainly because accurately estimating the
energy required to execute any computation is chal-
lenging [14]. Furthermore, other needed information
cannot be estimated, like how long a program would
take to run, which in the general case implies solv-
ing the Halting problem [15]. Another problem is that
mobile devices are not dedicated to the computing
environment, which means that mobile device own-
ers might add unexpected or unpredictable load to the
nodes from time to time [7].

Besides, a new challenge arises from the combi-
nation of unreliable/unstable wireless communication
and the limited energy supply of mobile devices: using
the network connection in an energy-efficient fashion.
This has motivated researchers to study this problem
in both low level [16] and high level [17, 18] network
protocols, properly addressing at the same time errors
due to the nature of wireless links (e.g. disconnections
and data retransmissions).

Although these issues might hinder incorporating
mobile devices to computational environments, par-
ticularly massively distributed ones, there have been
significant advances in energy-efficient wireless pro-
tocols for connecting nodes to servers in the last
years [19]. Still, a main problem is energy optimiza-
tion at a global level, since better environment-wide
energy usage means more mobile devices up and
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ready to execute computations. Since different nodes
have different computational/energy properties, bad
scheduling decisions at the inter-node level are likely
to produce energy waste, despite of intra-node opti-
mizations. Previous works [7-11] have shown that
traditional (energy-agnostic) schedulers are inefficient
in this kind of distributed environments in regard
to the rate of computation performed per unit of
energy. These works also showed that to increase
global energy efficiency levels, the schedulers should
consider the inherent energy-related properties of the
nodes.

In this work, we explore and compare several cri-
teria build upon energy and computational related
properties, materialized as schedulers that exploit the
aggregated computational capabilities of a cluster
of mobile devices in an energy-aware fashion. We
assume that, relying on their batteries, mobile devices
are intended to solve atomic and independent compu-
tations, which we call jobs. Furthermore, these jobs
are CPU-intensive, which are present in many appli-
cations [20-22]. Such criteria do not rely on strong
assumptions such as knowing jobs execution time
beforehand. Moreover, the goal is to increase the
number of Finalized Jobs per Energy unit (FJ/E).

The proposal, as is, could be employed for scav-
enging the aggregated capabilities of mobile devices
from many real-world scenarios. Specifically, those
that involve mobile devices availability over a fixed
time period, in areas where local access points are
feasible, and devices mobility is reduced in terms of
coming in/out of that area. For example, hundred of
students in a library, school or campus, hundred of
employees in their daily routines at a building, thou-
sand of spectators in a stadium enjoying a match
of their favorite sport, etc. In situations like those,
the harnessing of unused capabilities represented by
aggregated computational resources of people mobile
devices is possible. The contributions of this work are
summarized below:

— A two-phase hybrid scheduling approach for CPU-
intensive jobs in mobile Grids that exploits the
advantages of energy-aware criteria, plus central-
ized and decentralized scheduling schemes. The
first phase exploits the wide-view of resources
with a centralized ranking-based scheduling, while
the second phase exploits the self-organization
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advantages of decentralized scheduling by allow-
ing provider nodes to play an active role in bal-
ancing the load through Job Stealing techniques.
Despite the advantages of these techniques were
separately evaluated in our previous works [7, 8],
now, their synergy is explored with new energy-
aware criteria and improved simulation conditions.

— Three novel energy-aware criteria, easy to be
included into real mobile Grid schedulers, for
ranking nodes according to their computing capa-
bilities and energy properties. Different instantia-
tions of the two-phase scheduling approach based
on these criteria are studied.

— A performance assessment of the hybrid schedul-
ing approach considering energy consumption
caused by devices network activity. Previous
works [7, 8] disregard such aspect in the perfor-
mance evaluation. Decentralized techniques like
Job Stealing incurs in extra networking activity
due to the necessity of nodes coordination includ-
ing stealing messages, which increase the ener-
getic cost. By taking into account the energy con-
sumption due to network activity, a fair assessment
of the benefits of centralized and decentralized
schemes is performed. The energy consumption
was obtained by profiling real mobile devices with
a special power measurement equipment.

— Modelling the lack of resources ownership that
reflects the CPU usage caused by device owners.
The feature was initially included in [7] as part
of the schedulers performance evaluation and sim-
ulated through a base profile with a fixed CPU
usage value. In this work, the base profile was
generated using a probabilistic model [23] derived
from data collected of real users activity monitored
during several months.

The rest of this paper is organized as follows. First,
in Section 2, we describe and discuss the most rel-
evant efforts related to scheduling jobs in mobile
Grids. In Section 3, we present the novel two-phase
scheduling approach from a general perspective, while
Section 3.1 and Section 3.2 describe instantiations
of the first and second phase of the approach with
the proposed energy-aware criteria. Then, Section 4
outlines the evaluation of the approach. Its content
is divided into three subsections: the experimen-
tal method followed (Section 4.1), the experimental

scenarios (Section 4.2), and the scheduling perfor-
mance results (Section 4.3). Moreover, Section 5
presents the conclusions of this work and future
research opportunities.

2 Related Work

Recently, the role of mobile devices in distributed
computing has evolved from simple monitors that
check the status of a high performance environ-
ment to nodes that actually contribute to the infras-
tructure with computational resources [7, 9-13].
One reason of this evolution is that mobile devices
capabilities have grown exponentially in the last
decade [24] resulting in mobile devices able to per-
form complex computations [5]. However, mobile
devices rely on batteries, which might become
depleted as a result of performing such computa-
tions [25]. Furthermore, different devices have differ-
ent energy-consumption/computation-performed rate
making resource scheduling a non-trivial task [8—11].
Several researchers [7-9, 11, 26-28] have advanced
towards tackling this problem, particularly studying
approaches for job scheduling in mobile Grids. Since
there is no standard on how to implement a Grid
infrastructure that integrates mobile devices, differ-
ent approaches makes different assumptions, consider
different type of applications, and scheduling goals.
Table 1 presents qualitative features of the sur-
veyed scheduling approaches that considers mobile
devices as resource providers (note that it does not
show details about finer contributions of same authors
works). The first column presents the approaches that
are further described in this section. The fopology col-
umn classifies works according to how they assume
the mobile Grid is structured, namely ad-hoc networks
(“Ad-hoc”) or based on a proxy (“Proxy”). Ad-hoc
networks are decentralized and self-organized envi-
ronments. In such networks, nodes acts as both host
and routers allowing distant nodes to interact [34].
Since nodes can move, changes in communication
paths are frequent, making routing a complex and
energy-consuming task. However, ad-hoc networks
have been proposed for lacking infrastructure scenar-
ios, e.g. emergency operations after natural disasters
or military missions as distributed command-and-
control systems [34-36]. Moreover, these networks
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Table 1 Classification of scheduling works for mobile Grids

Work Topology Scheduling logic Scheduling goal Application Required
type knowledge
Li & Li([11, 26, 27]) Proxy Centralized Maximize the utility of Not limited High
the mobile Grid
Wei et al. ([29]) Proxy Centralized Maximize profit and sys- Not limited High
tem uptime
Ghosh & Das ([9]) Proxy Centralized Maximize revenue and Data-intensive High
minimize response time
Sayed Shah ([28, 30]) Ad-hoc Hybrid Minimize energy con- Data-intensive Low
sumption and response
time
Loke et al. ([31]) Ad-hoc Decentralized Maximize speedup CPU-intensive None
Lietal. ([32]) Ad-hoc Decentralized Minimize response time, Not limited High
waiting time, offloading
time
Shi et al. ([33]) Ad-hoc Decentralized Satisfy task deadline Not limited High
with minimum energy
consumption
Rodriguez et al. ([7, 8], Proxy Centralized, Minimize energy con- CPU-intensive None
this work) Decentralized sumption and maximize
and Hybrid, # of finalized jobs per
respectively energy unit

are very resilient since do not have a single point
of failure. The alternative —proxy-based mobile
Grid— is simpler to develop, but not as resilient
because it aggregates mobile devices into dis-
tributed environments via infrastructure-based net-
works, which are conceptually characterized by the
existence of a fixed backbone. Figure 1 depicts a
proxy-based mobile Grid environment composed by
Fixed Virtual Resources (FVR) and Mobile Virtual
Resources (MVR) integrated by fixed computers and
mobile devices, respectively. A Virtual Resource is
seen as a single node by the entire Grid environment
and differs from a traditional cluster mainly because
it could be composed by heterogeneous hardware.
Offering local resources behind a proxy to a Grid envi-
ronment is a strategy commonly adopted by traditional
Grid platforms such as Ibis-Satin [37] and GridGain
(www.gridgain.com).

The scheduling logic column refers to where the
resource allocation component resides. According to
this dimension, works can be classified into central-
ized, decentralized and hybrid. Centralized implies
that there is a dedicated node or a pre-defined group
of nodes exclusively in charge of scheduling deci-
sions, while other nodes simply comply what is
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requested to them. On the contrary, with decen-
tralized scheduling, nodes which actually contribute
with resources to the Grid also have an active
role in the scheduling decisions. Lastly, an hybrid
scheduling logic means that allocation decisions are
divided and collaboratively made by several but not
always the same nodes, i.e. the scheduling role is
alternatively played by the nodes of the distributed
environment. This is the case of ERRA [28, 30],
where an allocation decision is divided into two lev-
els. A central node makes level 1 decisions and
level 2 decisions are made by a node selected at
level 1.

The scheduling goal dimension groups schedul-
ing works by their objective function. The categories
of that dimension relate with another dimension of
the table, which is the application type. For instance,
works that pursue the goal of minimizing the job
response time, generally target data-intensive applica-
tions ([9, 28, 32]), while works that aim at maximizing
throughput or speedup, focus on CPU-intensive appli-
cations ([7, 8, 31] and this work). Moreover, there are
works whose scheduling goal is to maximize profit
or an utility function that includes several variables —
e.g. payments per resource utilization, time and energy
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Fig. 1 Proxy-based Grid environment. In this paper, we study battery-aware local schedulers

budgets— and do not target any specific application
type ([11, 26, 27, 29]).

Lastly, the column required knowledge refers to the
extent to which the job requirements need to be spec-
ified to serve as input to the scheduler, e.g. execution
time, energy consumption, input/output data, etc. High
means that the scheduler needs at least a requirement
which is hard or even impossible to determine without
executing the job, e.g. the job execution time. More-
over, low means that requirements are superficially
specified to give the scheduler a hint on the predom-
inant type of resource on which the completion of
jobs relies on, for example, data-intensive or CPU-
intensive. Such high-level classifications could be pro-
vided with minimum effort by an expert. Finally, the
none value is for the cases when the scheduler does not
require to know any job-related information. Below
we discuss in detail the related works in the table.

In [11, 26], the authors present near optimal
approaches for assigning jobs to mobile nodes. These
two schedulers aim at maximizing the utility of exe-
cuting jobs using Lagrange multipliers, and were
designed for environments where not all jobs have the
same importance or delivered gain. This means that
nodes with high-rated capabilities and strongly dedi-
cated might put a higher price for executing a job than
low-rated or less dedicated nodes. This might be the
case of pay-per-use Grids [38].

The scheduler proposed in [9] simulates a mar-
ket where mobile devices buy and sell computational
capabilities. Similarly to [11, 26], these schedulers
aim at obtaining a near optimal profit according to an
utility function. This is done by simulating a nego-
tiation process between the proxy and the mobile
devices. The schedulers are oriented towards minimiz-
ing the used network bandwidth to transfer job infor-
mation and results by means of a framework based on
LZ78 compression. Since the framework focus is on
optimizing network usage, the proposal seems to be
appropriate for data-intensive applications and not for
CPU-intensive applications unless the latter involve
transferring large amounts of data.

ERRA [28], a two-step scheduling scheme that
extends a previous work from the same authors [30],
aims at minimizing energy consumption during data
transferring in mobile ad-hoc Grids. The first step
selects nodes within an area with the highest proba-
bility of staying connected for a longer period. That
probability is inferred through the movements pat-
terns history of nodes, which are fed to a Markov
model to predict the next probable location. The sec-
ond step uses a modified kNN (k-Nearest Neighbor)
search algorithm to assign weights to the nodes based
on the energy and transmission time costs of their
links. Finally, the job allocation process uses the prob-
ability value of devices and the weighted links to
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allocate a group of nodes to a job set. The authors
propose different job allocation strategies depending
on the data transfer requirements and job interdepen-
dency type. However, since the resource allocation
scheme is focused on exploiting nodes communication
capabilities rather than their computing capabilities,
the scheme seems more appropriate for data-intensive
jobs than CPU-intensive jobs.

In [31], the authors evaluate the feasibility of
applying a work stealing algorithm in different multi-
layered Bluetooth ad-hoc network configurations
for solving CPU-intensive tasks. The configurations
include a single layer fan-out topology and a multi-
layered or linear topology. In the first configuration,
the delegator node schedules jobs to worker nodes
which are only at one-hop distance from it. In the sec-
ond configuration, job scheduling uses intermediary
nodes to reach workers which are further than one-hop
distance from the delegator. Intermediary nodes play
the role of workers and delegators at the same time.
The performance assessment comprises experiments
that measure the working time, transmission time and
speedup with varying job chunk sizes and the overall
task size.

In [32] the authors propose an extension to tra-
ditional online (i.e. Minimum Execution Time and
Minimum Completion Time) and batch (i.e. Min-
Min, MaxMin and Sufferage) scheduling heuristics
with communication concerns, to enable their uti-
lization for offloading applications in mobile ad-hoc
Clouds. Precisely, they propose to include communi-
cation time as part of the task completion time as such
heuristics traditionally consider. To obtain that time
authors propose to use the data to offload plus a linear
equation that given the hops in a path between nodes
determines the link bandwidth. In addition to the
communication-aware version of traditional heuris-
tics, the authors propose a new heuristic called Min-
Hop that only considers communication time when
offloading tasks.

Moreover, HACAS [29] is an instantiation of the
Ant Colony algorithm for scheduling applications in
a local mobile Cloud. HACAS pursues the goals of
maximizing the profit of the system while balancing
the load of provider nodes whose resource capacity
is limited. Applications to be scheduled give cer-
tain profits to the system when completed, and the
resources they need are specified generically. Given
a set of applications to execute, authors formulate
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the scheduling problem as a binary knapsack problem
where applications that best fit the aforementioned
goals are selected for execution.

In [33], the authors propose a decentralized two-
phase scheduler for Clouds with mobile devices as
resource providers. In the discovery phase partici-
pant nodes periodically exchange information of their
computing capacity, power and queue length. In the
scheduling phase, a source node assigns tasks to
nearby collaborators. Tasks are assumed to be submit-
ted with their required amount of computation, size of
data to be transferred and time constraints. Moreover,
time of computation and communication on every
potential processing node is known and used to gen-
erate a set of candidate nodes that best meet task time
constraints. Each node of such set is assigned with a
probability based on the relative energy consumption
of tasks.

SEAS [8], designed to be easily implemented in
real-life mobile Grid environments, aims at minimiz-
ing the energy consumed per executed job. Jobs are
scheduled according to a node rank-based heuris-
tic. For ranking a mobile device m, SEAS uses the
following function:

resources per job,, =
estimated remaining uptime,, x benchmark,,

; (D

number jobs,, + 1
where estimated remaining uptime,, is the esti-
mated remaining uptime for the mobile device having
remaining battery power, benchmark,, is a value
obtained with a benchmark that measures the FLOPS
(Floating-point Operations Per Second) of the device,
and number jobs,, are the amount of queued jobs of
the device.

Estimating the remaining uptime is not trivial [39].
However, SEAS [8] proposes a simple technique that
was fairly accurate when using notebooks and net-
books. The estimation algorithm uses SOC (State of
Charge) events by event-based battery APIs such as
iOS!, Android [40] and ACPL?> By assuming a lin-
eal discharge rate between two events i — 1 and 7, the
discharge rate dr can be calculated as:

Ci — Ci—1

dr =+ "= (2
tp —1ti—

Thttp://tinyurl.com/nd172fk.
Zhttp://acpi.info/ DOWNLOADS/ACPIspec50.pdf.


http://tinyurl.com/ndl72fk
http://acpi.info/DOWNLOADS/ACPIspec50.pdf

An Energy-aware Scheduler for CPU-Intensive Jobs in Mobile Grids

where ¢; and ¢;_; are SOCs reported by the events i
and i — 1, respectively, #; and #; _| are the times of these
events. Therefore, the estimated remaining uptime is:

i
estimated RemainingU ptime = d—l 3)
r

Since the discharge rate is actually not lineal [41] the
estimation heavily varies from event to event. Thus,
SEAS uses the average of all previous estimations for
minimizing this variation. A recent work [27], which
is an extension of [11, 26], places SEAS as the best
algorithm in terms of energy consumption ratio, out-
performing the second best algorithm by 9.5 % for
scenarios where job size varies, and by 8.3 % for
scenarios where the number of mobile Grid users
varies.

In [7], the authors propose a scheduler that uses the
node ranking criteria of SEAS but applies a decentral-
ized scheduling logic, i.e. job stealing for balancing
the workload among nodes. Even when the SEAS has
acceptable performance, it does not always make good
decisions because the information used to schedule
jobs cannot be estimated precisely in smartphones and
tablets. By adding job stealing, the negative impact of
using uncertain battery information can be minimized.

Works presented in this section, particularly those
of distinct authors, differ in several aspects. Because
of their scheduling purpose, nodes singularities cov-
ered, targeted application type and problem statement
inputs assumed, works are strong in different applica-
tion contexts. While the purposes of some efforts [9,
11, 26, 27, 29] are more relevant to commercial Grids,
others [7, 8, 28, 30-33] seems to be more appropri-
ate for —although not exclusively circumscribed to—
volunteer computing schemes. Besides, not all works
give the same importance to nodes singularities. For
instance, the limited resource capacity has been con-
sidered directly in [7-9, 11, 26, 27, 29, 33] as a
constraint of the problem statement or parameter of
the scheduling logic, or indirectly in [28, 30-33] with
scheduling schemes that select resources based on
their energy consumption-related properties rather on
availability indicators. Other nodes singularities are
the non-dedicated nature of nodes and mobility, which
have been considered only in [7, 9, 33] and [9] respec-
tively. Lastly, several schedulers [3, 9, 11, 26, 27, 29,
32, 33] are hard to implement in real-life Grids [10]
because they assume to know job information that
is usually unavailable, difficult or impractical to esti-
mate in the general case [15]. For instance, number of

operations and therefore time and energy consumption
of jobs while executing in a node. This information
depends not only on the hardware, but also on how a
job is programmed because even small differences in
coding practices causes huge differences in time and
energy consumption [25].

Centralized scheduling is cheaper than decentral-
ized scheduling in the sense that less quantity of
messages need to be exchanged between nodes for
coordination. Decentralized scheduling makes worker
nodes to play an active role in scheduling decisions
that, according to [7], improves performance since
it dynamically balances the load among nodes and
compensates the lack of accurate battery predictions.
However, the cost of that improvement was not empir-
ically evaluated yet. This work proposal is to combine
into a hybrid approach the advantages of these two dis-
tinct scheduling logics, plus new energy-aware criteria
whose synergy is fairly evaluated with an improved
simulation technique that includes energy consump-
tion due to nodes network activity.

3 Intra-MVR Energy-Aware Two-Phase
Scheduling: Formulation and Proposed Approach

Our hybrid two-phase scheduling approach focus on
avoiding and correcting sub-exploited states at the
MVR level. These states suggest underused periods
of CPU cycles caused by the lack of accurate pre-
dictors that relates computing capability with energy
properties, dynamic changes of resource availability,
and a priori unknown requirement of jobs. The lat-
ter cause is an assumption of our problem statement,
then the proposed hybrid two-phase approach is an
aid to mitigate the first and second causes. Figure 2
illustrates a dynamic view of the approach. As jobs
are submitted to the scheduler queue, they are dis-
tributed to nodes by following a mechanism that meets
an objective function, or in this work, maximize sys-
tem throughput. We call this initial job scheduling the
first phase. Then, as sub-exploited states are detected,
jobs are re-distributed by a second phase. The result
is a job scheduling approach that maximizes nodes
exploitation even when their computing capabilities
vary due to unexpected CPU usage introduced by
mobile devices owners.

The hybrid characteristic is from the fact that
the first phase and second phase strategies combine
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a centralized ranking-based scheduler, described in
Section 3.1, and a decentralized scheduler through the
Job Stealing techniques detailed in Section 3.2. Both
phases, in turn, use novel criteria to rank nodes accord-
ing to their computing capabilities and energy-related
properties. These criteria will be referred from now
on as energy-aware criteria and include not only an
enhanced version of SEAS criterion [8] (from now
on E-SEAS) but also other currently unexplored com-
puting/energy related properties derived from bench-
marks and historic information provided by nodes.
Figure 3 illustrates the main concepts associated to
our approach and their relationships. The combination
of these concepts leads to different materialization of
the two-phase scheduling approach proposed, and thus
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the figure also qualitatively outlines the pros and cons
of each materialization. That figure complements the
dynamic view outlined in Fig. 2.

3.1 First-Phase Scheduling: Centralized Scheduling
Based on Energy-Aware Criteria

As mentioned in Section 3, the initial job scheduling,
i.e. the first phase, is performed via a ranking-based
scheduling that uses novel energy-aware criteria to
rank (sort) mobile nodes. With respect to computa-
tional complexity, in this phase, the proxy receives let
us say n jobs. For each job, the proxy sorts the avail-
able mobile nodes (let us say m) into a list based on
one of such criteria, and picks the first node in the
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list to execute the job. Re-ordering must be done upon
processing each job since assigning a job to a node in
turn affects the ranking of that node, and besides the
proxy periodically receives status update events that
might affect the ranking of any node in the MVR. The
complexity of the first phase of the algorithm is there-
fore O (n x m * log(m)). The convergence time of the
first phase for n jobs is given by the time it takes to
rank (sort) nodes times 7.

Particularly, adopting a proxy-based topology for
managing MVRs favors the task of making decisions
at the MVR level because proxies act as intermediaries
between nodes, i.e. mobile devices they coordinate
and the rest of the mobile Grid environment. In this
context, mobile devices willing to offer resources to
the mobile Grid join a proxy and pass through a
registration process to let the proxy know about the
resources to be managed [42]. That registration pro-
cess is an opportunity for the proxy to identify and
categorize all devices, e.g. in terms of computing
capability. For this purpose, we propose to associate
each mobile device a feature profile. This feature
profile contains a set of device properties, including
benchmarks results and manufacturer data that are
used by the proposed energy-aware criteria. The for-
mer group is composed by the results obtained after
running a benchmarking software —e.g. Linpack for
Android?® or SciMark 2.0%—, while the latter comprises
information about the standard battery specifications
declared by the device manufacturer. Same model
devices are supposed to have similar feature profiles.
Therefore, instead of generating a feature profile for
each device upon proxy registration, all the devices of
the same models might be represented under the same
feature profile.

Table 2 shows examples of feature profiles (as
columns) for different device models. In fact, these
device models were used in the simulations performed
to evaluate the two-phase scheduling approach pro-
posed (see Section 4.2). The first row of each fea-
ture profile shows the computing capability of the
device expressed in MFLOPS (Million Float-point
Operations per Second). These values are the average
of twenty runs obtained with Linpack for Android.
Another way of measuring the computing capability

3https://play.google.com/store/apps/details?id=rs.pedjaapps.
Linpack&hl=en.

“http://math.nist.gov/scimark2/about.html.

is by aggregating the quantity of a set of different
well-known benchmarks —second row— that the device
was able to perform within a certain time period. That
value is presented in the third row, while the time
period is the time the battery last from full charge
(100 %) to cut-off voltage (0 %) [5]. The feature pro-
file also includes energy-related properties, i.e. battery
capacity as informed by the manufacturer. The last
row presents a novel way of rating the performance
of a device by condensing the benchmark informa-
tion with the battery capacity information into a single
value called Job Energy Consumption Rate, which
will be further developed in Section 3.1.2.

Since scheduling decisions based only on static
properties read from the feature profile of a device
intuitively might not be enough to represent the real
computing capabilities of an MVR, it is necessary to
take into account dynamic, i.e. runtime information as
well. Dynamic information includes the level of avail-
able energy of the MVR, i.e. the devices SOC, and
historic workload stats, i.e. number of jobs assigned
to a device, average job execution time in a device,
among others. The combination of static and dynamic
information as part of the scheduling decisions in the
proxy-based approach has been already proved to be
effective [8]. However, that study does not consider
the relationship between energy consumption and jobs
execution, or average job execution times.

Below three alternatives for energy-aware criteria
combining feature profiles and dynamic data are pre-
sented. These criteria are the E-SEAS, an improved
version of SEAS criterion for smartphones and tablets
(Section 3.1.1), the Job Energy aware Criterion (JEC)
(Section 3.1.2) and the Future Work aware Criterion
(FWC) (Section 3.1.3).

3.1.1 The E-SEAS

When using SEAS in smartphones and tablets
equipped with batteries that last longer than notebooks
and netbooks, sampling carried out in the context of
this work revealed that it is necessary a considerable
time (several minutes or even hours) until the battery
estimations obtained with the SEAS battery model [8]
become effective. Therefore, we introduce a change in
regards to how the SEAS handles battery depletion.
Within a battery discharge cycle the SOC (State
Of Charge indicated in %) is expected to decrease as
the time passes by, meaning that the battery model at
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Table 2 Feature profiles examples. GRG (Gaussian Random Generator); PC (Prime Checker); FFT (Fast Fournier Transform); SE

(Sieve of Eratosthenes); TH (Towers of Hanoi)

Device MFLOPS  Benchmark Executed Battery Capacity Job Energy Con-
Benchmarks (uAh) sumption Rate
GRG PC FFT SE TH
Samsumg 15500 7.60 10 10 11 10 10 51 1,200 23.53
ViewSonic ViewPad 10s  17.07 42 42 43 43 42 212 3,300 15.57
Acer A100 61.66 30 30 30 30 30 150 1,530 10.20

time i should report a higher state of charge than at
time i +1. However, the SEAS estimation model needs
to reach a converging time until the model starts to
predict the estimated remaining uptime values (Eq. 3)
correctly. Then, values reported before the converging
time can be considered as spurious. When this model
was applied to estimate the remaining battery capacity
of netbooks or notebooks, the converging time was in
the order of a few seconds, a minute at the most, but
for tablets or smartphones the convergence could take
up to several minutes or even hours. For this reason,
using this model on mobile Grids composed by tablets
and smartphones might result in chaotic scheduling
patterns making the SEAS less effective. Therefore,
the battery estimation model used in this work uses the
SOC reported by the operating system (OS) via battery
events.

The SOC-based estimation model, also referred
from now on as percentage-based model, not only
provides a more accurate and normalized battery
remaining value but also it is independent of the real
capacity of the battery. Figure 4 shows the uptime
curves for the Samsumg 15500, the ViewSonic View-
Pad 10s and the Acer A100 for different constant CPU
usage levels, using the estimation model based on the
percentage reported by the devices and the SEAS esti-
mation model. It worth noting that the SEAS estima-
tion model starts to report values below the maximum
capacity of the battery. Then, after some time, this
maximum is reached and the values reported become
more accurate. This phenomenon is not present in
SOC-based battery depletion models.

The battery estimation change described above
motivated the creation of the E-SEAS criterion. Con-
ceptually, its node rank is built upon the combination
of the same three factors of the SEAS criterion, includ-
ing the estimated remaining capacity of the node,
the node computation capability measured in Mega
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FLOPS (Mega Flops row from Table 2) and the jobs in
the node queue. But, unlike the SEAS, the remaining
uptime information of a node is not estimated with the
Eq. 3 but is directly inferred from the SOC reported
by the OS, which is more appropriate for the kind of
mobile devices considered in this work. The compo-
nents of the formula for node ranking of E-SEAS are
essentially almost the same as the ones used by the
SEAS:

SOC % fl
nodeRank = - * Jlops “4)
assignedJobs + 1

where SOC represents the percentage of remain-
ing battery charge, flops is equivalent to the
benchmark,, component of the SEAS formula and
assignedJobs refers to the old number jobs,
component. In other words, the main differ-
ence between SEAS and E-SEAS formulas is the
replacement of the factor computed via Eq. 3
(estimated RemainingUptime) by the SOC
calculated by the Android OS.

3.1.2 The Job Energy Aware Criterion (JEC)

A node rank based on this criterion takes into account
the relationship between the energy used and total
of benchmarks a device can execute. These values
are extracted from the device feature profile. Energy
used refers to the battery capacity in milliamperes-
hour as reported by the device manufacturer (Battery
Capacity row in Table 2) while total of benchmarks
refers to the quantity of established benchmarking
tests that a device is able to finalized before the
depletion of its battery occurs [5] (# Total Exe-
cuted Benchmarks row in Table 2). The quotient of
energy used by total of benchmarks gives the rate of
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Fig. 4 Comparison between the SEAS battery estimation (up) and the SOC-based battery estimation (bottom) for the devices used in

the experiments of this paper

energy consumption per benchmark, or from now on,
jobEnergyConsumptionRate (Eq. 5):

jobEnergyConsumptionRate =
BatteryCapacity
#T otal Benchmarks

)

Thus, the ranking formula defined by this criterion
is presented in Eq. 6:
SocC

*
jobEnergyConsumptionRate
1

assignedJobs + 1

nodeRank =

(6)

In summary, JEC combines runtime informa-
tion (SOC and assignedJobs), and static proper-
ties associated to devices represented by the value
of jobEnergyConsumptionRate. For example, in
case two devices A and B have equal SOC
and assignedJobs values but device B has lesser
jobEnergyConsumptionRate than device A, then
the criterion ranks device B higher than device A
with the assumption that device B might take better
advantage of its energy to execute jobs.

3.1.3 The Future Work Aware Criterion (FWC)

This criterion, unlike JEC, is purely based on run-
time information. It considers that the future available

computational resources of a device could be esti-
mated by analyzing the computational resources the
device presented in the past. In other words, FWC
assumes that the computing performance delivered
by a device in the past could be maintained in the
future as well. Like for E-SEAS and JEC criteria,
SOC is obtained through the battery events periodi-
cally reported by a device OS, and assignedJobs is
the number of jobs in the device queue. Moreover,
the averageTimeToCompleteJob value is calcu-
lated by the scheduler and represents the average time
a device takes to complete each of its scheduled jobs.
All in all, the ranking formula is defined in (Eq. 7):

SocC .
averageTimeT oCompleteJob
1

assignedJobs + 1

nodeRank =

)

The left quotient of the formula penalizes high
average job execution times while considers remain-
ing battery percentage through SOC values while
the right quotient avoids leaving some nodes less
loaded than others. When comparing two devices
with equal SOC and assigned jobs, the one with
less averageTimeT oCompleteJob value would be
assigned with a higher nodeRank value. Conse-
quently, the device with the highest rank value has the
highest priority of being assigned a job.
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A distinctive characteristic of this criterion is
the cold start effect. While schedulers based on
JEC and E-SEAS operate effectively from the
first scheduled job, FWC based schedulers need
some time to achieve effectiveness because FWC
uses runtime historic information to calculate the
averageTimeT oCompleteJob value. At the time
of determining the nodeRank of a device, if
no jobs have been finalized yet, but there is a
job currently executing in that device, then the
averageTimeT oCompleteJob is computed as twice
the time the job has spent executing so far. If no
jobs have been finalized yet, nor a job is execut-
ing in the device, a value of “one” is returned as
averageTimeT oCompleteJob to keep the left quo-
tient as valid.

3.2 Second-Phase Scheduling: Distributed
Re-Balancing Through Job Stealing
and Energy-Aware Criteria

Even when our criteria consider runtime information
to reflect the actual state of the available computing
capabilities of devices, the unknown computational
requirements of jobs, and the lack of update/accurate
information -e.g. about future user CPU loads-, still
affect the scheduling decisions of the first phase
making them perfectible as the time passes. A sec-
ond phase —re-balancing phase— is important to adapt
scheduling decisions made in the past to periodically
changing resource availability of the environment.

The Job Stealing technique has been effectively
applied as a re-balancing mechanism in traditional dis-
tributed computing [37] and also in mobile Grids [7].
Basically, the Job Stealing technique aims at min-
imizing unused nodes in distributed environments,
preventing jobs in a node from waiting to be executed
when there are idle resources elsewhere. This behavior
in conjunction with a detailed study of the dynamics
of a mobile Grid environment inspired the formulation
of the scheduling second phase, instantiated with Job
Stealing.

In our approach, the use of Job Stealing involves
configuring a selection strategy> to select the victim
node and an offloading policy, i.e. the mobile device

SThis is inherent to the functioning of Job Stealing and should
not be confused with the scheduling strategy in Section 3.
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from which jobs will be stolen and the quantity of
jobs to steal respectively. Steals are performed from
an idle mobile devices or stealer. One victim selection
strategy and one offloading policy represent a particu-
lar configuration of the Job Stealing technique. Given
the number of possible configurations, we narrowed
this set by selecting the best configurations in terms
of FJ/E explored in [7]. In this context, one difference
compared to [7] is the criteria used to rank the nodes:
while [7] uses the SEAS, this work used the crite-
ria proposed in Section 3.1. The considered selection
strategies are:

Best Ranking Aware Stealing (BRAS): This strat-
egy selects the mobile device with the highest
ranking according to the criterion used. This strat-
egy aims at offloading the least overloaded mobile
devices. As a result, victims are more likely to
become idle and, in turn, they would be them-
selves able to further offload other mobile devices.
Basically, this strategy is expected to generate an
offloading chain reaction.

Worst Ranking Aware Stealing (WRAS): Instead of
selecting the best ranked mobile device, it selects
the worst ranked one. In this case, the goal is
to globally balance the load because idle mobile
devices take jobs from the most loaded devices.

Moreover, the next two policies describe how a stealer
determines the number of jobs it will try to steal
upon each attempt. In practice, stealing several jobs at
once might reduce the networking overhead because
it requires establishing only one connection. Network-
ing requires energy and reducing the need for that
might extend battery life. For this issue, the two
policies analyzed are:

Fixed Number: A stealer always steals the same
(statically configured) number of jobs. For n-core
mobile devices, each steal attempt might actually
try to steal n jobs (the number of jobs the device is
able to physically execute in parallel).

Exponential: The number of stolen jobs exponen-
tially increases based on how many times the node
became idle. If a mobile device becomes idle for the
n'" time, it would steal 2" jobs. For example, the
first time, the stealer steals one job (20), the second
time, the stealer steals two jobs (21 ), and so on.
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Another aspect that differentiates this Job Stealing
instantiation with respect to that of [7] is the consider-
ation of the network energy cost inherent to a decen-
tralized scheduling logic. By introducing Job Stealing
as part of the scheduling logic, mobile devices tend to
be more active in terms of data transferring because
when each one finalizes all its queued jobs looks for
other mobile devices to steal their queued jobs. By
considering that, such decentralized scheme implies a
communication overhead, given by the nodes behavior
that consist in sending stealing messages and even-
tually move jobs from a victim node’s queue to the
stealer’s queue, the potential gains offered by this
technique [10] is better evaluated in this work by
considering the energy costs associated.

With respect to computational complexity of this
second scheduling phase, upon the first job steal
attempts are sent, there will be m,5y nodes with pend-
ing work to do which are busy executing one job,
and m;g;, nodes which are idle and hence will try to
steal work from busy nodes, with m = mpysy + Mmjare
being m the available mobile nodes in the MVR. Then,
for each idle node m;g4,, the proxy sorts the list of
busy nodes according to a ranking criterion and picks
the first or last element mpyyy; from this list (depend-
ing whether the BRAS or the WRAS strategy is used),
thus m; 4;¢;can steal work from m busy; - Then, the com-
plexity of this phase is O (m;gje * Mpysy * [0g (Mpysy)).
The convergence time depends on the number of times
the phase is initiated in a mobile node: considering
that it is initiated when a node executes all its queued
jobs, i.e. when the node becomes idle, the convergence
time of that phase for that node is when the victim
selection concludes. Eventually, this will cease when
all idle nodes start the execution of a job that has been
stolen from the queue of a busy node, or when all job
queues in nodes are empty, after which no more steals
are possible. Note that jobs whose execution is initi-
ated in a node cannot be stolen by another node, which
ensures convergence.

4 Evaluation

To evaluate the two-phase scheduling approach along
with the energy-aware criteria, we have simulated dif-
ferent MVRs. Broadly, simulation in distributed com-
puting as evaluation technique is an accepted and well-
known practice [7, 43] because it reduces evaluation

times and provides easily repeatable experiments. In
Section 4.1, we present a description of the tech-
niques, models and algorithms used to simulate MVRs
and their nodes. The evaluation scenarios are pre-
sented in Section 4.2, while Section 4.3 discusses the
results.

4.1 Simulation Technique

The simulator we used is based on the discrete event
simulation model [7]. A discrete event simulation
uses events to represent everything that might modify
the state of the model, in particular, events affect-
ing an MVR. In this sense, job arrivals, CPU usage
changes, battery notifications, and job terminations
are different kinds of events in our simulations. To
simulate the dynamics of an MVR, we feed the sim-
ulator with events that reflect nodes battery changes
and jobs arrivals. To generate the former, and specif-
ically node battery changes for different CPU usages,
we first sample battery level drops from real mobile
devices under predefined target CPU usages. Notice
that, although battery discharging might be seen as
a continuous variable, mobile devices report state
of charge (SOC) values as a discrete variable. For
instance, Android uses discrete SOC and notify inter-
ested applications by means of Intents [40]. Then,
we convert those samples into events for the simula-
tor. From each mobile device, from each target CPU
usage, two sets of events are obtained. One set con-
tains the battery events, i.e. time and SOC registered
during sampling. The other set of events aims at accu-
rately simulating CPU usage and contains time and
CPU usage values.

The software used for sampling mobile devices at
specific target CPU usages allow us to achieved more
real execution scenarios than when job execution is
simulated by considering the available CPU as a fixed
constant value, i.e. without CPU fluctuations. The
software works as follows. To force the mobile device
to keep a given target CPU usage, we have designed
a component that generates CPU usage by perform-
ing floating-point operations in a dedicated thread,
and a monitoring component that periodically adjusts
a delay time between the operations so as to support
lower target CPU usage. External software, e.g. the
Linux kernel or the Android platform itself slightly
impact on the target CPU usage and this becomes
evident particularly when targeting 0 % CPU usage.
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Algorithm 1 shows the thread logic of the CPU gen-
erator that sleeps for a while and then executes a set
of floating-point operations. This logic repeats until
the thread is externally killed. The sleeping time is
adjusted by another thread that executes the Algo-
rithm 2. The last thread uses the difference of the
current CPU usage and the target CPU usage to mod-
ify the sleeping time so that the CPU usage generated
is closer to the target CPU usage. The current CPU
usage is calculated through the average of the last
30 measurements stored in the /proc/stats file
(recall that Android runs a modified Linux kernel).

Algorithm 1 CPU usage generator thread

1. procedure CPUUSAGEGENERATOR

2. while true do
3. if SLEEP > 0 then
4, WAIT(SLEEP)
5. end if
6. count < 0
7. while count < CYCLES do
8. PERFORMFLOATINGPOINTOPS
9. count < count + 1
10. end while
11. end while

12. end procedure

Algorithm 2 CPU usage adjuster

1. procedure CPUUSAGEADIUSTER(TargetCPUU
sage, Threshold)

2. while true do
3. cpu U sage < GETCPUUSAGE
4. diff < cpu U sage/TargetCPUU sage
5. if—Threshold < 1— diff < Threshold
then
6. NOTIFYSTABLE
7. LoG(cpu U sage)
8. else
9. sleep < CPUUsage.GETSLEEP()
10. if sleep = 0 then
11. sleep < 1
12. end if
13. CPUU sage.SETSLEEP(sleep * diff)
14. end if
15. end while

16. end procedure
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Table 3 outlines the results obtained with the CPU
usage generator software for some target CPU usages
(0 % and 100 %). Despite the usage introduced by
Android bundled applications and the active role of
the platform on the application life cycle, which also
require CPU, the resulted Average CPU usage is very
close to the target CPU usage. In addition, the standard
deviation is acceptable in all cases, indicating that the
dispersion of the measurements is small.

The simulator requires a final set of events that
represent jobs arrivals with their associated arrival
time and computational requirements in terms of mega
floating-point operations (MFLOP). To simulate the
job execution in a mobile device, the simulator uses
two usage profiles of the same mobile device. By
usage profile we do not refer to a profile of user
actions but to the SOC changes that a device battery
experiments for a specific CPU usage. One of those
profiles is the base usage profile that represents the
battery discharge rate of a device that is not executing
a job of the distributed platform. Then, CPU usage that
causes that battery discharge derives from user appli-
cations and/or simply Android and its default bundled
applications. More details about the base usage pro-
files used in experiments are explained in Section 4.2.
The other profile required by the simulator is the full
usage profile, which represents the battery discharge
rate of a device that is executing a job of the distributed
platform. We assume that each job is optimized and
correctly coded to use as much cores as available, or
in other words a job execution always rises the CPU
usage to 100 %. This does not mean that the 100 % of
the computing cycles are dedicated to perform the job
because the usage introduced by the base usage profile
is also considered in that 100 % of CPU usage.

Usage profiles contain events for the simulator.
When a simulated MVR starts up, all nodes start read-
ing the first CPU and battery events of their base usage
profile and continue reading the next events from that
profile as the simulation time passes. Time is main-
tained by a central clock. Every time a node swaps its
base usage profile by its full usage profile and vice
versa, a synchronization against this central clock is
performed. On one hand, the synchronization is to
avoid start reading a profile always from the begin-
ning instead of from the current simulation time. On
the other hand, profile swapping is done to faithfully
reproduce the energy consumption rates of the differ-
ent CPU usages, e.g. energy is much faster drained
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Table 3 CPU usage generator

Device Target CPU usage of 0 % Target CPU usage of 100 %
Sampling Time Samples CPU CPU Sampling Time Samples CPU CPU
(hh:mm:ss) AVG STDEV  (hh:mm:ss) AVG STDEV
Samsung 15500 35:23:47 7,034 383% 1.08%  09:45:28 2,066 99.98 % 0.04 %
ViewSonic ViewPad 10s  27:15:39 5,476 1023 % 226 % 13:57:44 2,977 99.99 % 0.03 %
Acer A100 27:08:26 4,877 2.02 % 149%  07:16:44 1,556 99.97 %  0.06 %

when the CPU usage is 100 % than when it is 0 %.
As Fig. 5 shows, the profile swapping between a base
usage profile (z % of CPU usage) and a full usage pro-
file (100 % of CPU usage) happens when a job starts
and finalizes in a node, respectively. All in all, when a
job is scheduled within an MVR and the hosting node
starts to execute it, the node performs three steps:

1. Calculating the time the job will spend execut-
ing in the node. This time is calculated from the
MFLOP of the job and the MFLOPS of the node
excluding the non-available MFLOPS consumed
by its base usage profile.

2. Swapping the base usage profile and the full
usage profile mediated by a synchronization
operation to continue reading the events of the
last profile so that the new time stamp matches
the current simulation time. The full usage pro-
file is kept up to the time calculated in step 1.

3. Performing the inverse of step 2 to model the job
completion. This swapping takes place when the
executing time from step 1 is reached. The node

raises a job finalized event and switches back
to its base usage profile. Again, a new synchro-
nization operation is performed. The process is
repeated for all the jobs queued in a node and for
all the nodes of the MVR while there are jobs to
be processed and nodes able to process them.

Moreover, when a job is assigned to a node, partic-
ularly, an energy consumption caused by node net-
working activity occurs. That energy consumption is a
feature of the current simulator software that was not
included in the version used in [7]. We included such
information in all events of a simulation that involves
transferring data. For instance, when a node reports its
SOC to the scheduler, the scheduler assigns a job to a
node, a node sends the result of a finalized job, etc. We
obtained the energy consumption information with a
power monitor hardware and a set of experiments that
measure the cost of sending data through a WiFi con-
nection using the TCP protocol. Our measurements
with a Samsumg 15500 throw a value of 0.005576
Joules/Kb sent with excellent signal strength, which
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Fig. 5 Usage profile swapping when simulating the execution of jobs in a node
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is very close to the value of 0.005 Joules/Kb reported
in [44] with a Google G1 phone and the Nexus One.
Through this network-aware extension to the origi-
nal simulator [7], we are able to fairly measure the
energy consumption overhead derived from commu-
nication and the administration protocols of the dif-
ferent scheduling approaches, e.g. with and without
re-balancing.

4.2 Simulated Scenarios

The design of experimental scenarios aims at com-
paring the performance of the two-phase scheduling
approach using the proposed energy-aware criteria by
considering several variables including different MVR
instances, i.e. arrangements of mobile devices, jobs
sizes and base usage profiles. The rest of this section
provides detailed information about these variables
and values considered.

An MVR instance defines an arrangement of
mobile devices that contribute with CPU cycles for
the execution of Grid jobs. We define different MVR
instances with the same number of mobile devices
(100) and similar aggregated computing capacity
(ACC) but energetically different. In theory, the ACC
of a MVR could be expressed as the sum of all devices
individual computing capacity (/CC), which in turn
could be defined as MFLOPS % batteryDuration.
The MFLOPS indicate the number of Mega Float
point Operations a device is able to perform per sec-
ond, while batteryDuration is the maximum time,
from full-charged battery, the device is able to run
at 100 % of CPU usage. Same devices model are
expected to be characterized by the same MFLOPS
and batteryDuration. The devices models used in
our simulated MVR instances are Acer Iconia Tab
A100, ViewSonic ViewPad 10s and Samsung 15500
whose ICC values are 1.6E®, 0.85E® and 0.266E°
respectively. Then, MVR instances ACC equation is
ACC = 1.6ES% X +0.85E0 % Y + 0.266E® x Z L ¢,
where X, Y and Z are the number of A100, ViewPad
10s and 15500 nodes respectively.

When creating MVR instances targeting the same
ACC value but with the constraints that total num-
ber of nodes, i.e. X + Y + Z, should be the same
and X, Y and Z should be positive integers, an error
€ appears. That error, for the MVR instances created,
is 188,000 MFLOP, which represent a difference
of approximately 0.24 % in the computing capacity.
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Table 4 outlines the values of X, Y and Z for the three
MVR instances created along with their ACC values
and total number of Joules.

Another variable of the simulated scenarios is
Job size, which is expressed in Million Float point
Operations (MFLOP). Long jobs size varies between
19,393.65 and 59,180.95 MFLOP while short jobs
size is between 3,232.27 and 9,696.82 MFLOP. The
long and short jobs sets were generated following a
continuous uniform distribution, so that the various
job sizes are equally probable. The base of this deci-
sion is to assure more heterogeneity in the quantity of
jobs with different sizes than when using, for instance,
a Normal distribution. The long jobs and short jobs
sets sizes are 1,910 and 11,608, respectively. These
values relate to the ACC of MVR instances. The idea
was to exceed the MVR ACC so that the hundred per-
cent of finalized jobs is avoided, which would hinder
the comparison of the schedulers performance. Table 4
shows the ranges of expected number of finalized jobs
according to the MVRs ACC values, which were cal-
culated by dividing the MVR ACC by the job size
average.

With the aim of adding more realism to the sim-
ulated scenarios, jobs were generated with input and
output sizes because transferring data impacts on the
available energy, and in turn, the computing capacity
of mobile devices. Input size represents the data struc-
tures and arguments that need to be transferred to the
node in charge of executing a job, while output size
represents the job result size transferred to the proxy.
The input and output data sizes were fixed values, i.e.
they do not represent a variable of simulated scenarios,
and were set to 1,024 bytes and 4 bytes respectively
for all jobs. Those numbers are reasonable for CPU-
bound jobs, which is the type of targeted applications
of the proposed schedulers.

Another variable of the simulated scenarios is the
base usage profile. This is the CPU usage caused
by software other than Grid jobs, and comprises the
usage derived from the device OS functioning and the
device owner applications. We defined two values for
this variable: dedicated and non-dedicated. A dedi-
cated base usage profile means that the mobile device
CPU usage is 0 % almost all the time, i.e. only the
OS activity introduces slight variations of the CPU
usage. On the contrary, a non-dedicated base usage
profile means that the mobile device CPU usage fluc-
tuates between 0 %, 30 % and 75 %, i.e. simulating
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Table 4 Variables and values of the simulated scenarios

Variable Values Description

MVR instance MVRI1

Nodes: 10 A100, 64 ViewPad 10s, 26 15500. ACC: 77.320 TFLOP. Energy: 6,445,008 J

MVR2 Nodes: 20 A100, 41 ViewPad 10s, 39 15500. ACC: 77.220 TFLOP. Energy: 5,035,752 J
MVR3 Nodes: 30 A100, 18 ViewPad 10s, 52 15500. ACC: 77.132 TFLOP; Energy: 3,626,496 J
Jobs size Short 1,910 jobs in a range of [3,232.27 - 9,696.82] MFLOP
Long 11,608 jobs in a range of [19,393.65 - 59,180.95] MFLOP
Base profile  Dedicated no user activities (use 0 % of CPU)

Non-dedicated owner CPU usage varies between 0 %, 30 % and 75 % based on the probabilistic usage model of [23]

owner interaction. The fluctuation is not arbitrary
but responds to the usage model presented in [23]
where the authors studied the mobile device usage
of 255 users during 7-28 weeks. The model derived
comprises probabilistic distributions that best fitted
the observed data and characterizes usage sessions,
i.e. session length and time interval between sessions.
That model was used to generate non-dedicated base
usage profiles.

The simulated scenarios are twelve and arise from
the combinations of all values for all variables pre-
sented in the second column of Table 4. The next sub-
section presents the results of all simulated scenarios
for all of the schedulers combinations described.

4.3 Simulation Results

Schedulers performance is measured in number of
finalized jobs. The more the jobs a scheduler finalizes,
the more energy-efficient it is. The terms “device” and
“node” will be used interchangeably.

The results are organized as follows: Section 4.3.1
presents the performance analysis of the first phase
for all energy-aware criteria and an analysis of job
allocations by device type. Section 4.3.2 presents the
results of the second phase, which are contrasted with
those of the first phase. Finally, Section 4.3.3 presents
a discussion of the best energy-aware criteria via an
efficiency analysis.

4.3.1 First Phase: Evaluation of Ranking-Based
Energy-Aware Criteria

The first phase results for short job scenarios shown
in Fig. 6a describe similar performance patterns to
those of long jobs scenarios shown in Fig. 6b. Further-
more, results of non-dedicated scenarios decrease in a

range of 1-3 % with respect to dedicated scenarios and
show similar performance patterns. For these reasons,
Figs. 6a and b are enclosed into a single analysis. The
best performance alternates between JEC-based and
E-SEAS-based schedulers while FWC-based sched-
uler is always relegated to the third place. However,
a cross-MVR analysis reveals that the number of
finalized jobs by JEC-based and FWC-based sched-
ulers notably degrades as more A100 devices integrate
the MVR instance. On the contrary, the performance
of E-SEAS-based scheduler slightly increases with
the presence of more A100 devices, or at least, its
performance is less affected.

We explore the schedulers assignments through the
job-to-node-type allocations snapshot shown in Fig. 7,
where only dedicated results are presented since the
non-dedicated ones only differ in the existence of
relatively more non-finalized jobs. In Fig. 7a it is
observed that non-finalized jobs are mainly concen-
trated in A100 devices and a relative small quantity in
15500 devices. This shows that E-SEAS-based sched-
uler tends to overload the devices with high MFLOPS
values. This fact helps to explain why, in the cross-
MVR comparison with increasing number of A100
devices, the E-SEAS-based scheduler improves its
performance. On the contrary, JEC-based and FWC-
based schedulers allocations as shown in Fig. 7b
and c respectively, tend to overload devices with low
MEFLOPS values, i.e. 15500 devices. Then, with the
increasing number of A100 devices, i.e. with higher
MFLOPS, the remaining computing cycles are under-
used by these last two schedulers.

The cause of these behaviors is associated to the
node rank values obtained with each criterion. When
analyzing rankings derived from E-SEAS we saw,
e.g. that for an 15500 node to rank higher than an
A100 node, the former should have more than 8 times
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Fig. 6 First phase energy-aware criteria performance (white bars: finalized jobs; grey bars: non finalized jobs)

the remaining battery percentage of the A100. For
example, by assuming that both nodes have not been
assigned with any jobs yet, when the 15500 has
approximately 40 % of remaining battery, the A100
needs only 5 % of its remaining battery to rank equal.
That makes an E-SEAS-based scheduler prone to sat-
urate with jobs the nodes with high MFLOPS first, and
then those nodes with less MFLOPS passing through
the intermediate ones. The opposite situation occurs
for node rankings made with JEC. Again, assum-
ing the case in which the weakest and the strongest
nodes are compared and none have been assigned any
job yet, for an 15500 node to rank better than an
A100 node, the former needs approximately more than
2.3 times the remaining battery percentage of the lat-
ter. This is a condition easier to meet for an I5500 node
than when it is ranked with the E-SEAS. Thus, a JEC-
based scheduler tend to assign jobs first to the weak
nodes and then to the strong ones. However, this allo-
cation logic seems to create bigger underused periods
of CPU cycles —i.e. sub-exploited states— than E-
SEAS as ICC disparity among of nodes increases. The
behavior of FWC is quite similar to JEC. The biggest
difference is that the multiplier factor of remaining
battery percentage, which weak nodes need to over-
come to rank better than strongest nodes, varies as the
time passes. For instance, for short jobs, this value
starts with 1, because there is no information about
the time a job last until the strongest nodes finalize
their first allocated job. After that occurs, the multi-
plier factor changes to 2 because weakest nodes are
still executing the first assigned job and the FWC

@ Springer

ranking formula considers them to be in the middle
of the execution time. All in all, the multiplier factor
increases in multiple of 2 until 8 because the weak-
est node is 8 times weaker than the strongest one.
This happens because the formula of FWC is based
on pure dynamic components while E-SEAS and JEC
formulas use a static component, i.e. MFLOPS and
JobEnergyConsumptionRate respectively.

4.3.2 Second Phase: Evaluation of Job Stealing
with Energy-Aware Criteria

Below we report the results of the scheduling second
phase and compare them with those achieved in the
first phase. A separate analysis is presented for each
energy-aware criterion. First phase results are indi-
cated with the name of the criterion —e.g. E-SEAS,
JEC, FWC-. Second phase results are indicated with
a notation that includes JS (referred to Job Stealing)
followed by a letter that indicates the victim selection
strategy, i.e. W for Worst Randing-Aware Strategy and
B for Best Ranking-Aware Strategy, and lastly another
letter to indicate the offloading policy, i.e. E for Expo-
nential policy and F for Fixed policy. When referring
to the second phase, Job Stealing configuration or
re-balancing phase results should be read the same.
Figure 8a shows the two-phase scheduling perfor-
mance using E-SEAS for short job scenarios. Notice
that re-balancing through any of the Job Stealing con-
figurations using E-SEAS as node ranking criterion
does not improve the performance of the first phase
also performed using E-SEAS. The cause is analyzed
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later, but in short we can anticipate that this relates first. The results of long job scenarios, depicted in
to the nodes characteristics that E-SEAS overloads Fig. 8b, are somewhat different. Re-balancing slightly
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Fig. 8 E-SEAS performance: First and second phases (white bars: finalized jobs; grey bars: non finalized jobs)

improved the performance achieved by the first phase,
particularly for the MVR 3. In this case, JS_-WE_E-
SEAS and JS_WF_E-SEAS were the second phase
configurations that slightly boost the performance of
the first phase.

Now we analyze the results depicted in Fig. 9 of the
two-phase scheduling performance using JEC. For all
short jobs scenarios shown in Fig. 9a, all JS configura-
tions using JEC significantly improve the first phase
performance using JEC. The most efficient configura-
tions are JS_-WF_JEC and JS_WE_EC. Furthermore,
unlike JEC first phase results, the performance of these
configurations does not decrease with the increment
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of powerful devices, meaning that re-balancing using
JEC suppress that undesired effect, i.e. renders the
scheduling performance less influenced by such type
of devices, at least with the MVR instances stud-
ied. Regarding long job scenarios results, Fig. 9b
reveals that the re-balancing has a similar effect to that
observed in short job scenarios.

Figure 10 depicts the behavior of two-phase
scheduling using FWC. For short jobs scenarios
shown in Fig. 10, all Job Stealing configurations
improve the first phase using FWC. JS_-WF_FWC and
JS_-WE_FWC obtained the highest performance boost
while JS_BF_FWC the lowest one. Once again, long
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Fig. 9 JEC performance: First and second phases (white bars: finalized jobs; grey bars: non finalized jobs)

jobs scenarios results of Fig. 10a replicate perfor-
mance gains of short job scenarios.

The negligible performance boost of E-SEAS
relates to the most overloaded nodes type and the time
those nodes stay connected to the proxy. If overloaded
nodes leave the MVR before least loaded or balanced
nodes, then steals never occur or its frequency is low.
That effect is observed in the first phase scheduling
using E-SEAS, where the overloaded nodes are the
A100 nodes and leave the MVR first. It is worth men-
tioning that it is assumed that queued (not started) jobs
of nodes that leave the MVR are not re-scheduled and
are considered as non-finalized jobs. We leave that
function to a fault tolerance mechanism that is out of
the scope of this work.

4.3.3 Discussion

Now, we describe a performance cross-comparison
of the best two-phase schedulers instantiations based
on energy-aware criteria along with energy impli-
cations. For short job scenarios, irrespective of
the MVR instance, E-SEAS-based schedulers are
always worse than the rest of the schedulers. From
11,608 jobs, they finalized around 617 (5.3 %) and
1,044 (8.9 %), 646 (6 %) and 1,003 (9.3 %) less jobs
than the best scheduler in dedicated and non-dedicated
scenarios respectively. JEC-based schedulers present
the best average performance for all scenarios. FWC-
based schedulers average performance is barely infe-
rior to that of JEC-based schedulers, i.e they finalized
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Fig. 10 FWC performance: First and second phases (white bars: finalized jobs; grey bars: non finalized jobs)

between 126 (1 %) and 151 (1.3 %), 91 (0.8 %) and
156 (1.4 %) less jobs in dedicated scenarios and non-
dedicated scenarios. Similarly, for long job scenar-
ios the relative positions of schedulers is maintained
with respect to those identified for short jobs, i.e.
JEC-based performs the best followed by FWC-based
and then by E-SEAS-based schedulers. In numbers,
from 1,910 long jobs, in dedicated scenarios, E-
SEAS-based schedulers finalized between 80 (4.2 %)
and 184 (9.6 %) less jobs than JEC-based sched-
ulers while the difference of finalized jobs between
FWC-based and JEC-based schedulers is between
11 (0.57 %) and 19 (0.99 %). In non -dedicated sce-
narios, E-SEAS-based schedulers finalized between
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83 (4.8 %) and 143 (8.2 %) less jobs than JEC-based
schedulers, while FWC-based schedulers finalized
between 17 (0.99 %) and 53 (3 %) less jobs than
JEC-based schedulers.

The highest throughput two-phase schedulers are
JS_WE_JEC and JS_WF_JEC, and now are evalu-
ated with the steal revenue metric (sixth column of
Table 5), defined as the extra finalized jobs over steals
produced: (XrAFIIEEed ob) The extra finalized jobs
is the difference between the finalized jobs in the sec-
ond phase and those in the best first phase. Steals,
though necessary to increase the number of final-
ized jobs, produce overhead due to the extra network
activity from exchanging steal messages and jobs data
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Table 5 Best first phase and best second phase schedulers comparison based on their steals revenue values

Jobs size MVR Base profile Best 1st phase Best JEC-based # JEC-based JS Steals revenue
instance 2nd phase steals
JSWE  JS_WF JSSWE  JS_WF JSSWE  JS_WF
Short jobs ~ MVRI Dedicated 10,358 (JEC) 10,919 10,939 4,674 619 0.120 0.938
Non-dedicated 10,130 (JEC) 10,644 10,688 3,810 596 0.135 0.981
MVR2 Dedicated 10,047 (E-SEAS) 11,091 10,903 9,824 1,220 0.106 0.701
Non-dedicated 9,851 (JEC) 10,793 10,761 6,189 1,015 0.152 0.896
MVR3 Dedicated 10,472 (E-SEAS) 11,049 11,089 16,138 1,914 0.062 0.322
Non-dedicated 10,162 (E-SEAS) 10,768 10,818 10,735 1,548 0.056 0.423
Long jobs ~ MVRI Dedicated 1,659 (JEC) 1,748 1,746 221 104 0.402 0.836
Non-dedicated 1,628 (JEC) 1,706 1,706 211 92 0.369 0.848
MVR2 Dedicated 1,629 (E-SEAS) 1,783 1,782 511 210 0.301 0.728
Non-dedicated 1,590 (E-SEAS) 1,727 1,733 378 171 0.362 0.836
MVR3 Dedicated 1,699 (E-SEAS) 1,792 1,796 687 319 0.135 0.304
Non-dedicated 1,642 (E-SEAS) 1,751 1,756 590 271 0.184 0.421

input transfers. Besides, since a node sends many steal
requests until it actually initiates the execution of any
stolen job, there are unused CPU cycles, i.e. a sub-
exploited state is generated. So, the less steals a job
stealing configuration produces per extra finalized job,
the more efficient it is considered. Table 5 shows in
the last column the steal revenue value along with the
data used in the calculation. The values of the fourth
column and fifth columns (with its sub-columns) are
number of finalized jobs. Fifth sub-columns show
only values for JS_-WE_JEC and JS_-WF_JEC because
these are the schedulers with the highest throughput.®

The higher the steal revenue, the more efficient the
Job Stealing configuration is. JS_WF_JEC configura-
tion outperforms JS_-WE_JEC in 7 out of 12 scenarios.
There is one scenario where both configurations have
the same throughput and JS_-WE_JEC wins in the
remaining 4 scenarios. However, the steal revenue of
JS_-WEF_JEC is better than JS_-WE_JEC for all scenar-
ios. This is because the offloading policy of JS_-WF
produces much less steals than that of JS_ZWE. The
quantity of steals produced could serve to guide the
selection of the best balanced scheduler for the case of

6There is one scenario where the second most efficient sched-
uler was JS_WE_FWC. However, it was not included because
its performance metric value is very inferior to the JS_-WF_JEC
scheduler, which is the next better positioned scheduler after
JS_WE_FWC.

communication channels with lower/higher latencies
and energy costs. Table 6 outlines the performance
implications of the best first phase and the best second
phase schedulers from the perspective of the energetic
constraints imposed by the MVR instances. The FI/E
increases as total Joules of MVR instances decreases
(see Table 4). Then, MVRI1 achieves less FJ/E than
MVR2, and the latter, in turn, achieves less FJ/E
than MVR3. These values align with the fact that
the ACC/Total Energy relation of MVRI is bigger
than that of MVR2, and the latter bigger than that of
MVR3. With regard to improvements in energy uti-
lization of the second phase over the first phase, it
is over 4.57 % in all scenarios. Those improvements
seem to be affected by the MVR homogeneity, which
was quantified as the standard deviation of the sum of
FLOPS that represent each group of mobile devices
over the MVR ACC. The less that value is, the more
heterogeneous the MVR is. Then, MVR2 improve-
ment is the highest, followed by those of MVR3
and MVRI1. Apart from the improvement differences,
attributable to MVR homogeneities, it is observed
from Table 5 fifth column that schedulers performance
between MVR instances does not vary in more than
1.5 % and 2.6 % of finalized short and long jobs
respectively. This suggests that schedulers adapt to
MVRs with similar computing capacity but different
ACC/Total Energy relation without compromising
the final throughput.
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Table 6 FI/E in e~* and energy exploitation improvement in % of 2nd phase with regard to 1st phase

MVR: Homogeneity  Dedicated Non-Dedicated

Short Long Short Long

1st Phase 2nd Phase  Ist Phase  2nd Phase  1st Phase 2nd Phase  Ist Phase  2nd Phase
MVRI: 32.60 16.07135 16.97283 2.57409 2.71218 15.71759 16.58338 2.52599 2.64701
Improvement 531 % 5.09 % 5.22 % 4.57 %
MVR2: 17.33 19.95134  22.02452 3.23487 3.54068 19.56212 21.43275 3.15742 3.44139
Improvement 9.41 % 8.64 % 8.73 % 8.25 %
MVR3: 25.04 28.87636  30.57773 4.68496 4.95244 28.02154 29.80287  4.52779 4.84214
Improvement 5.56 % 5.40 % 6.06 % 6.49 %

5 Conclusions and Future Works

We have proposed an hybrid two-phase approach for
scheduling CPU-bound jobs in MVRs considering
varying job requirements, device combinations and
available CPU cycles. The goal was to assess the syn-
ergy of a centralized first phase with a decentralized
second phase. The first phase was instantiated with
a ranking-based scheduling while the second phase
with Job Stealing techniques. Both phases, in turn, use
novel energy-aware criteria as node rankers.

The first phase best throughput was achieved by
the E-SEAS-based and the JEC-based schedulers.
However, the E-SEAS-based scheduler throughput
did not improve when re-balancing was applied. On
the contrary, JEC-based and FWC-based first phase
schedulers highly improved their throughput with the
re-balancing phase. Nonetheless, despite FWC-based
schedulers were very competitive in the second phase,
their performance in the first phase was not. This
outcome is particularly undesirable if the proxy has
a downtime and the second phase cannot be initi-
ated because the resulting allocation would be under
the throughput of JEC-based or E-SEAS-based sched-
ulers. For this reason, JEC-based schedulers are con-
sidered the best average schedulers because they are
competitive in the first phase and the best in the
second phase of the scheduling. Besides, JEC cri-
terion contemplates the reduction of a node com-
puting capacity caused by the aging problem of
Li-ion batteries [45] because, unlike MFLOPS, the
JobEnergyConsumptionRate value associated to
a device varies if it is obtained before and after its
battery suffers the aging effect.
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From the second phase evaluation, it is observed
that the WRAS strategy for selecting a victim obtained
always better performance than the BRAS strategy,
and w.r.t the policy used to determine the job steals
quantity, the Fixed policy registered very superior
steals revenue values than the Exponential policy. The
latter generates much more useless steals that should
be avoided, e.g. as the size of job input increases,
because they incur in higher energy misuse.

A general conclusion of this two-phase scheduling
approach is that a re-balancing phase performed with
the Job Stealing technique helps to increase the FI/E
achieved with a single phase scheduling, even when
considering the energy footprint due to network activ-
ity of nodes. However, the node ranking criteria used
for the first phase allocation heavily influenced the
performance boost that could be obtained with the re-
balancing phase. More explicitly, the most effective
instantiation of the re-balancing phase occurred when
the first allocation phase left an active distributed pool
of jobs. By active pool of jobs we mean jobs queued
in nodes whose time to leave from the MVR is as far
in time as possible. This increases the possibility to
produce steals that in the best case will take advantage
of underused periods of computing cycles to finalize
more jobs.

We are extending this work in several directions.
First, given the momentum gained by Swarm Intelli-
gence algorithms and their application to scheduling
in distributed computing [46], we plan an instantiation
of the second phase with such algorithms and compare
the performance achieved with the Job Stealing tech-
niques. Furthermore, instantiations of the approach
other than independent CPU-bound jobs could be
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provided to tackle other type of jobs, e.g. inter-
dependent CPU-bound jobs (workflows) and network-
bound jobs. We also plan to add mobility criteria to the
scheduler, so that MVRs do not assign jobs to mobile
devices that will not be reachable by the time the job
execution is completed. Furthermore, this can also be
a stealing strategy.

We will study new scheduling criteria targeting
other performance metrics. Given the benefits of
including energy rates derived from benchmarking,
new criteria could be proposed by combining quantity
of jobs executed with the time employed to execute
these jobs. In this way, schedulers focused on improv-
ing the flowtime could be developed. Another metric,
which is interesting to be considered is fairness, or the
balanced distribution of work load among all mobile
devices of an MVR. Given that the utility of mobile
devices is governed by the availability of energy pro-
vided by their battery, a fair scheduler is one that uses,
from all mobile devices, an equal proportion of their
available energy in executing jobs of the MVR.

Another future work is to analyze the proposed
local scheduling criteria for MVRs in the context of
global scheduling criteria. More specifically, criteria
applied by local schedulers that arrange job map-
pings based on the capabilities of devices within an
MVR could be replicated into global schedulers cri-
teria, which operate at the Grid level. The hypothesis
is that considering battery-aware scheduling decisions
in global schedulers could help to better exploit Grid
environments composed by multiple MVRs. However,
this does not mean that the schedulers proposed in
this paper can not be readily applicable to real mobile
Grids, since as a starting point meta-schedulers com-
bining traditional Grid schedulers at the global level
(e.g. round robin) and our proposed mobile schedulers
at the local, MVR level could be used. The detection of
over-exploited states is also a topic in the future works
agenda since it would allow a scheduler that operates,
e.g. at intra-MVR level, to offer, to a meta-scheduler
that operates at a higher level, e.g. inter-MVR level,
a job execution service that does not overestimate the
computing resources and achieve at the same time the
highest rate of finalized jobs.
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