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Abstract 

 

Co(8%)/MgAl2O4 catalyst with Ce addition was prepared and characterized by 

different tecniques (BET, DRX, SEM-EDX, RTP and TG-TPO). Its catalytic 

performance was tested in the ethanol steam reforming reaction at 650°C and a 

W/FC2H5OH= 50 g min mol
−1

 using different molar ratios H2O:C2H5OH (MR) in the 

feed. The presence of 5 wt.%Ce on catalyst markedly increased the hydrogen selectivity 

(from 3.2 to 5.2 molH2/molC2H5OH for MR=4.8) and the carbon resistance. 

The increase of molar ratio water:ethanol led to a significant decrease in the CO/CO2 

ratio (from 0.84 for RM=4.8 to 0.5 for RM=8) and in the carbon amount after 7 h in 

stream (from 22.9% for RM=4.8 to 6.8% for RM=8). Molar ratios higher than 7 did not 

significantly improved the catalytic performance. Taking into account previous studies 

about thermal balance of this reaction, the optimum molar ratio in the ethanol steam 

reforming seems to be around 6. The ethanol conversion was nearly constant after 7 h in 

spite of the carbon amount detected by TG-TPO and SEM-EDX. It could be inferred 
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that an important Co fraction was exposed on the filament tips and/or a fraction of 

carbonaceous species was deposited on the support surface.   

 

Keywords. Ethanol steam reforming, hydrogen production, Co catalyst. 

 

 

INTRODUCTION 

 

 

As a result of increasing environmental regulations and scarcity of fossil fuels, the 

scientific sector has extended its research to the catalytic production of hydrogen as an 

energy source, particularly for its use in fuel cells [1-4]. The H2 production by steam 

reforming of ethanol is very attractive because this alcohol is a renewable raw material 

which would operate in a more or less closed CO2 cycle. The most studied catalysts in 

this reaction are those based on noble metals, Ni and Co [5-7]. Cobalt catalysts 

supported on a wide variety of supports have shown to be promising for the ethanol 

steam reforming reaction [8-11] . One problem with these catalytic systems is the high 

rate of deactivation related mostly to the formation of carbonaceous deposits. Among 

the strategies used to increase the stability of the catalyst is the addition of dopants. 

Song and Ozkan [12] have reported the effect of Ca doping on the performance of 

Co/CeO2 catalysts in ethanol steam reforming. They found that Ca incorporation leads 

to the creation of oxygen vacancies and unit cell expansion in the ceria lattice. Steady 

state reaction studies showed a higher H2 yield on Co catalysts doped with Ca. The 

differences in the product distribution were atributed to the ease of surface oxygen 

replenishment facilitated by the presence of Ca. 

Avila-Neto et al. [13] have studied the effect of  Cu addition on MgAl2O4-supported 

cobalt catalysts. They reported that the presence of oxidized species (Cu-O, Co-O) 

covering the reduced core is essential for oxidation of adsorbed carbon formed after 
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activation of ethanol. They also suggested that the control of nature and composition of 

metal particles is an important factor determining their degree of reduction.  

 In a previous work, it was observed that the addition of lanthanides (Ce, Pr or La) to 

MgAl2O4-supported Co catalysts showed a positive effect by increasing the resistance to 

carbon deposition [14]. Besides, the superior performance of the catalyst promoted with 

7.8 % Ce could be partialy explained by the higher dispersion and reduction of Co 

species. 

Increasing the H2O:C2H5OH molar ratio in the feed and co-feeding oxygen to the 

reactor are other alternatives for controlling the carbon accumulation with time on 

stream. Large excesses of water affecting the overall process efficiency [15] while 

producing an increase in the concentration of H2 and CO2 and a reduction of the 

concentration of CO and CH4 due to the methane reforming is thermodynamically 

promoted [16]. Low values of molar ratios may promote coke deposition on the metal 

sites of the catalyst, producing deactivation [15]. In literature thermodynamic studies 

concluded that the optimum value of H2O:C2H5OH molar ratio for the production of H2 

is 3 [16], however from a study of energy integration, a high efficiency ethanol 

processor, including hydrogen purification and PEM fuel cell is achieved with a value 

between 4 and 5 [17]. Avila et al. [18] from a thermodynamic analysis of ethanol steam 

reforming have reported that the mole fraction of H2 is not very sensitive to the 

H2O:C2H5OH molar ratio between 475 and 700 °C, whereas carbon formation is highly 

dependent on this variable at this temperature range. Besides, the maximum mole 

fraction of CO2 is achieved between 550 and 700°C for all H2O:C2H5OH molar ratio. 

This maximum was justified by the consumption of CO and H2O by the water-gas shift 

reaction. 
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In this work, a catalyst containing 8 wt% Co supported on MgAl2O4 with the addition 

of Ce was prepared and characterized by different techniques. The catalyst was tested at 

650°C in the ethanol steam reforming reaction. The influence of the molar ratio water-

ethanol on the stability was examined. 

 

2. EXPERIMENTAL 

 

2.1. Catalyst preparation 

MgAl2O4 support (MA) was prepared by the citrate method [14]. Citric acid was 

added to an aqueous solution that contained the stoichiometric quantities of 

Al(NO3)3.9H2O and Mg(NO3)2.6H2O. An equivalent of acid per total equivalent of 

metals was used. The solution was stirred for 10 min and held at boiling temperature for 

30 min. Then, the solution was concentrated by evaporation under vacuum in a 

rotavapor at 75°C until a viscous liquid was obtained. Finally, dehydration was 

completed by drying the sample in a vacuum oven at 100 °C for 16 h. The sample was 

calcined in static air from room temperature to 500 °C at a heating rate of 5° min
−1

 and 

then at 700 °C for 2 h.  

The addition of Co (8 wt%) and Ce (5 wt.%) into the support was sequentially 

carried out by wet impregnation using an aqueous solution of Co(CH3COO)2.4H2O and 

Ce(CH3COO)3·xH2O. The solvent was removed in a rotating evaporator at 75°C under 

vacumm. The sample was dried between the impregnation steps at 100°C overnight. 

Finally, it was calcined in air at 600°C for 3 h. The catalyst was denoted as Co/Ce/MA.  

 

2.2. Catalyst characterization 

All samples were characterized using different physico- chemical methods. 
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Chemical composition. Cobalt and cerium chemical composition was performed by 

inductively coupled plasma- atomic emission spectroscopy (ICP) using a sequential ICP 

spectrometer Baird ICP 2070 (BEDFORD, USA) with a Czerny Turner monochromator 

(1m optical path). Alkali fusion with KHSO4 and a subsequent dissolution with HCl 

solution brought the sample into solution.  

BET Surface area. BET surface area was measured using a Micromeritics Gemini V 

analyzer by adsorption of nitrogen at –196°C on 100 mg of a sample previously 

degassed at 250 °C for 16 h under flowing N2. 

X-ray Diffraction (XRD). Diffraction patterns of fresh and reduced samples were 

obtained with a RIGAKU diffractometer operated at 30 kV and 20 mA using Ni-filtered 

CuK radiation (= 0.15418 nm) at a rate of 3° min
-1

 from 2θ = 20° to 80°. The 

powdered sample was analyzed without a previous treatment after deposition on a 

quartz sample holder. The identification of crystalline phases was made by matching 

with the JCPDS files.  

Temperature programmed reduction (TPR). The TPR profile was recorded in a 

conventional TPR equipment. This apparatus consists of a gas handling system with 

mass flow controllers, a tubular reactor, a linear temperature programmer, a PC for data 

retrieval, a furnace and various cold traps. Before the run, the sample was oxidized in a 

50 mL min
−1 

flow of 20 vol.% O2 in He at 300 °C for 30 min. After that, helium was 

admitted to remove oxygen and finally, the system was cooled to 25 °C. The sample 

was subsequently contacted with a 50 mL min
−1

 flow of 5 vol. % H2 in N2, heated at a 

rate of 10 °C min
-1

 from 25 °C to a final temperature of 700 °C and held at 700 °C for 2 

h. Hydrogen consumption was monitored by a thermal conductivity detector after 

removing the formed water. The hydrogen consumption was determined by calibration 

with H2 (5 vol%)/N2 mixture injections. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Thermal gravimetry (TG-TPO). The analyses were recorded using DTG-60 Shimadzu 

equipment. The samples, ca. 15 mg, were placed in a Pt cell and heated from room 

temperature to 1000 °C at a heating rate of 10 °C min
-1

 with an air flow of 50 mL min
-1

. 

Carbon deposited during reaction on used catalysts was evaluated as 

%C 100coke

catalyst

w

w
    

where wcoke is the coke mass deposited on the catalyst calculated from the weight loss 

measured by TGA and wcatalyst is the catalyst weight free of carbon remaining after the 

TG analysis. 

Scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDX). 

Scanning electron micrographs of used samples were obtained in a LEO 1450 VP. This 

instrument equipped with an energy dispersive X-ray microanalyzer (EDAX Genesis 

2000) and a Si(Li) detector allowed the analytical electron microscopy measurements. 

The samples were sputter coated with gold. 

 

2.3. Catalytic test 

The ethanol steam reforming reaction was carried out in a quartz tubular reactor with 

an internal diameter of 4 mm operated at atmospheric pressure and 650 °C. The reactor 

was placed in a vertical furnace with temperature control. The reaction temperature was 

measured with a coaxial K thermocouple placed inside the sample. The feed to the 

reactor was a gas mixture of ethanol, water and helium (99.999% research grade). The 

liquid mixture of ethanol-water was fed to an evaporator (operated at 130°C) through an 

isocratic pump. The gas stream flow rates were controlled by mass flowmeters. The 

experimental set-up has a low pressure proportional relief valve for early detection of 

catalytic bed plugging. The H2O: C2H5OH molar ratio in the feed was varied from 4.8 to 
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8 changing the water amount with a constant ethanol concentration of 7.8 mol%, Table 

1. The catalyst weight was 50 mg (0.3-0.4 mm particle size range) without dilution in an 

inert material. Before reforming experiments, the catalyst was in situ reduced in 

H2(5%)/N2 flow at 650°C for 1 h. After a purge in He flow, the mixture with C2H5OH + 

H2O was allowed to enter into the reactor to carry out the catalytic test. The reactants 

and reaction products were analyzed on-line by gas chromatography. H2, CH4, CO2 and 

H2O were separated by a 1.8 m Carbosphere (80-100 mesh) column and analyzed by TC 

detector. Nitrogen was used as an internal standard. Besides, CO was analyzed by a 

flame ionization detector after passing through a methanizer. Higher hydrocarbons and 

oxygenated products (C2H4O, C2H4+C2H6, C3H6O, C2H5OH, etc) were separated in Rt-

U PLOT capillary column and analyzed with FID using N2 as carrier gas.  

Ethanol conversion (XC2H5OH), selectivity to carbon products (Si) and hydrogen yield 

(YH2) were estimated as described elsewhere [14]. 

 

RESULTS AND DISCUSSION 

 

In Table 2, the most important characterization results of the Co/Ce/MA fresh 

catalyst are shown. The X-ray pattern revealed the presence of the MgAl2O4 and Co3O4 

spinels and also the fluorite phase corresponding to CeO2. The presence of CoAl2O4 and 

CoO could not be ruled out but taking into account that the support has been thermally 

stabilized before impregnation and the catalyst has been calcined in air, the formation of 

these phases if present they should be negligible. The TPR profile showed two intense 

peaks at 428 and 687°C assigned to the reduction of Co
3+

/Co
2+

 with different interaction 

extent with aluminate matrix. The reduction extent measured as mol H2/mol Co clearly 

indicated that the cobalt species are not completely reduced at 650°C (mol H2/mol 

Co=0.61). These results suggest that different Co species (Co
0
 and Co

δ+
) could be 
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present on the catalytic surface at the beginning of the reaction. After reduction, 

incipient peaks corresponding to Co
0
 could be inferred from XRD. The low intensity of 

them did not allow to identify the crystalline structure of metallic cobalt. Lin et al. [19] 

have reported that the addition of CeO2 to Co3O4 stabilizes the hcp cobalt structure at 

reforming temperatures up to 600°C. These authors claim that hexagonal close-packed 

(hcp) cobalt possesses higher activity than face-centered cubic (fcc) cobalt. 

The addition of Ce to Co/MA catalyst significantly increased the hydrogen 

selectivity in the steam reforming of ethanol [14]. Moreover, it decreased the carbon 

amount deposited under reforming conditions althought it is still important. Some 

results are shown in Table 3. In this work, the influence of H2O:C2H5OH molar ratio in 

carbon accumulation rates and in activity is investigated. 

In Figure 1, the product distribution is shown for different H2O:C2H5OH molar ratios 

(MR). The water concentration was varied from 38% to 60% and the ethanol 

concentration was kept constant at 7.8 mol%. In all the cases the catalyst showed a high 

ethanol conversion at 650°C and W/FC2H5OH= 50 g min mol
−1

. The main products were 

H2, CO2, CO and lower amounts of CH4 and C2H4O, which were kept nearly constant 

during 420 min in stream. The absence of ethylene among products could be an 

indication that carbonaceous deposits observed (see further) via polymerization of C2 is 

excluded. The selectivity to CH4 was between 5 and 6 % The product distributions for 

MR: 7 and 8 were very similar. 

The influence of MR on ethanol conversion, hydrogen yield and selectivity to COx is 

shown in Figures 2 and 3. The conversion is almost not affected probably due to the 

high activity of the catalyst. In literature, a maximum in ethanol conversion has been 

reported when the reaction was studied over Ni catalysts with a highly diluted feed 

(1.6% of ethanol), a MR= 5 and negligible deactivation conditions [20].  
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The hydrogen yield shows an increase from 5.2 to 5.9 molH2/mol C2H5OH with the 

increasing MR at the reation temperature used in this work. This increase could be 

related to: (i) a contribution of water-gas shift reaction (CO + H2O →  CO2 + H2) which 

favors the formation of CO2 and H2 and (ii) a higher rate velocity of gasification, 

according to the stoichiometric equation: C(A) + 2 H2O →  CO2 + 2 H2 being C(A) 

amorphous carbon (ΔG 0

650 C = -24.5 kJ mol
-1

). Lin et al. [19] have reported that the 

addition of 10wt% of Ce to Co3O4 had an important promotion effect with elevated CO2 

production accompanied with elevated H2 production. They have suggested a significant 

water-gas shift activity at 600°C under reforming conditions.  

The selectivity to CO2 increases and selectivity to CO decreases when increasing the 

H2O:C2H5OH molar ratio, Figure 3. Avila-Neto et al. [13] in the ethanol steam 

reforming reaction using a Co(12%)/MgAl2O4 catalyst have also reported an increase in 

hydrogen selectivity and in the CO2/CO ratio when the H2O:C2H5OH molar ratio 

increases from 3 to 12. They have suggested that increasing the molar ratio in the feed 

changes the Co
0
/Co

2+
 ratio, the occurrance of Water Gas Shift reaction and the acidic 

properties of catalytic surface. 

Other important consequence of increasing MR is the improved resistance of 

deactivation. The amount of carbon deposited on the catalyst used with different MR 

was determined by TG-TPO and EDX, Table 4. In all the cases TG-TPO shows an 

important weight loss between 245 and 630°C which was attributed to the carbon 

burning [21, 22] and oxidation of metallic particles. TG results reveal a significant 

decrease in the %C when increasing MR. Thus, the formation of carbon decreases in a 

70 % when increasing the MR from 4.8 to 8 at 650°C. Besides, the burning temperature 

tend to decrease suggesting a lower extent of graphitization [23] and/or different 

structures of carbonaceous fibers (parallel or fishbone). Ros et al. have reported that the 
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maximum oxidation rate for parallel fiber occurs at a lower temperature [24]. The 

parallel fibers are characterized by a center hole and the metallic particle on the tip. The 

accumulation rates of carbon expressed as mgcarbon g
1

cat

 h
-1

 are near to others in literature 

[13]. From Figure 4, the accumulation rate of carbon seems to reach a nearly constant 

value for MR higher than 6. Taking into account these results and the previous studies 

about the thermal balance in the ethanol steam reforming reaction [17], a molar ratio in 

the feed around 6 could be suggested as the optimum. The feed composition affects the 

re-oxidation of metallic Co and the transient exchange between Co
0
 and Co

2+ 
under 

reaction [25]. It has been reported that the Co
2+

/Co
0 

ratio has an important role in the 

catalytic deactivation [13, 26]. Passos et al. [26] have claimed that a Co
2+

/Co
0
 ratio 

around 1/3 on Co/Al2O3 catalysts equilibrates the ethanol conversion and carbon 

oxidation. The oxidation state of cobalt species under different water:ethanol molar 

ratios during the ethanol steam reforming reaction is under study.  

The SEM micrographs of the used catalysts are shown in Figure 5. The images reveal 

an important amount of filaments for the sample used with MR=4.8, which substantially 

decreases when increasing MR. In spite of carbon amount, the activity is almost 

constant. This behavior is suggesting that the metallic Co is exposed at the tip of the 

fiber (justifying the negligible deactivation observed during more than 400 min on 

stream). A fraction of amorphous carbon could also be deposited on the support and 

could be removed by gasification as it was suggested above. 

 

 

CONCLUSIONS 

 

 

A Co(8%p/p)/MgAl2O4 catalyst promoted with 5 wt.%Ce was investigated in the 

ethanol steam reforming reaction with different H2O:C2H5OH molar ratios at 650°C. A 

  

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



decrease in the CO/CO2 ratio was accompanied with a high hydrogen production 

suggesting a significant water gas shift activity and the occurrence of the gasification 

reaction. A higher H2O:C2H5OH molar ratio increases the hydrogen production and 

decreases de CO amount without affecting the activity substantially. 

The ethanol conversion was nearly constant during 7 h in time on stream although 

carbonaceous deposits were detected by TG-TPO and SEM-EDX. It could be inferred 

that an important fraction of Co
0
 is exposed on the filament tips and /or other 

carbonaceous species could also be deposited on the support surface and removed by 

gasification. The accumulation carbon rate and the amount of filaments clearly 

decreased when increasing H2O:C2H5OH molar ratio from MR=4.8 to 8. The observed 

improvements for values higher than 6 were less significant. Taking into account these 

results and previous studies about the thermal balance in ethanol steam reforming, a 

molar ratio in the feed around 6 could be suggested as the optimum. 
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FIGURE CAPTIONS 

 

Figure 1. Product distribution in the etanol steam reforming reaction over Co/Ce/MA 

catalyst at 650 ºC, W/FC2H5OH= 50 g min mol
−1

, initial ethanol concentration= 7.8 mol 

%, atmospheric pressure and different H2O/C2H5OH molar ratios (MR). : CO2, : 

CO, : CH4, : C2H4O, : mol H2/mol C2H5OH.  

 

Figure 2. Effect of H2O/ C2H5OH molar ratio on ethanol conversion, , and hydrogen 

yield, . Reaction temperature: 650 ºC, W/FC2H5OH= 50 g min mol
−1

, initial ethanol 

concentration= 7.8 mol % and atmospheric pressure. 

 

Figure 3. Effect of H2O/ C2H5OH molar ratio on selectivity to CO, , and CO2 ,. 

Reaction temperature= 650 ºC, W/FC2H5OH= 50 g min mol
−1

, initial ethanol 

concentration= 7.8 mol % and atmospheric pressure. 

 

Figure 4: Accumulation rate of carbon under ethanol steam reforming as a function of 

H2O/ C2H5OH molar ratio. Reaction temperature= 650 ºC, W/FC2H5OH= 50 g min mol
−1

, 

initial ethanol concentration= 7.8 mol % and atmospheric pressure. 

 

Figure 5. SEM images of Co/Ce/MA catalyst used in ethanol steam reforming at 

different H2O/C2H5OH molar ratios: MR= a) 4.8, b) 6, c) 7 and d) 8. 
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Figure 5 

 

a) b) 

c) d) 



Table 1. Initial feed conditions 

 

MR 

H2O/C2H5OH 

mol/mol 

H2O 

mol % 

C2H5OH  

mol % 

W/FC2H5OH  

g min mol
−1

 

4.85 37.86 7.81 49.0 

6.00 46.75 7.79 49.8 

7.00 54.55 7.79 50.4 

7.86 60.14 7.65 51.2 

 

 

Table 2. Characteristics of Co/Ce/MA fresh catalyst 

 

SpBET 

g m
−2

 

Chemical composition, wt.% 

          Co                        Ce          

XRD  

Phases 

TPR Result 

Temperature, °C 

1
st
 Peak          2

nd
 Peak     

73.6          6.5                        7.8      MgAl2O4, 

Co3O4, CeO2 

428  687  

Co
3+

/Co
2+

 Co
δ+

 

Nominal loading: 8.0 wt% Co and 5.0 wt.% Ce
 

Co
δ+ 

: Co species strongly interacting  with MgAl2O4. 

 

 

 

Table 3. Catalytic results in the ethanol steam reforming over Co/MA with and without Ce 

addition [14] 

 

 

Catalyst XC2H5OH 

% 

RCO/ CO2 SC2H4O 

 % 

mol H2/mol 

C2H5OH 

TG-OTP 

       %C         Tburned,°C 

Co/MA 90 1.08 27 3.3 30.2 521 

Co/Ce/MA 99.9 0.83 3 5.2 22.9 496 
Reaction conditions: T= 650°C; H2O:C2H5OH molar ratio = 4.8; W/FC2H5OH= 50 g min mol

−1
. 

 

 

Table 4. Amount of carbon on Co/Ce/MA catalyst after being used in reaction 

 

MR 

H2O/C2H5OH 

Tburned, ºC %CTG-TPO %CEDX 

4.8 496 22.9 62.1 

6 435 7.6 28.2 

7 401 9.5 35.0 

8 444 6.8 13.2 

 

Table
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