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ABSTRACT

The growing popularity of massively accessed Web applications that store and analyze
large amounts of data, being Facebook, Twitter and Google Search some prominent
examples of such applications, have posed new requirements that greatly challenge tra-
ditional RDBMS. In response to this reality, a new way of creating and manipulating data
stores, known as NoSQL databases, has arisen. This paper reviews implementations of
NoSQL databases in order to provide an understanding of current tools and their uses.
First, NoSQL databases are compared with traditional RDBMS and important concepts are
explained. Only databases allowing to persist data and distribute them along different
computing nodes are within the scope of this review. Moreover, NoSQL databases are
divided into different types: Key-Value, Wide-Column, Document-oriented and Graph-
oriented. In each case, a comparison of available databases is carried out based on their
most important features.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Relational databases or RDBMSs (Relational Database
Management Systems) have been used since the 1970s
and, as such, they can certainly be considered a mature
technology to store data and their relationships. However,
storage problems in Web-oriented systems pushed the
limits of relational databases, forcing researchers and
companies to investigate non-traditional forms of storing
user data [105]. Today's user data can scale to terabytes per
day and they should be available to millions of users
worldwide under low latency requirements.
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The analysis and, in particular, the storage of that
amount of information is challenging. In the context of a
single-node system, increasing the storage capacity of any
computational node means adding more RAM or more
disk space under the constraints of the underlying hard-
ware. Once a node reaches its storage limit, there is no
alternative but to distribute the data among different
nodes. Traditionally, RDBMSs systems were not designed
to be easily distributed, and thus the complexity of adding
new nodes to balance data is high [67]. In addition, data-
base performance often decreases significantly since joins
and transactions are costly in distributed environments
[19,86]. All in all, this does not mean RDBMSs have became
obsolete, but rather they have been designed with other
requirements in mind and work well when extreme scal-
ability is not required.

Precisely, NoSQL databases have arisen as storage
alternatives, not based on relational models, to address the
mentioned problems. The term “NoSQL” was coined by
Carlo Strozzi in 1998 to refer to the open-source database
called NoSQL not having an SQL interface [108]. In 2009,
the term resurfaced thanks to Eric Evans in the context of
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an event about distributed databases.” Since then, some
researchers [58,57] have pointed out that new information
management paradigms such as the Internet of Things
would need radical changes in the way data is stored. In
this context, traditional databases cannot cope with the
generation of massive amounts of information by different
devices, including GPS information, RFIDs, IP addresses,
Unique Identifiers, data and metadata about the devices,
sensor data and historical data.

In general, NoSQL databases are unstructured, i.e., they
do not have a fixed schema and their usage interface is
simple, allowing developers to start using them quickly. In
addition, these databases generally avoid joins at the data
storage level, as such operations are often expensive,
leaving this task to each application. The developer must
decide whether to perform joins at the application level or,
alternatively, denormalize data. In the first case, the deci-
sion may involve gathering data from several physical
nodes based on some criteria and then join the collected
data. This approach requires more development effort but,
in recent years, several frameworks such as MapReduce
[31] or Pregel [74] have considerably eased this task by
providing a programming model for distributed and par-
allel processing. In MapReduce, for example, the model
prescribes two functions: a map function that process key-
value pairs in the original dataset, producing new pairs,
and a reduce function that merges the different results
associated to each pair produced by the map function.

Instead, if denormalization is chosen, multiple data
attributes can be replicated in different storage structures.
For example, suppose a system to store user photos. To
optimize those queries for photos belonging to users of a
certain nationality, the Nationality field may be replicated
in the User and Photo data structures. Naturally, this
approach rises special considerations regarding updates of
the Nationality field, since inconsistencies between the
User and Photo data structures might occur.

Many NoSQL databases are designed to be distributed,
which in turn allows increasing their capacity by means of
just adding nodes to the infrastructure, a property also
known as horizontal scaling. In NoSQL databases (as in
most distributed database systems), a mechanism often
used to achieve horizontal scaling is sharding, which
involves splitting the data records into several indepen-
dent partitions or shards using a given criterion, e.g. the
record ID number. In other cases, the mechanism
employed is replication, i.e. mirroring data records across
several servers, which while not scaling well in terms of
data storage capacity, allows increasing throughput and
achieving high availability. Both sharding and replication
are orthogonal concepts that can be combined in several
ways to provide horizontal scaling.

In most implementations, the hardware requirements
of individual nodes should not exceed those of a tradi-
tional personal computer, in order to reduce the costs of
building such systems and also to ease the replacement of
faulty nodes.

2 NoSQL Meetup 2009, http://nosql.eventbrite.com/.

NoSQL databases can be divided into several categories
according to the classification proposed in [113,19,67,49],
each prescribing a certain data layout for the stored data:

® Key-Value: These databases allow storing arbitrary data
under a key. They work similarly to a conventional hash
table, but by distributing keys (and values) among a set
of physical nodes.

® Wide Column or Column Families: Instead of saving data
by row (as in relational databases), this type of data-
bases store data by column. Thus, some rows may not
contain part of the columns, offering flexibility in data
definition and allowing to apply data compression
algorithms per column. Furthermore, columns that are
not often queried together can be distributed across
different nodes.

® Document-oriented: A document is a series of fields with
attributes, for example: name=*“John”, lastname="
Smith” is a document with 2 fields. Most databases of
this type store documents in semi-structured formats
such as XML [16] (eXtensible Markup Language), JSON
[28] (JavaScript Object Notation) or BSON [77] (Binary
JSON). They work similarly to Key-Value databases, but
in this case, the key is always a document's ID and the
value is a document with a pre-defined, known type
(e.g., JSON or XML) that allows queries on the docu-
ment's fields.

Moreover, some authors also conceive Graph-oriented
databases as a fourth category of NoSQL databases
[49,113]:

® Graph-oriented: These databases aim to store data in a
graph-like structure. Data is represented by arcs and
vertices, each with its particular attributes. Most Graph-
oriented databases enable efficient graph traversal, even
when the vertices are on separate physical nodes.
Moreover, this type of database has received a lot of
attention lately because of its applicability to social data.
This attention has brought accompanied new imple-
mentations to accommodate with the current market.
However, some authors exclude Graph-oriented data-
bases from NoSQL because they do not fully align with
the relaxed model constraints normally found in NoSQL
implementations [19,67]. In this work, we decided to
include Graph-oriented databases because they are
essentially non-relational databases and have many
applications nowadays [2].

In the following sections we introduce and discuss the
most prominent databases in each of the categories men-
tioned before. Table 1 lists the databases analyzed,
grouped by category. Although there are many products
with highly variable feature sets, most of the databases are
immature compared to RDBMSs, so that a very thorough
analysis should be done before choosing a NoSQL solution.
Some factors that may guide the adoption of NoSQL as data
storage systems are:

® Data analysis: In some situations it is necessary to extract
knowledge from data stored in a database. Among the
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Table 1
Databases analyzed grouped by category.

Category NoSQL databases analyzed

Key-Value (Section 4) Hazelcast [48]

Redis [97]
Membase/Couchbase [26]
Riak [11]

Voldemort [70]
Infinispan [75]
Wide-Column (Section 5) HBase [40]
Hypertable [54]
Cassandra [64]
Document-Oriented (Section 6) CouchDB [68]
MongoDB [21]
Terrastore [15]
RavenDB [50]
Graph-Oriented (Section 7) Neo4] [80]
InfiniteGraph [83]
InfoGrid [81]
HypergraphDB [55]
AllegroGraph [1]
BigData [109]

approaches for running jobs over big data stands out
MapReduce [31]. In many of these processing frame-
works, the developer must code the query in a given
imperative programming language. Although this is
much more complex than just executing a SELECT...
GROUP BY query against the database, it is more suitable
for large data volumes. Languages such as Pig> and Hive
[112] simplify the development of applications with
MapReduce, significantly reducing its learning curve.

® Scalability: NoSQL databases are designed to store large
amounts of data or to support demanding processing by
adding new nodes to the system. Additionally, they are
usually designed under a “let it crash” philosophy,
where nodes are allowed to crash and their replicas are
always ready to receive requests. This type of design
provides a sense of robustness in terms of system fail-
over capabilities. In some cases, when the crash seems
to be permanent, the data is automatically redistributed
among the available nodes in the computer cluster.

® Flexible schema: The NoSQL databases presented in this
paper do not have a fixed schema. Key-Value databases
do not make assumptions about the values of keys
(except for Redis and Hazelcast which allow users to
store lists and sets). Document-oriented and Wide
Column databases tolerate discrepancies between
fields/rows of elements. In Graph-oriented databases,
vertices and arcs can have any structure. Oppositely,
relational databases are composed of tables with a fixed
scheme and all tuples have the same number of fields.

® Fast deployment: In general terms, NoSQL systems can
be easily deployed in a cluster. In addition, replication

3 Apache Pig Web Site, https://pig.apache.org/.

and sharding configuration are usually automatic,
speeding up their adoption.

® [ocation awareness: In general, as NoSQL databases are
designed to be distributed, the location of the data in
the cluster is leveraged to improve network usage,
usually by caching remote data, and making queries to
those nodes located closer in the network topology (e.g.,
nodes located in the same local-area network). This
mechanism is often referred to as data affinity.

Moreover, the choice of a NoSQL database must be based
on the type of data to be stored as well as the form of
access (read and write). An extreme example would be a
Web site that gets millions of hits per second whose data
may drastically change to support new functionality. Face-
book, Google Search and Amazon are some notable exam-
ples. In these systems, data may grow without estimable
bounds and, therefore, the system infrastructure must
allow increasing storage space without losing perfor-
mance. In these situations, the use of relational databases
is scarce and several non-relational technologies can
accommodate these requirements.

It is worth noting that there is a minority of hybrid
databases that store more than one data layout. Examples of
multi-layout databases are OpenLink Virtuoso [35], OrientDB
[82] and AlchemyDB [94]. However, we will not discuss these
efforts in a separate section as the mechanisms for sup-
porting the different layouts do not conceptually differ from
those offered by single-layout databases.

As an alternative to NoSQL and traditional RDMBSs,
new database systems have recently emerged under the
name of “NewSQL databases” [104]. NewSQL databases are
relational databases supporting sharding, automatic
replication and distributed transaction processing, i.e.,
providing ACID guarantees even across shards. Examples
of this type of database are NuoDB,* VoltDB® and Clustrix®
As an example, Google's Spanner [25] is a globally dis-
tributed database system created at Google that supports
distributed transactions, designed as a replacement to
Megastore [9], a BigTable-based storage. Nevertheless, like
NoSQL databases, NewSQL databases must undergo a strict
analysis before being adopted by any organization.

It is worth mentioning that although this work aims at
assisting in the selection of a NoSQL database for a given
situation, the analysis cannot be reduced only to bench-
marking each database in a use case context. This is due to
the diversity of techniques, implementations and querying
methods that NoSQL databases exhibit, which makes it
hard to establish a common ground of comparison.
Nonetheless, benchmarking frameworks for NoSQL data-
bases are mentioned in Section 2 since they are useful for
understanding the performance of NoSQL databases under
different workloads. As such, these frameworks might
complement in practice the selection criteria presented in
this paper.

4 NuoDB Web Page, http://www.nuodb.com/.
5 VoltDB Web Page, http://voltdb.com/.
6 Clustrix Web Page, http://www.clustrix.com/.
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The rest of the paper is organized as follows. Section 2
explores related reviews and benchmarking tools used to
compare NoSQL databases. Section 3 describes some pre-
liminary concepts that need to be explained before starting
with the description and analysis of the different imple-
mentations of databases available on the market. Section 4
introduces Key-Value databases. Section 5 presents Wide
Column or Column Families databases. Document-oriented
and Graph-oriented databases are described in Sections 6
and 7, respectively. Section 8 offers a discussion about the
application of NoSQL databases and when they should be
considered in the selection of a data storage support.
Finally, Section 9 presents conclusions, perspectives on the
findings and tools described, as well as future trends in
the area.

2. Related works

There are some works listing and comparing NoSQL
databases, exposing their virtues and weaknesses. Catell
[19] analyzed and compared several databases with
respect to their concurrency control methods, where they
store data (i.e., in main memory or disk), the replication
mechanism used (synchronous or asynchronous), and
their transaction support. This comparison includes both
commercial and non-commercial databases but does not
include Graph-oriented databases, which are generally
considered part of NoSQL. As indicated previously, graphs
are the essential data layout of Web applications such as
social networks [63]. Similarly, Padhy et al. [88] present a
comparison of six relevant NoSQL databases, including
databases of different type or schema model. They also
exclude from their analysis Graph-oriented databases and
other relevant implementations of NoSQL databases. Hecht
and Jablonski [49] present another comparison between
NoSQL databases, including graph databases. The authors
focus on data partitioning and replication aspects over 14
NoSQL databases, whereas in this paper we perform a
more in-depth analysis over 19 databases.

Other studies [110,107,115] list the most influential
NoSQL databases along with their characteristics and basic
concepts. However, they do not include a full comparison
between databases, since they only expose some of their
advantages and disadvantages.

There are other studies that analyze NoSQL databases
using a given dataset or application. For example, Sakr
et al. [95] carried out a thorough analysis of data stores
suited for Cloud Computing environments [18], which
includes NoSQL databases. The authors present a set of
goals that a data-intensive application should accomplish
in the Cloud. They also describe essential structures and
algorithms of well-known databases such as BigTable and
Dynamo. In addition, they compare several APIs related to
massive data query and manipulation.

Another comparison of NoSQL databases in this line is
presented by Orend [86]. The ultimate goal of the study was
to select a NoSQL solution for a Web Collaboration and
Knowledge Management Software. MongoDB, a Document-
oriented database, was selected from the available data-
bases because of its support for queries on multiple fields.
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Then, the study makes a performance comparison of
MongoDB against MySQL and HyperSQL.

Todurica and Bucur [113] provide an extensive list of
available NoSQL databases, and benchmark two of them -
Cassandra and HBase - against MySQL and Sherpa, a var-
iation of MySQL. Their results indicate that, at high load,
Cassandra and HBase keep their response latency relatively
constant, whereas MySQL and Sherpa increase their
response latency. On the other hand, Lith and Mattson [71]
present a study based on an application of their own where
a MySQL-based approach gives better performance than
using a NoSQL solution. In the study, five NoSQL databases
were considered. The authors claim that the difference in
performance is due to the application data structure and
the way it is accessed.

Although this work does not focus on database
benchmarking, it is worth mentioning some of the existing
benchmarks and benchmarking tools that may comple-
ment the analysis carried out in this review. Benchmarks
are very important to determine strengths and weak-
nesses of each database under different stress scenarios
and deployment environments. YCSB [23] (Yahoo Cloud
Serving Benchmark) is one of the most relevant frame-
works for benchmarking both NoSQL and RDBMS data-
bases. It provides an extensible framework for querying
databases and a workload generator to benchmark various
access patterns. Recent extensions of YCSB can be found in
the literature, including the use of distributed clients [89]
and support for transactional operations [33]. LinkBench
[6] takes a similar approach to YCSB, but targets graph-
structured data, in particular, the Facebook social graph.
Other efforts explore different types of databases and
workloads. For example, HiBench [53] is designed for
Hadoop and uses a set of microbenchmarks as well as real-
world application workloads. In an attempt to create real-
world scenarios, some benchmarks such as BigBench [41]
and BigDataBench [117] focus their efforts on querying
different data types, such as structured, semi-structured
and unstructured data, under diverse types of workload.

3. Background concepts

This section covers background concepts required to
understand the decisions taken in the design of NoSQL
databases.

3.1. The CAP theorem

A fundamental trade-off that affects any distributed
system forces database designers to choose only two out of
these three properties: data consistency, system avail-
ability or tolerance to network partitions. This intrinsic
limitation of distributed systems is known as the CAP
theorem, or Brewer's theorem [44], which states that it is
impossible to simultaneously guarantee the following
properties in a distributed system:

® (Consistency: If this attribute is met, it is guaranteed that
once data are written they are available and up to date
for every user using the system.
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Table 2
Grouping of NoSQL systems grouped by data layout and CAP properties.

Data layout AP CP AC
Key-Value (Section 4) Riak, Infinispan, Redis, Voldemort, Hazelcast Infinispan, Membase/CouchBase, Berke- Infinispan
leyDB, GT.M
Wide Column (Section 5) Cassandra HBase, Hypertable -
Document-oriented MongoDB, RavenDB , CouchDB, Terrastore MongoDB -
(Section 6)

Graph-oriented (Section 7) Neo4], HypergraphDB, BigData, AllegroGraph, InfoGrid, InfiniteGraph -

InfiniteGraph

® Availability: This property refers to offering the service
uninterruptedly and without degradation within a cer-
tain percentage of time.

® Partition Tolerance: If the system meets this property,
then an operation can be completed even when some
part of the network fails.

In 2000, Eric Brewer conjectured that at any given
moment in time only two out of the three mentioned
characteristics can be guaranteed. A few years later, Gilbert
and Lynch [44] formalized and proved this conjecture,
concluding that only distributed systems accompli-
shing the following combinations can be created: AP
(Availability-Partition Tolerance), CP (Consistency-Partition
Tolerance) or AC (Availability-Consistency). Table 2 sum-
marizes NoSQL databases reviewed in this paper organized
according to the supported data layout. Within each group,
databases are further grouped according to the properties
of the CAP theorem they exhibit. As illustrated, most of the
surveyed databases fall in the “AP” or the “CP” group. This
is because resigning P (Partition Tolerance) in a distributed
system means assuming that the underlying network will
never drop packages or disconnect, which is not feasible.
There are few exceptions to this rule given by NoSQL
databases - e.g., Infinispan [75] - that are able to relax “P”
while providing “A” and “C”. Because some databases, such
as Infinispan and MongoDB, can be configured to provide
full consistency guarantees (sacrificing some availability)
or eventual consistency (providing high availability), they
appear in both AP and CP columns.

3.2. ACID and BASE properties

In 1970, Jim Gray proposed the concept of transaction
[46], a work unit in a database system that contains a set of
operations. For a transaction to behave in a safe manner it
should exhibit four main properties: atomicity, con-
sistency, isolation and durability. These properties, known
as ACID, increase the complexity of database systems
design and even more on distributed databases, which
spread out data in multiple partitions throughout a com-
puter network. This feature, however, simplifies the work
of the developer by guaranteeing that every operation will
leave the database in a consistent state. In this context,
operations are susceptible to failures and delays of the
network itself. Extra precautions should be taken to
guarantee the success of a transaction.

Distributed RDBMSs allow, for some time now, to
perform transactions using specific protocols to maintain

the consistency of data across the partitions. An example
of this type of RDBMs is Megastore [9] a distributed
database that supports ACID transactions in specific
tables and limited transaction support across different
data tables. Megastore is supported by BigTable [20]
(Section 5.1), but unlike BigTable, it provides a schema
language that supports hierarchical relationships
between tables, providing a semi-relational model.
Although Megastore did not provide good performance
[25] (in comparison to using directly BigTable), several
applications needed the simplicity of the schema and the
guarantees of replica synchronization. As in many data-
bases, replicas in Megastore are synchronized using a
variation of the Paxos algorithm [66]. The idea of hier-
archical semi-relational schemas was then used by
Spanner, a global-scale database that supports transac-
tions, based on a timestamp API implemented using GPS
and atomic clocks. These high-precision timestamps
allowed Spanner to reduce the latency of transaction
processing. Spanner thus served as the new supporting
storage of the revenue-critical AdSense service backend,
called F1 [100], which was previously supported by a
sharded MySQL-based solution. F1 is a globally consistent
and replicated database developed for supporting Google
advertising services. F1 is a rather extreme example
showing how hard building consistent distributed data-
bases is, while, at the same time, meeting performance
requirements.

In these systems, one of the most commonly used
protocols for this purpose is 2PC (Two-phase commit),
which has been instrumental in the execution of transac-
tions in distributed environments. The application of this
protocol has spread even to the field of Web Services [27],
allowing transactions in REST (REpresentational State
Transfer) architectures otherwise not possible [29]. The
2PC protocol consists of two main parts:

1. A stage in which a coordinator component asks to the
databases implicated by the transaction to do a pre-
commit operation. If all of the databases can fulfill the
operation, stage 2 takes place. Conversely, if any of the
databases rejects the transaction (or fails to respond),
then all databases roll back their changes.

2. The coordinator asks the databases to perform a commit
operation. If any of the databases rejects the commit,
then a rollback of the databases is carried out.

According to the CAP theorem the use of a protocol, such
as 2PC (i.e., in a CP system) impacts negatively on system
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availability. This means that if a database fails (e.g., due to
a hardware malfunction), all transactions performed dur-
ing the outage will fail. In order to measure the extent of
this impact, an operation availability can be calculated as
the product of the individual availability of the compo-
nents involved in such operation. For example, if each
database partition has a 99.9% of availability, i.e., 43 min
out of service are allowed per month, a commit using 2PC
over 2 partitions reduces the availability to 99.8%, which is
translated to 86 min per month out of service [91].

Additionally, 2PC is a blocking protocol, which means
that the databases involved in a transaction cannot be
used in parallel while a commit is in progress. This
increases system latency as the number of transactions
occurring simultaneously grows. Because of this, many
NoSQL databases approaches decided to relax the con-
sistency restrictions. These approaches are known as BASE
(Basically Available, Soft State, Eventually Consistent) [91].
The idea behind the systems implementing this concept is
to allow partial failures instead of a full system failure,
which leads to a perception of a greater system availability.

The design of BASE systems, and in particular BASE
NoSQL databases, allows certain operations to be per-
formed leaving the replicas (i.e., copies of the data) in an
inconsistent state. As its name indicates, BASE systems
prioritize availability by introducing replicated soft state,
i.e,, each partition may fail and be reconstructed from
replicas. Besides, these systems also establish a mechan-
ism to synchronize replicas. Precisely, this mechanism is
known as Eventual Consistency, a technique that solves
inconsistencies based on some criteria that ensures to
return to a consistent state. Although Eventual Consistency
provides no guarantees that clients will read the same
value from all replicas, the bounds for stalled reads are
acceptable for many applications considering the latency
improvements. Moreover, the expected bounds for stalled
reads have been analyzed by Bailis et al. [8]. For example,
the Cassandra NoSQL database [64] implements the fol-
lowing high-level update policies:

® Read-repair: Inconsistencies are corrected during data
reading. This means that writing might leave some
inconsistencies behind, which will only be solved after a
reading operation. In this process, a coordinator com-
ponent reads from a set of replicas and, if it finds
inconsistent values, then it is responsible for updating
those replicas having stale data, slowing the operation.
It is worth noticing that conflicts are only resolved for
the data involved in the reading operation.

Table 3
Configurations of eventual consistency.

® Write-repair: When writing to a set of replicas, the
coordinator may find that some replicas are unavailable.
Using a write-repair policy, the updates are scheduled
to run when the replicas become available.

® Asynchronous-repair: The correction is neither part of
the reading nor of the writing. Synchronization can be
triggered by the elapsed time since the last synchroni-
zation, the amount of writes or other event that may
indicate that the database is outdated.

In addition to consistency of reads and writes, in dis-
tributed storage systems the concept of durability arises,
which is the ability of a given system of persisting data
even in the presence of failures. This causes data to be
written in a number of non-volatile memory devices
before informing the success of an operation to a client.
In eventually consistent systems there are mechanisms to
calibrate the system durability and consistency [116]. Next,
we will clarify these concepts through an example. Let N
be the number of nodes a key is replicated on, W the
number of nodes needed to consider a writing as success-
ful and R the number of nodes where a reading is
performed on. Table 3 shows different configurations of
W and R as well as the result of applying such configura-
tions. Each value refers to the number of replicas needed
to confirm an operation success.

Strong Consistency is reached by fulfilling W+R > N, i.e.,
the set of writings and readings overlaps such that one of
the readings always obtain the latest version of a piece of
data. Usually, RDBMs have W=N, i.e., all replicas are per-
sisted and R=1 since any reading will return up-to-date
data. Weak Consistency takes place when W+R <N, in
which readings can obtain outdated data. Eventual Con-
sistency is a special case of weak consistency in which
there are guarantees that if a piece of data is written on
the system, it will eventually reach all replicas. This will
depend on the network latency, the amount of replicas and
the system load, among other factors.

If writing operations need to be faster, they can be
performed over a single or a set of nodes with the dis-
advantage of less durability. If W=0, the client perceives a
faster writing, but the lowest possible durability since
there is no confirmation that the writing was successful. In
the case of W=1, it is enough that a single node persists
the writing for returning to the client, thereby enhancing
durability compared to W=0. In the same way it is pos-
sible to optimize data reading. Setting R=0 is not an
option, since the same reading confirms the operation. For
reading to reach the optimum, R=1 can be used. In some

Reading (R)

Reading is performed from a single replica (optimized for
readings)

Reading is performed from a given set of replicas (conflicts on
the client side might need to be solved)

Value Writing (W)
No confirmation is awaited from any node (it can fail) N/A
1 A single node confirmation is enough (optimized for
writings)
M, with M <N Confirmations of several replicas are awaited
(Quorum)
N (all nodes)

ability, but increases durability)

Confirmations of all replicas are awaited (reduces avail- Reading is performed from all replicas increasing the reading

latency
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situations (e.g., if using Read-repair), it might be necessary
to read from all the nodes, this is R=N, and then merge the
different versions of the data, slowing down such opera-
tion. An intermediate scheme for writing or reading is
quorum, in which the operation (reading or writing) is
done over a subset of nodes. Frequently, the value used for
quorum is N/2+1, such that 2 subsequent writings or
readings share at least one node.

3.3. Comparison dimensions

In this paper, available NoSQL databases are analyzed
and compared across a number of dimensions. The
dimensions included in the analysis are expected to help
in the decision of which NoSQL database is the most
appropriate for a given set of requirements of the user's
choice. The dimensions considered are the following:

® Persistence: It refers to the method of storing data in
non-volatile or persistent devices. Several alternatives
are possible, for example, indexes, files, databases and
distributed file systems. Another alternative used in
some cases is to keep data in RAM and periodically
make snapshots of them in persistent media.

® Replication: It refers to the replication technique pro-
vided by the database to ensure high availability. Data is
replicated in different computational nodes as backups
in case the original node fails when performing writing
operations on the NoSQL database. Replication can also
mean an increase in performance when reading or
writing from the replicas is permitted and, thus,
relieving the load on the original node. Depending on
the consistency level desired, the clients may be
allowed to read stalled versions of the data from the
replicas. A classical example of replication is the Mas-
ter-Slave replication mechanism, in which a “master”
node receives all the write operations from the client
and replicates them on the “slave” node. When a client
is allowed to write on any replica the mechanism is
called Master-Master. Using such scheme may lead to
inconsistencies among the different replicas.

® Sharding: Data partitioning or sharding [73] is a techni-
que for dividing a dataset into different subsets. Each
subset is usually assigned to a computing node, so as to
distribute the load due to executing operations. There
are different ways of sharding. An example would be
hashing the data to be stored and divide the hashing
space into multiple ranges, each assigned to a shard.
Another example is to use a particular field from the
data schema for driving partitioning. A database that
supports sharding allows to decouple the developer
from the network topology details, automatically mana-
ging node addition or remotion. Thus, sharding creates
the illusion of a single super node, while in fact there is
a large set of nodes.
In this paper, the Sharding dimension indicates whether
the database supports sharding and how it can be
configured. If sharding is not integrated into the data-
base functionality, then the client has to deal with the
partitioning of data among nodes.

® (Consistency: A large number of NoSQL databases are
designed to allow concurrent readings and/or writings
and, therefore, control mechanisms are used to main-
tain data integrity without losing performance. This
dimension indicates the type of consistency provided by
a database (ACID transactions or eventual consistency)
and the methods used to access data concurrently.

® API: It refers to the type of programming interface used
to access the database. In general, NoSQL databases in
the Web era allow access through the HTTP protocol.
However, accessing a database using an HTTP client is
cumbersome for the developer, and hence it is common
to find native clients in certain programming languages.
This dimension lists the programming languages that
have native clients for the current database. In addition,
the message format that is used to add or modify items
in the database is indicated.

® Query Method: It describes the methods to access the
database and lists the different ways of accessing these
methods through the database API. This dimension
indicates the strategies or query languages supported by
each database.

® mplementation Language: It describes the programming
language the database is implemented with. In some
cases, it may indicate a preference of the database
developer for a particular required technology.

Only databases that persist data on disk, providing a
considerable degree of durability, are analyzed in this
paper. That is, when a user performs a writing operation
on the database, data is eventually stored in a non-volatile
device such as a hard disk. Moreover, we considered only
databases that aim at increasing performance or storage
capacity by adding new nodes to the network. There are
several databases that store their data structures in main
memory [87,106] and use a persistent, disk-based log as a
backup (i.e., in case of power outages, the database must
be rebuilt from this backup). This new trend of in-memory
databases is often targeted to applications with low-
latency requirements, such as real-time applications. How-
ever, despite the sustained drop in prices of RAM memory,
the gap in costs with hard-disk drives is still noticeable,
especially if building a support for large-scale data.

4. Key-Value databases

Databases belonging to this group are, essentially, dis-
tributed hash tables that provide at least two operations:
get(key) and put(key, value). A Key-Value database maps
data items to a key space that is used both for allocating
key/value pairs to computers and to efficiently locate a
value, given its key. These databases are designed to scale to
terabytes or even petabytes as well as millions of simulta-
neous operations by horizontally adding computers.

A simple example of a key-value store, shown in Fig. 1,
is a distributed web content service where each key
represents the URL of the element and the value may be
anything from PDFs and JPEGs to JSON or XML documents.
This way, the application designers may leverage the
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Request: "/hotsale/summer" Node 1

URL
@ /reports/1 (PDF)

/user/photos/1 (JPEG)
/user/photos/3 (JPEG)

hash("/hotsale/summer")=1

Node 2
0 Node 1
1 Node 2 |:>
/airports/list (JSON)
/admin/users (XML)

/hotsale/summer| (JSON)

Fig. 1. A simple key-value store example for serving static web content.

nodes available in a cluster of machines to manage a large
number of requests and big amounts of web content.

The following sections enumerate some techniques
used in Key-Value databases. In Section 4.1 we describe
Consistent Hashing, a mechanism frequently used to dis-
tribute keys among nodes. In Section 4.2 we describe
Virtual Buckets, an alternative mechanism used to dis-
tribute keys among nodes. In Section 4.3, we describe a set
of techniques used by Dynamo [32], a Key-Value store
created by Amazon that influenced several other data-
bases. In Section 4.4 we describe some of the most
notorious Key-Value databases available.

4.1. Consistent hashing

Key-Value stores commonly allocate key/value pairs by
applying some hashing function to the key and using the
result to obtain a specific node of the physical network
where the value will be finally stored. The distribution of
keys using a standard hashing allocation mechanism (i.e.,
based on the amount of computers in the network) is
sensible to node failures, i.e., if one of the nodes is not
available, all the key/value pairs need to be reallocated
because of the change in the size of the network. Several
databases [32,103,48,11,75] take advantage of the concept
of Consistent Hashing [60,61] to deal with this situation.

Consistent Hashing models a key space of size K as a
circular array or key ring (i.e., the successor of key K—1 is
the 0 key). Thereby, the original key is hashed to fit the
[0,K) range and each of the N nodes in the system is
assigned a range of contiguous keys. In its simplest form,
Consistent Hashing assigns ranges of K/N keys to nodes,
although ranges can vary according to each node's char-
acteristics (larger ranges may be assigned to nodes with
larger capacity). If one of the nodes in the ring fails, only
the keys belonging to such node should be rebalanced,
putting them in the next node. Using this scheme, key
replication can be performed in the N—1 nodes succeed-
ing each node in the keyring.

The problem of using physical nodes for partitioning the
key space is that successive changes in the network, such as
the failure or addition of new nodes may unbalance the
distribution of keys among nodes (i.e., how many keys a
node is responsible for). This problem is further accentuated
when the network has heterogeneous hardware, for
example if a node is serving as failover of a node with
greater capacity.

Key Space

Node 1: A, C, F
Node 2:B,D, G
Node 3: E

Fig. 2. Example of Consistent Hashing with virtual nodes.

An improvement over this partitioning scheme is to
create virtual nodes, as proposed in Dynamo's [32] imple-
mentation. In this technique, instead of assigning a single
contiguous range of keys to each node, a node may be
responsible for one or more key ranges that act as virtual
nodes in the keyring. In consequence, when one node
crashes, its assigned key ranges are distributed among
different physical nodes. Similarly, when a new physical
node is added, it creates new virtual nodes in the keyring
and may receive data from different physical nodes.

Fig. 2 shows an example of using virtual nodes dis-
tribution. In the figure it can be seen that the virtual nodes
A, C and F are stored in the physical node 1, the virtual
nodes B, D and G in the physical node 2 and the virtual
node E on the physical node 3. In this example, the virtual
node A is responsible for storing the keys in the range (G,
Al. Also, the virtual node A is responsible for replicating
data about the keys on the precedent N—1 ranges. If N
equals to 2, A would be responsible for replicating the keys
in the range (F, G]. The rest of the virtual nodes behave
similarly.

If the physical node 2 fails, then the range of keys (F, G]
becomes part of the virtual node A, the range (A, B] moves
to the virtual node C and the range (C, D] to the virtual
node E. Then, the keyset is distributed among the physical
nodes 1 and 3.

4.2. Virtual buckets

Like Consistent Hashing, Virtual Buckets or vBuckets is
a technique introduced by Membase/CouchBase [26] to
overcome the problem of redistributing keys when a node
fails. Similar to Consistent Hashing, vBuckets provide a
level of indirection between keys and server addresses.
The aim of vBuckets is dividing the key space in a fixed
amount of vBuckets (e.g., 4096) and map every vBucket to
a server.

From a server perspective, a vBucket can be in one of
three states:

® Available: The current server contains the data about the
vBucket.
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Server 1l Server 2 Server 3

vBucket 1| A

vBucket 5 [ i

Fig. 3. Virtual Buckets example using 3 servers, a vBucket size of 5 and a
1: N replication scheme.

® Replica: The current server can only receive replica
requests for the current vBucket.

® Dead: The server cannot receive requests for the
vBucket.

From a client perspective, only one server can serve
requests for a given vBucket.

As a result, Available vBuckets can be replicated to
other servers by using the corresponding vBuckets marked
as Dead. In this way, replication can be set in a 1:N or a
chained configuration. In the first case, every vBucket
replicates to N servers. On the other hand, in a chained
configuration, a vBucket replicates to another server, and
in turn, the replicated vBucket has a replica on a third
server. Fig. 3 shows a possible vBuckets scenario where the
amount of vBuckets is 5 and the replication scheme is 1: N.
The vBuckets marked as “A” are available vBuckets,
whereas vBuckets marked as “R” are replicas.

4.3. Dynamo-based mechanisms

One of the most influential databases in the develop-
ment of highly scalable Key-Value databases is Amazon's
Dynamo [32]. Dynamo was used for the shopping cart and
session management service of Amazon, each supporting
tens of millions of requests. This database proved to be a
highly available system in addition to meet strong latency
requirements [32]. Then, Dynamo offers data storage and
access mechanisms that represent the inspiration of many
existing Key-Value databases.

The most important techniques involved in the imple-
mentation of Dynamo are introduced below:

Vector clocks: Dynamo provides eventual consistency,
which allows to achieve high availability. Inconsistencies
are solved during reading (read-repair), which implies that
a writing can return to the client before the actual writing
has spread to all replicas. The different values are unified
using a versioning scheme known as vector clocks [10,65].
Originally proposed by Leslie Lamport [65] in 1978, a
vector clock is a structure containing a list of pairs (phy-
sical node, counter). One vector clock is associated with
every version of every key/value pair. This versioning
scheme allows nodes to discard old versions of the same
object (if all counters are less or equal than the current

counters), or to reconcile conflicted versions. The latter
case arises when the same version of an object is modified
in different servers, leading to inconsistencies in the state
of that object. For example, if a user modifies the same
version of a shopping cart from different clients (e.g. a
notebook and a phone), these two modifications may be
handled by different servers. Due to eventual consistency,
the servers may not be aware of the modifications carried
out on other servers, creating two valid versions of the
same cart. The reconciliation mechanism can be automatic,
e.g. the different versions of a shopping cart can be merged
adding all items into a unique cart, which may involve that
items deleted by the user appear again in the cart.

Sloppy quorum and hinted handoff: Sloppy quorum
persists (or reads) an element on the first N available
nodes of a preference list when the node's replicas are not
available. Then, some copies of the data to be written can
be found in nodes that are not replicas of such data. When
this situation occurs, the node receives, along with the
data, a hint about the copy owner. This mechanism, known
as Hinted Handoff, along with Sloppy Quorum, allows the
client to return as soon as possible without waiting to
persist data in all replicas.

Merkle trees: For persistent failures in which hinted
copies cannot return to the original replica, elements of
the remaining replicas must be re-synchronized by
detecting outdated keys. Comparing the keys one by one
according to their hash value can take too long and con-
sume a lot of bandwidth. Dynamo uses a tree structure
known as Merkle Tree [78] where each node represents a
hash value, calculated starting from their children, which
in turn are also hashes. The leaves of the tree are the hash
values calculated using the stored keys. This allows a fast
comparison of sets of keys, but updating a key range when
a node fails can be expensive.

Dynamo implements all the concepts described above
to create a highly scalable and available system. However,
it is a proprietary system used within Amazon and only
accessible through the services provided by the company.
There are, nevertheless, several open-source imple-
mentations of Dynamo and other Key-Value databases that
can be installed in a network. The next section summarizes
some of the relevant databases in this line.

4.4. Discussion of Key-Value databases

Table 4 summarizes several relevant Key-Value data-
bases that support persistent storage and distribution.
Other databases such as Kyoto Cabinet [36], LevelDB [45],
Memcached [38], BerkeleyDB [85] and Scalaris [98] were
excluded from this review since they do not meet these
requirements.

The listed databases are Riak [11], Infinispan [75],
Hazelcast [48], Redis [97], Membase/CouchBase [26] and
Voldemort [70]. At the time of writing this review, all of
these databases were under active development and
heavily employed by some user community. This means
that each database is supported by a group of developers
releasing periodical updates, fixing bugs and incorporating
new functionality. Since adopting a currently active data-
base for a new project assures the existence of
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Table 4

Comparison of reviewed Key-Value databases.

Query method

Consistency Implementation API
language

Sharding

Replication

Persistence

Name

Get, MapReduce, Link

Walking

PBC (Protocol Buffer Client),
HTTP, Java, Erlang, C+ +,

PHP, Ruby, Python

Erlang

Consistent Hashing Eventual Consistency

Bitcask (log-structured store), Ring (next N—1)

Riak

LevelDB, In-Memory and Multi-

backend (different stores for different

keys)

Get, MapReduce,

HTTP, Java
others

Java

Consistent Hashing Strong Consistency or

Ring (next N—1)

Simple File Storage, BerkeleyDB,

JDBM, JDBC

Infinispan

Eventual Consistency

Consistent Hashing Strong Consistency

Get, MapReduce

HTTP, Java, C# and any
Memcache client

Java

User-defined MapStore, which can be Ring (next N—1)
persistent

Hazelcast

Java, C, C#, Ruby, Perl, Scala Get (also depends on

C

No (in charge of Eventual Consistency

the application)

Master-Slave (Slave

chains can be
formed)

Snapshots at specified intervals by

Redis
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the value structure)

default or an Append-only file. Both

can be combined

Get

C/C+ +, Erlang Java, C, C#

Strong Consistency

vBuckets

vBuckets 1: N
Replication

SQLLite or CouchDB

Membase/

CouchBase
Voldemort

Get

Java, Python

Java

Consistent Hashing Eventual Consistency

Ring (next N—1)

BerkeleyDB, In-Memory, MySQL

documentation and assistance from those responsible for
the database software, persistent and distributed data-
bases whose development has been abandoned were not
included in the comparison. The Key-Value databases
analyzed are described below:

Riak and voldemort: Among the listed databases, the ones
which are more related to Dynamo are Riak and Voldemort
since they are direct implementations of the associated
Amazon specification [32]. Hence, they use consistent
hashing for partitioning and replicating, and provide even-
tual consistency based on read-repair.

Redis: Redis is distinguished for providing more com-
plex structures such as lists, hash tables, sets and ordered
sets for representing values. This functionality makes Redis
very similar to Document-oriented databases, which are
described in Section 6. However, in Redis, different keys
may have different type of values, i.e. one key can refer to a
list and the other key can refer to a set. In Document-
oriented databases, all values are documents of the same
schema. One limitation of Redis is that sharding has to be
performed by the client application, which implies that the
client must know the network topology to distribute keys
among nodes.

Infinispan: Infinispan, formerly known as JBoss Cache,
was born as a support tool to scale up Web applications
and achieve fault tolerance in the well-known JBoss
Application Server. In particular, JBoss Cache was used to
replicate and synchronize session state among servers in a
cluster of JBoss servers. The main difference with the other
databases is that Infinispan has traditionally been biased
towards consistency and availability, sacrificing partition
tolerance.

Hazelcast: Hazelcast differs from the rest of the
reviewed Key-Value databases in that it easily and seam-
lessly integrates with existing non-distributed Java pro-
grams. To achieve this, Hazelcast provides distributed
implementations of the typical built-in Java data struc-
tures such as List, Vector, Set, and Hashtable. Then, using
Hazelcast in a program is just a matter of replacing Java
import statements in the client code, and then tuning
several parameters such as nodes belonging to the cluster,
replication mode, distributed data structures used, etc.
Hazelcast does not provide persistence support by default,
but allows developers to define their own storage support,
which can be persistent instead.

Membase: Membase is a Key-Value database that has
been recently merged with the Document-oriented data-
base CouchBase. It uses the vBuckets mechanism to
distribute and replicate data across servers. Writing con-
sistency is immediate because writing and reading is
always performed on the key's master node (which has the
only Available vBucket). Thus, a client always gets the
latest value written. One of the most attractive features of
CouchBase is its configuration simplicity. Once installed on
the nodes, the network can be configured through a
friendly Web interface. On the downside, Membase
requires manual rebalancing of keys when a server is
down and needs to be removed from the cluster. Key
rebalancing is a costly operation that depends on the
amount of keys handled by the removed server.
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Some Key-Value databases maintain a subset of key/
value pairs stored in RAM, dramatically improving per-
formance. From the databases analyzed in this review,
Hazelcast, Membase, Redis and Riak use this strategy.
However, this decision comes with a cost: as the number
of keys increases, the use of RAM increases. Riak and
Membase always keep keys in memory, whereas values
are removed from memory if space is needed for new keys.
Hazelcast and Redis keep all key/value pairs in memory
and eventually persist them on disk. In all cases, new
requests to add keys are rejected when RAM runs out of
space. For this reason, it is necessary to take into account
whether the number of keys to be stored exceeds the
amount of RAM in the network and, if this is the case,
chose another alternative or augment the network size.

A further feature to consider in the selection of a
database is the expected data durability. The level of dur-
ability must be decided according to the importance of the
data stored in the network, which sometimes can be
configured. Redis is a case of configurable durability. By
default, Redis offers the possibility of making data snap-
shots in memory at time intervals. If a failure occurs during
such interval, the current data of the node are lost. For this
reason, the database offers to do more frequent writings to
disk in a file that only supports appends. Conceptually, this
is similar to a log in a log-structured file system. This type
of files is often used when high writing throughput needs
to be achieved.

The query method varies from database to database, but
the Get operation (i.e., get a value by key) is always present.
Some alternative query methods are worth mentioning. For
example, Riak provides a graph-like querying method called
Link Walking. This method consists in creating relationships
between keys and tagging each relationship. For example, if
there is a relationship tagged “friend” between a key named
“Mark” and all its friends’ keys, Riak can be queried using
the “friend” tag to obtain all Mark's friends. Other databases
provide alternative query methods like Cursors (a well-
known structure in SQL), XQuery (an XML Query language)
and even MapReduce (Section 5.1.3). Some databases also
allow the user to perform “bulk gets”, i.e., getting the values
of several keys in a single operation, resulting in consider-
able performance improvements and network commu-
nication savings.

5. Wide column databases

Wide Column or Column Families databases store data
by columns and do not impose a rigid scheme to user data.
This means that some rows may or may not have columns
of a certain type. Moreover, since data stored by column
have the same data type, compression algorithms can be
used to decrease the required space. It is also possible to
do functional partitioning per column so that columns that
are frequently accessed are placed in the same physical
location.

Most databases in this category are inspired by BigTable
[20], an ordered, multidimensional, sparse, distributed and
persistent database, that was created by Google to store
data in the order of petabytes. Therefore, a brief

description of the most important features of BigTable and
how it achieves its objectives is given in the following
section.

Unlike Key-Value databases, all Wide-Column data-
bases listed in this section are based on BigTable's data
scheme or mechanisms. This lack of diversity can be
explained by the fact that this type of databases has a very
specific objective: to store terabytes of tuples with arbi-
trary columns in a distributed environment.

5.1. BigTable

BigTable [20]| was developed in order to accommodate
the information from several Google services: Google
Earth, Google Maps and Blogger, among others. These
applications use BigTable for different purposes, from high
throughput batch job processing, to data provisioning to
the end user considering data latency constraints. BigTable
does not provide a relational model, which allows the
client application to have complete control over data for-
mat and arrangement.

In BigTable, all data are arrays of bytes indexed by
columns and rows, whose names can be arbitrary strings.
In addition, a timestamp dimension is added to each table
to store different versions of the data, for example the text
of a Web page. Moreover, columns are grouped into sets
called column families. For example, the column family
course can have Biology and Math columns, which are
represented as course:Biology and course:Math. Column
families usually have the same type of data, with the goal
of being compressed. Moreover, disk and memory access is
optimized and controlled according to column families.

5.1.1. SSTable, tablets and tables

BigTable works on the GFS (Google File System) [42,43]
distributed file system and has three types for storage
structures: SSTables, Tablets and Tables, which are shown
in Fig. 4. SSTable is the most basic structure, which pro-
vides an ordered key/value map of byte strings. This basic
block consists of a sequence of blocks (usually of 64 KB)
and a search index to determine which block is a certain
datum, avoiding the unnecessary load of other blocks in
memory and decreasing disk operations. Each SSTable is
immutable, so no concurrency control is needed for
reading. A garbage collector is required to free deleted
SSTables.

A set of SSTables is called a Tablet. A Tablet is a struc-
ture that groups a range of keys and represents a dis-
tribution unit for load balancing. Each table is composed of
multiple tablets and, as the table grows, it is divided into
more Tablets. The sub-Tables often have a fixed size of
100-200 MB.

The location of each Tablet is stored in the network
nodes using a tree structure of three levels, like a B+ tree.
First, the file that contains the physical location of the root
can be found. The root of the tree is a special Tablet named
Root Tablet. The leaves of the tree are called Metadata
Tablets and are responsible for storing the location of the
user Tablets.

Chubby [17], a distributed lock service, is used to find
and access each Tablet. Chubby keeps the location of the
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Fig. 4. SSTable, Tablet and Table structures.

Root Tablet, information about the database scheme (the
column families and tables) and access checklists. In
addition, it synchronizes and detects Tablets nodes (a.k.a.
servers) that store Tablets.

A Master Server is in charge of assigning Tablets to
Tablet servers. The Master Server monitors the addition
and expiration of Tablet servers, balances the load of such
servers and performs garbage collection of files stored in
the GFS. It also monitors changes in the scheme, i.e.,
addition of new column families and Tables.

5.1.2. Tablets servers
Fig. 5 depicts how a Tablet is stored on a Tablet server. The
updates performed on Tablets belonging to a Tablet Server are
stored in a Commit log that saves records to redo committed
operations in case that the Tablet Server dies. The most recent
records are kept in memory in a buffer known as Memtable.
To obtain a Tablet the server reads from a table called
METADATA that contains the list of SSTables that form a
Tablet and a set of pointers to the Commit log called redo
points. The server then applies the updates carried out
starting from the redo points to rebuild the memtable.
Finally, to read from a Tablet, the Tablet Server forms a
merged view from the set of SSTables and the memtable.
For writing operations, after verifying that the operation is
well formed and that the user is authorized (through
Chubby), a valid mutation (write, update or delete) is regis-
tered in the Commit log. Groups of commits are used to
improve the throughput of small mutations. After making the
commit, its content is inserted into the memtable. If a certain
limit of the memtable is exceeded, a new memtable is cre-
ated, the previous memtable is transformed into a SSTable.
For reading operations, well-formedness and author-
ization are also checked, after which the user is presented
with a joint view of the SSTables sequence and the mem-
table. Thus, the latest updates are shown to the user
without keeping the last SSTables on disk.

5.1.3. MapReduce

MapReduce is a framework based on the division of
labor for parallelizing data-intensive computations on
large datasets [31,69]. Basically, this framework consists of
two programming abstractions that must be instantiated
by programmers: map and reduce. The map function is
responsible for processing key-value pairs and generating
as output a set of key-value pairs with intermediate
results. In turn, the reduce function is responsible for
generating a list of results from such intermediate results.
As MapReduce consists of programming abstractions, a
support materializing them at the middleware level
including storage support is needed McCreadie et al. [76].

BigTable (and many other databases) supports passing
data to map jobs and storing data from reduce jobs by
defining input and output wrappers for MapReduce. This
way, MapReduce jobs allow to query and transform data
stored in BigTable in parallel, provided that queries can be
expressed in this paradigm.

MapReduce queries can be written in an imperative
language like Java or C, although even relatively simple
queries can often span multiple lines of code. For example,
in Java, implementing a distributed summatory using a list
of values requires creating a “map” method to divide the
list to create jobs, and implementing a “reduce” method
that sums the results of the tasks. The task of dividing a list
of elements into jobs and summing the results can be
easily generalized and offered as a generic operation. For
this reason, Google developed Sawzall [90], an interpreted
procedural language to act as an interface to MapReduce.
Sawzall focuses on providing “syntactic sugar” that allows
programmers to implement the map function of MapRe-
duce, i.e., query operations, at a higher level of abstraction.
Reduce functions, i.e., aggregation of intermediate results,
are much less varied and thus are usually provided as
generic operations. Sum and average are examples of
generic reduce functions frequently used in MapReduce
applications. A simple program in Sawzall to process a file
that stores floating point numbers is shown below:

count: table sum of int;

total: table sum of float;
sum_of_squares: table sum of float;
x: float=input;

emit count <- 1;

emit total < - x;
emit sum_of_squares < - X * X;

First, the code is interpreted and distributed among the
different nodes where the files to be processed are located.
The first three lines define how to aggregate results. The
table count stores the amount of records found, total stores
the sum of floating point numbers, and sum_of_squares
stores the sum of squares. The predefined variable input
holds the input record that, in this case, it is interpreted
like a floating point number and stored in the x variable.
Hence, the last three lines aggregate the intermediate
values in the result tables. Usually, aggregations are per-
formed in other “aggregator” nodes that receive inter-
mediate data and combine them. Finally, when all records
have been read the values are displayed or stored in a file.

5.2. List of Wide-Column databases

BigTable is a system used internally by Google, i.e., the
community has no access to its source code or executables.
However, several open source alternatives offering similar
services were developed based on the academic publica-
tions made by the company.

Table 5 summarizes these alternatives. The table com-
pares the HBase [40], Hypertable [54] and Cassandra [64]
databases. Following, we further describe them:

HBase and hypertable: HBase belongs to the Apache
Software Foundation and it is based directly on BigTable.
The storage support is HDFS (Hadoop Distributed File
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Fig. 5. Operating diagram of a Tablet server.

System) [101], which in turn is based on GFS. Hypertable is
also modeled based on BigTable, but implemented in
C+ +. Like HBase, Hypertable relies on HDFS for storage
and replication. Both databases allow consulting the
database using Hadoop MapReduce [101], an open source
implementation of Google MapReduce. Furthermore,
querying is done through languages similar to Sawzall,
such as Pig [39] and Hive [112]. Querying can also be
combined with a workflow scheduler system like Apache
Oozie [56], which allows the creation of DAGs (Directed
Acyclic Graphs) of jobs that obtain data from HDFS.

Cassandra: Cassandra, which recently moved to the
Apache Software Foundation, uses columns and columns
families to model data, but uses Dynamo mechanisms to
manage storage and replication, namely Consistent Hash-
ing, Read-Repair, Vector Clocks, Gossip Protocol, among
others. Cassandra does not have a single point of failure
because of its peer-to-peer architecture, which can be
considered an advantage. Hypertable or HBase, both based
on HDFS, have a single point of failure, the so-called
NameNode. This component is a Master Server that man-
ages the file system namespace and controls its access
from the clients. The drawback is that this component is
unique for the entire file system. NameNode replication
can be done by any software that can copy all disk writings
to a mirror node. An example of this type of software is
DRBD (Distributed Replicated Block Device), a distributed
mirroring system analogous to a RAID-1 array [34].
Another feature of Cassandra is the possibility to choose
between two partitioning schemes: Order Preserving Par-
titioning and Random Partitioning. Order Preserving Par-
titioning distributes keys in a ring preserving their order.
This allows to efficiently perform range queries, i.e., obtain
consecutive keys. However, this partitioning scheme tends
to unbalance load across nodes, e.g., frequent write
operations on a key range may fall on the same node. This
problem translates into an administrative overhead to try
to distribute key ranges according to their access patterns.
Regarding querying, Cassandra offers a SQL-Like query
language called CQL (Cassandra Query Language) and
Hadoop MapReduce for distributed job processing. The
Hadoop support also extends to Pig and Hive query lan-
guages, and Apache Oozie.

Some of the surveyed databases in this paper provide
native clients in many languages with the help of an interface
definition language, which specifies the service interface and
data types, and a code-generation software, which generates
clients and servers in a specified language. Thrift [102] is an
example of such a tool. It allows to specify service interfaces
and data types in the Thrift IDL (Interface Definition Lan-
guage) and, using a set of code-generation tools, create native

Table 5

Characteristics of Wide Column databases.

Query method

Implementation language API

Consistency

Sharding

Replication

Persistence

Name

Hadoop MapReduce, Pig, Hive

Java, HTTP + JSON,

Java

Strong Consistency

HDFS replication By key ranges

HDFS (Hadoop File System)

HBase

Avro, Thrift [102]

Thrift

HQL (Hypertable Query Language), Hadoop

MapReduce, Hive, Pig

C++

Strong Consistency

Hypertable HDFS by default (other supports HDFS replication By key ranges

are available)

CQL (Cassandra Query Language), Hadoop

Thrift
MapReduce, Pig, Hive

Java

Eventual

Ring (next N—1) Consistent

Proprietary format

Cassandra

Consistency

Hashing

13
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RPC clients and servers in languages such as Java, Ruby or
Python, among others. Avro [3] is a similar tool to Thrift. In
this case, Avro provides its own IDL, but supports JSON to
specify interfaces and data types.

It is notable the reduced number of Wide Column
databases available with respect to other types of NoSQL
databases. In principle, this can be attributed to two rea-
sons. First, the complexity in the development of such
databases is considerably high. Considering Bigtable, for
example, a storage medium such as GFS, a distributed lock
server as Chubby and a Table server similar to the Master
Server are required. Second, the application domain of
Wide Column databases is limited to particular problems:
data to be stored need to be structured and potentially
reaching the order of petabytes, but search can only be
done through the primary Kkey, i.e., the ID of the row.
Queries on certain columns are not possible as this would
imply to have an index on the entire dataset or traverse it.

6. Document-oriented databases

Document-oriented or Document-based databases can
be seen as Key-Value databases where the value to store
has a known structure determined at database design
time. As a consequence, the architecture of these systems
is based on several concepts, some of them defined earlier
in this work, to achieve scalability, consistency and avail-
ability. In contrast to Wide-Column and Key-Value data-
bases, there is no reference Document-oriented database
design (like BigTable or Dynamo), which reflects in the
diversity of techniques and technologies applied by data-
base vendors.

In this context, documents are understood as semi-
structured data types, i.e., they are not fully structured as
tables in a relational database, but new fields can be added
to the structure of each document according to certain
rules. These rules are specified in the standard format or
encoding of the stored documents. Some popular docu-
ment formats are XML, JSON and BSON. Like Wide Column
databases, Document-oriented ones are schemaless, i.e.,
they have no predefined schema data to conform with.
Then, the number and type of fields in the documents in
the same database may be different.

Since the database knows the type of data stored,
operations that are not available in traditional Key-Value
databases become possible in document-oriented data-
bases. Among these operations we can mention add and
delete value fields, modify certain fields and query the
database by fields. If a Key-Value database is used to store
documents, a “document” represents values, and the
addition, deletion and modification of fields imply repla-
cing the entire document for a new document. Instead, a
Document-oriented database can directly access the fields
to carry out the operations.

In a Key-Value database, queries are performed by
providing one or more keys as an input. In Document-
oriented databases queries can be done on any field using
patterns. Then, ranges, logical operators, wildcards, and
more, can be used in queries. The drawback is that for each
type of query a new index needs to be created, because

document databases index elements by the document
identifier. In general, the document identifier is a number
that uniquely identifies a document in the database.

A Document-oriented database is useful when the
number of fields cannot be fully determined at application
design time. For example, in an image management sys-
tem, a document could be written in JSON format as
follows:

{

route: /usr/images/img.png,
owner:

name: Alejandro

surname: Corbellini

b

tags: ["sea", "beach"]

}

New features can be added as the system evolves. For
example, when updating the previous document with the
ability to access the image owner's Web site, a checksum
of the image and user ratings, the above document would
become:

{

route: /usr/images/img.png,
owner:

name: Alejandro

surname: Corbellini

web: http://www.alejandrocorbellini.com.ar

|2

tags: ["sea", "beach"],

md5: 123456789%abcdef123456789%abcdefl2,
ratings:

{

{
user: John Doe
comment: "Very good!"
stars: 4

b

{
user: Jane Doe
comment: "Bad Illumination"
stars: 1

} }
}

New tables must be created to achieve the same goal in a
relational database, which can lead to perform joins
between tables containing numerous rows or modify the
existing table schema, upgrading all rows in the database.

Table 6 summarizes the most representative NoSQL
Document-oriented databases: CouchDB [68], MongoDB
[21], Terrastore [15] and RavenDB [50]. Following, we
describe them:

CouchDB: CouchDB is a database maintained by the
Apache Foundation and supported mostly by two compa-
nies: Cloudant and CouchBase. This database uses Multiple
Version Concurrency Control (MVCC) [12] to provide
concurrent access to stored documents. This mechanism
allows multiple versions of a document to co-exist in the
database, similar to the branch concept in a Version Con-
trol System (VCS). Each user editing a document receives a
snapshot of the current document and after working on it,
a version is saved with the most recent timestamp. Earlier
versions are not deleted so that readers can continue
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Comparison of different document-oriented databases.
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Master-Slave with N
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for some languages (Java,
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HTTP + JSON, .Net
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support
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C#

Allows the user to define a Eventual Consistency

Master-Slave on

N-replicas

Microsoft's ESE

RavenDB

sharding function based on

the documents’ fields

(Extensible Storage

Engine)

accessing them. When a reader wants to access the
document, the database resolves which is the newest
version using the timestamps. This flexibility comes at an
extra cost of storage space and has the disadvantage that
conflicts between versions of documents might arise. The
last issue is usually solved by alerting the client that is
trying to write a conflicting version, just like a VCS would.
Unlike a VCS, the database must ensure obsolete docu-
ments are periodically cleaned, i.e., those that are not in
use and correspond to older versions. CouchDB provides
ACID transactions only per document, i.e., each operation
on a document is atomic, consistent, complete and dur-
able. This is achieved by serializing operations made by
clients and never overwriting documents on disk. Repli-
cation follows the Master-Master model, i.e., the replicas
also serve requests from the clients, both for writing and
reading. The goal is that server nodes can be distributed
among different networks and clients can write or read
from the closest servers. Updates between replicas are
bidirectional and, if there are network failures, synchro-
nization waits for the connectivity to be reestablished. This
replication approach may result in clients reading old
documents from replicas that have not received updates
yet. For querying documents, CouchDB uses the concept of
views, which is borrowed from RDBMSs. These structures
are defined in JavaScript and enable to display structured
contents starting from documents. The code of a view is
equivalent to the map function of MapReduce, but it is not
done in a distributed manner. To overcome this limitation,
there are extensions to use CouchDB in a cluster, facil-
itating the addition and remotion of nodes. As a result, the
end user has the illusion that there is only one node. Freely
available extensions for distributing CouchDB are Big-
Couch [22], Lounge [37] and Pillow [52]. Additionally,
some of these extensions provide an automatic sharding
technique such as Consistent Hashing (Section 4.1).
MongoDB: MongoDB is a free Document-oriented
database that runs on a wide range of platforms. It is
developed and maintained by the 10gen company.” This
database implements different techniques for storing
documents. Firstly, documents are encoded in BSON, a
binary version JSON. BSON provides faster reading and less
space usage than JSON. To achieve the former goal, BSON
uses prefixes that indicate the size of each element and its
position. BSON documents have the disadvantage of hav-
ing a space limit up to 16 MB. BSON files larger than 16 MB
are stored in GridFS [13], a distributed file system that
allows large files to be split into smaller parts to access
them separately, to deal with big files in parallel. Regard-
ing data sharding, MongoDB integrates the functionality
for distributing data and queries through different nodes.
For this purpose, the database uses a router for queries,
called Mongo, which evenly distributes queries to nodes to
balance the cluster load. For simpler queries, MongoDB
provides an API find() that uses BSON documents to
highlight where the fields and query values match. These
documents are traversed using a cursor allowing to visit
each document matching the query as in a RDBMS. For

7 10gen Web Page, http://www.10gen.com/.
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more advanced queries, that require to group data
belonging to multiple documents, MongoDB can run
MapReduce jobs. Replication in MongoDB can be achieved
through the classic Master-Slave scheme but it also
introduces an alternative known as Replica Sets. Like in a
Master-Slave schema, Replica Sets allow replicated nodes
to be grouped while being one of them the primary node
and the remaining are secondary ones, but also offer fail-
over and automatic fail recovery. Optionally, reading can
be done from the secondary nodes balancing the load over
the Replica set, but reducing the consistency level with
respect to the primary node. The goal of the Replica Sets is
improving the plain Master-Slave scheme, easing cluster
maintenance. For supporting concurrency, MongoDB pro-
vides atomic operations per document which means that,
when a document is updated using atomic operations, the
database ensures that the operation will succeed or fail
without leaving inconsistencies. Unlike CouchDB, Mon-
goDB does not provides MVCC, whereby readings can be
blocked until the atomic operations are completed.

Terrastore: Another alternative for storing documents in
a distributed manner is Terrastore. This database is based
on Terracotta [111], a distributed application framework
based on Java. Documents must follow the JSON notation
and can be directly accessed both via HTTP or specific
clients in Java, Clojure and Scala, among others. Like
MongoDB, Terrastore has integrated sharding support to
transparently add and remove nodes. Replication is done
using Master-Slave, where slaves are kept in hot-standby,
i.e., they can replace the master at any time if it fails.
Terracotta operations are consistent at document level and
concurrency is handled with the read-committed strategy.
Write-locks are used throughout a write transaction, but
readings are only blocked for each query or SELECT within
the transaction allowing to alternate writing and reading
operations. As a result of this strategy, it may be possible
that during a transaction a reading returns a value, the
document is modified and then the same reading within
the transaction returns a different value.

RavenDB: Finally, RavenDB is an alternative developed
on the .Net platform. Although implemented in C#, it

Friends

ent Message
A

provides an HTTP interface to access the database from
other languages. ACID transactions are supported, but
RavenDB is based on an optimistic transaction scheme to
avoid the use of locks. To access stored documents
RavenDB allows defining indexes through LINQ queries, a
query language developed by Microsoft with a syntax
similar to SQL. LINQ queries can define free fields that can
be passed as parameters by the user, filtering the indexed
documents. A feature that differentiates RavenDB from
other Document-oriented databases is the mechanism to
configure the sharding of documents. Albeit sharding
support is integrated, it is not automatic. The database
client must define the shards and strategies to distribute
the documents across the different network nodes. One of
the major drawbacks of RavenDB is the requirement of a
paid license for use in commercial products or services.

7. Graph-oriented databases

Nowadays, graphs are used for representing many large
real-world entities [63] such as maps and social networks.
For example, OpenStreetMap, an open geographic data
repository maintained by a huge user community, reached
more than 1800 million nodes in 2013. On the other hand,
Twitter has experienced a tremendous growth [5], and
nowadays has more than 200 million active users tweeting
400 million tweets per day and supporting billions of
follower/followed relationships. The interest for storing
large graphs and, more importantly, querying them effi-
ciently has resulted in a wide spectrum of NoSQL data-
bases known as Graph-oriented or Graph-based databases.
These databases address the problem of storing data and
their relationships as a graph, allowing to query and
navigate it efficiently. Similar to Document-oriented
databases, there is no Graph-oriented database that can
be used as a “reference design”.

Browsing graphs stored in a large RDBMS is expensive
because each movement through the edges implies a join
operation. Usually, Graph-oriented databases represent
data and their relationships in a natural way, i.e., using a

Vertex Data Friends
1 John | john@... 1 2
2 Bob bob@... 2 1,3
3 Alice | alice@... 3 2

Sent Message
B

1 2 1 2
2 1 1 3
Friends 3 1 2 1

Message Data
1-2 A

2-1 B
3-1 C,.D

Fig. 6. Example of vertex representation in a Graph-oriented database.

Messages Sent Messages Rcvd
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structure that contains the vertex information and a list of
pointers to other vertices. Fig. 6 shows an example where
users in a system may have friendship relationships (i.e.,
undirected edges) and send messages to each other (i.e.,
directed edges). Undirected edges are commutative and
can be stored once, whereas directed edges are often
stored in two different structures in order to provide faster
access for queries in different directions. Additionally,
vertices and edges have specific properties associated to
them and thereby, these properties must be stored in
separate structures. In this example, a simple sharding
policy may involve splitting each table using the vertex ID
in order to keep all data related to a single vertex in a
single machine.

In addition to the interest for storing graphs, recent stu-
dies have addressed the problem of efficiently processing
large graphs stored in a distributed environment. In this
context, distributed graph processing presents a challenge in
terms of job parallelization. For example, in [24], we propose
a framework for storing Twitter adjacency lists and query
them to efficiently provide recommendations of users to
follow. In our experiments, storing 1.4 billion of relationships
among 40 million users proved to be challenging in terms of
storage and distributed graph algorithm design.

Generally, graph algorithms are dictated by the arc-
vertex pairs of the graph being processed, i.e., the execution
of the algorithm depends on the structure of the graph.
Additionally, a partitioning strategy is difficult to express in
source code because the structure of the graph (unlike lists
or hashes) is not known a priori. This also directly affects
the computing locality, especially in distributed environ-
ments. Furthermore, although parallelism can be achieved,
the algorithms do not perform too much processing on the
vertices, but focus on traversing the graph through their
arcs. This generates a significant communication overhead
when the vertices are located in different computing nodes
[72]. The former is one of the greatest pitfalls in the appli-
cation of MapReduce-based frameworks in graph proces-
sing [59]. The problems of MapReduce on graphs have led
to the creation of new processing models and frameworks
such as Pregel [74], Apache Giraph (based on Pregel) [4],
Trinity [99], HipG [63] or Mizan (also based on Pregel) [62].
However, graph processing frameworks store all data in
memory, i.e., they obtain data from files on disk and load
the structure of the graph on each node in RAM to perform
processing afterwards. Once processing is completed,
updates made on the graph residing in main memory are
not persisted. In this survey, special attention is paid to
those databases that allow persisting data and, therefore,
frameworks for intensive graph computing are not included
in the comparison.

Then, Table 7 presents a comparison between the fol-
lowing Graph-oriented databases: Neo4] [80], Infinite-
Graph [83], InfoGrid [81], HyperGraph [55], AllegroGraph
[1] and BigData [109]. As mentioned before, open source or
free distributed Graph-oriented databases are presented,
limited to those providing some type of persistence and
bringing a certain durability. Furthermore, we provide a
description of the Graph-oriented databases analyzed:

Neo4]J: Neo4] is an open source project that uses Lucene
indexes to store data so that access to vertices and
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relationships is more efficient. Neo4] also uses an MVCC
mechanism with a read-committed strategy to increase
reading and writing concurrency. These decisions enable
the storage of millions of vertices in a single computational
node. In Neo4], sharding of the vertices across nodes is
done manually (by the developer) using domain-specific
knowledge and access patterns. Additionally, a periodical
defragmentation (vertex relocation) using rules has been
proposed but not implemented yet.® A Neo4] graph is
accessed via a Java API or graph query languages such as
SparQL [92] or Gremlin [93]. SparQL is a language used for
querying data stored in RDF (Resource Description Fra-
mework) format, a metadata data model originally created
by the World Wide Web Consortium (W3C) to describe
resources (i.e., adding semantic information) on the Web.
In general, RDF data are stored as 3-tuples indicating a
subject, a predicate and an object. Intrinsically, it repre-
sents a labeled directed graph: the source vertex, the
relationship type and the destination vertex. Gremlin is a
language for doing graph traversal over graphs stored in
various formats. In addition to a free version, Neo4] has
enterprise versions that add monitoring, online backup
and high availability clustering. The Neo4] module that
enables to define a Master-Slaves node structure is only
available in the paid version.

InfiniteGraph: InfiniteGraph has its own storage media
called Objectivity/DB. Unlike Neo4], it features automatic
sharding using “managed placement” to distribute a graph
over a cluster. Managed placement allows the user to
define rules for custom sharding and, for example, keep
related vertices close to each other. Unfortunately, the free
license allows storing just 1 million edges and vertices.

InfoGrid: InfoGrid is an open-source storage based on
structures known as NetMeshBase, which contains the
vertices of the graph, called MeshObjects, and its rela-
tionships. It can be persisted using a RDBMS like MySQL or
PostgresSQL, or using a distributed file system like HDFS or
Amazon S3. If a distributed file system like HDFS is used,
the benefits of availability and performance of the system
can be attained. Furthermore, NetMeshBase structures can
communicate with each other so that graphs can be dis-
tributed among different clusters.

HyperGraphDB: HyperGraphDB [55] introduces a dif-
ferent approach for representing stored data through the
use of hypergraphs. A hypergraph defines an n-ary relation
between different vertices of a graph. This reduces the
number of connections needed to connect the vertices and
provides a more natural way of relating the nodes in a
graph. An example of a hypergraph is the relationship
borderlines, where nodes such as Poland, Germany and
Czech Republic can be added. The database only requires a
hypergraph containing these vertices to store the rela-
tionship, whereas a graph representation uses three arcs
among the nodes. For storage, HyperGraphDB relies on
BerkeleyDB [85], providing two layers of abstraction over
it: a primitive layer, which includes a graph of relations
between vertices, and a model layer, which includes the

8 On Sharding Graph Databases, http://jim.webber.name/2011/02/
on-sharding-graph-databases/.

relations among the primitive layers adding also indexes
and caches. These abstractions allow defining different
graph interpretations, including RDF, OWL (an extension to
RDF that allows to create ontologies upon RDF data), a Java
API and a Prolog API, among others.

BigData: Finally, BigData is an RDF database scalable to
large numbers of vertices and edges. It relies on a log-
structured storage and the addition of B+ indexes, which
are partitioned as the amount of data increases. For single
node configurations, BigData can hold up to 50 billion
vertices or arcs without sacrificing performance. If vertices
need to be distributed, the database provides a simple
dynamic sharding mechanism that consists in partitioning
RDF indexes and distributing them across different nodes.
Moreover, it provides the possibility of replicating nodes
with the Master-Slave mechanism. BigData offers an API
for SparQL and RDFS+ + queries. The latter is an extension
of RDFS (Resource Description Framework Schema), a set
of classes or descriptions for defining ontologies in RDF
databases and to make inferences about the data stored.

AllegroGraph: AllegroGraph is a RDF Store that supports
ACID transactions marketed by a company named Franz
Inc., which offers a free version limited to 3 million RDF
triplets in the database. Like HyperGraphDB, this database
has a very wide range of query methods including:
SPARQL, RDFS+ +, OWL, Prolog and native APIs for Java,
Python, C# among others.

In addition to the listed databases, there are other similar
application-specific databases that deserve mention. One is
FlockDB [114], a Graph-oriented database developed by
Twitter. This is a database with a very simple design since it
just stores the followers of the users, i.e., their adjacency list.
Among its most important features are its horizontal scaling
capabilities and the ability to perform automatic sharding.
Although it was not officially announced by Twitter, the
FlockDB project was abandoned and it may have been
replaced by other solution, such as Manhattan,’ a distributed
database also built by Twitter, or Cassandra.

A second database worth mentioning is Graphd [79],
the storage support of FreeBase [14], a collaborative data-
base that stores information about movies, arts and sports,
among others. Graphd storage medium is an append-only
file in which tuples are written. Each tuple can define
either a node or a relationship between nodes. Tuples are
never overwritten, when a new tuple is created the
modified tuple is marked as deleted. Inverted indexes are
used to accelerate access, going directly to the positions of
tuples in the file. MQL (Metaweb Query Language), a lan-
guage of Freebase analogous to SparQL, is used for
querying the database. Graphd is a proprietary system,
therefore, it was not included in the comparison. However,
access to the database query API is available on the Web.'"°

Finally, in [96] the authors propose an extension to
SPARQL, named G-SPARQL, and, more important to this
work, an hybrid storage approach in which the graph
structure and its attributes are stored in a relational

9 Manhattan announced in Twitter Bloghttps://www.blog.twitter.
com/2014/manhattan-our-real-time-multi-tenant-distributed-database-
for-twitter-scale.

10 http://www.freebase.com/queryeditor.
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database. Queries on the graph attributes are executed on
the relational database whereas topological queries are
executed on an in-memory graph representation. This
strategy avoids the performance penalty of making recur-
sive join operations on the database tables while still
benefiting from the querying and storage efficiency of a
relational database. However, the authors do not mention
a distributed variant of the mentioned approach.

8. Discussion

As can be observed in this review, the spectrum of
NoSQL databases is very broad and each of them is used
for different applications today. However, NoSQL solutions
cannot be seen as the law of the instrument or Maslow's
Hammer!'' and should not be used for every application. In
fact, many alternatives could be in general considered
when selecting a storage solution. At the other extreme of
the above example are the majority of low and medium
scale applications, such as desktop applications and low
traffic Web sites where stored data is in the order of
megabytes, up to gigabytes, and do not have higher per-
formance requirements. The use of relational databases
can easily overcome the storage requirements in those
situations. Nevertheless, the simplicity of the API of a
Document-oriented database or a Key-Value database may
also be a good fit.

Furthermore, in some situations, it may be necessary to
define a hybrid data layer dividing the application data in
multiple databases with different data layouts. For exam-
ple, application data requiring a relational schema and
high consistency, such as data from user accounts, can be
stored in a RDBMS. On the other hand, if there is data of
instant messaging between users requiring no transaction
consistency but a fast access is necessary, a NoSQL data-
base can provide an adequate solution.

Therefore, the goal of this review was to better under-
stand the characteristics of the different types of NoSQL
databases available. Particularly, in this paper we have
reviewed NoSQL databases that support sharding and
persist data storage. The aim of these restrictions was to
compare databases that can be used as horizontally scal-
able data stores. This excludes many other storage solu-
tions including: (1) databases that cannot be distributed,
(2) in-memory stores, which are usually used as caches,
and (3) distributed processing frameworks that generate a
temporal (in-memory) representation of data extracted
from a secondary database. On one hand, the distribution
or sharding of data between different computing nodes
allows the user to increase the storage capacity just by
adding new nodes. Moreover, many NoSQL databases use
this distribution to parallelize data processing among
nodes having relevant data for the execution. On the other
hand, data persistence is essential when the nodes of the
cluster may suffer electric power outages.

1 Abraham Maslow: “I suppose it is tempting, if the only tool you
have is a hammer, to treat everything as if it were a nail.”

Broadly speaking, for NoSQL systems like BigTable, the
main design problems to solve are consistency manage-
ment and fast access to large amounts of data. In this case,
the database must scale to petabytes of data running on
standard hardware. Contrarily, relational databases scale
with certain difficulty because their latency is dramatically
affected with each new node addition.

Some studies have shown that relaxing consistency can
benefit system performance and availability. An example of
this situation is a case study in the context of Dynamo [32],
which models the shopping cart of an ecommerce site.
Dynamo premise is that an operation “Add to cart” can
never be rejected as this operation is critical to the business
success. It might happen that a user is adding products to
the shopping cart and the server saving the information
suffers a failure and becomes no longer available. Then, the
user can keep adding products on another server, but the
shopping cart version of the original server was distributed
to other replicas, generating different versions. In scenarios
where faults are normal, multiple cart versions can coexist
in the system. Versions are differentiated in Dynamo using
Vector Clocks (Section 4.3). However, branching of versions
can lead to several shopping carts, possibly valid, but with
different products. To solve this conflict, Dynamo tries to
unify the cart versions by merging them into a new cart that
contains all user products, even if the new version contains
previously deleted products.

Compared to these supports, relational databases,
alternatively, provide much simpler mechanisms to man-
age data updates maintaining consistency between tables.
Instead, NoSQL databases with eventual consistency dele-
gate the problem of solving inconsistencies to developers,
which causes such functionality to be error-prone.

Document-oriented databases are useful for semi-
structured data without a fixed schema, but complying
to certain formatting rules, such as XML, JSON, and BSON
documents, among others. The goal of these databases is to
store large amounts of text and provide support for
querying on their fields, which in turn are indexed in
different ways (keywords, exact word, numeric, etc.). A
typical example application of such databases is text
mining, where recognized elements of a textual document
can vary in type and quantity. For example, a document
may be composed of the syntactic structure of the text and
also entities such as cities, names and people. XTAS [30] is
a project that examines multilingual text and stores the
internal results in MongoDB.

Moreover, there are applications that have large amounts
of highly correlated data, with diverse relationships. Usually,
this type of data is extracted from social networks or the
Semantic Web. Graph-oriented databases are more suitable
for such data as they allow to efficiently explore vertex-to-
vertex relationships. Furthermore, there are also graph pro-
cessing frameworks for executing distributed algorithms,
although they are not usually designed to store data.
Examples of such frameworks are Pregel [74], Trinity [99]
and HipG [63]. These frameworks, which are to NoSQL-based
applications what the model layer represents to conven-
tional Web applications, provide a middleware layer on top
of the data store layer where the logic related to data tra-
versal and parallelism resides.
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In general, it is not necessary to know SQL for using
NoSQL databases. However, since each NoSQL database has
its own API, consistency, replication and sharding
mechanisms, every change of NoSQL technology involves
learning a new storage paradigm. In some cases, such as
Key-Value databases, this learning is fast as the API can be
very easy to learn (get and set), but in other cases, such as
Wide-Column databases, it involves learning concepts such
as Column Families and MapReduce. Some NoSQL databases
provide SQL-Like languages for querying data so this tran-
sition is less drastic. There are also efforts in creating a
unified API to query different NoSQL databases with dif-
ferent types of schema. For example, SOS (Save Our Sys-
tems) [7] provides a unified API consisting in 3 basic
operations: GET, PUT and DELETE. The implementation of
those operations depends on the database selected (SOS
was tested against MongoDB, Redis and HBase). By unifying
the API for different databases, the application code can be
reused for a different type of database. However, hiding the
specifics of the underlying database also hides its features
and, therefore, possible optimization opportunities.

9. Conclusions

NoSQL databases are now part of the software design-
er's toolbox and are relentlessly occupying a market niche
once completely owned by RDBMSs. Currently, the “NoSQL
movement” is going through a hype where the technology
is receiving substantial attention and the expectations on
it may be exaggerated. This is, in part, due to the pro-
liferation of NoSQL databases created by many companies
and open-source communities, each of which promoting
its own implementation. This also makes using NoSQL
technology in a production environment a tough decision.
However, there is plenty of community support and, in
many cases, official support can be acquired.

As mentioned, NoSQL databases have been adopted by
many organizations, including organizations that provide
storage solutions themselves. There are some databases that
use NoSQL databases as the underlying storage support. For
example, Titan'? is a graph-oriented database that allows
the user to choose from three underlying storage supports:
Cassandra, BerkeleyDB and HBASE. This in principle sug-
gests that in the future, different data layouts at both the
representation and the storage level might coexist, thus
increasing the available options for developers.

There is also a growing number of Cloud storage sys-
tems that use NoSQL databases as storage support. As an
example, Riak CS™ is a file storage system on the Cloud
that uses Riak as a persistent storage and provides an API
(similar to Amazon S3'?) to store files containing terabytes
of data. Another kind of Cloud storage systems that is
being increasingly adopted is database-as-a-service
(DBaaS) - a.k.a. data as a service — systems [47]. A DBaaS
is a database, installed and maintained by a vendor, in

12 Titan Web Page, http://thinkaurelius.github.io/titan/.
13 Riak CS Web Page, http://basho.com/riak-cloud-storage.
4 Amazon S3 Web Page, http://aws.amazon.com/es/s3.

which developers can store data usually in exchange for a
fee. A number of DBaaS providers are based on NoSQL
databases. For example, OpenRedis'® provides a hosted
Redis database that can be purchased and accessed
remotely. Another example is MongoLab,'® a DBaaS based
on MongoDB. As stated in [47], DBaaS presents security
challenges if appropriate strategies are not implemented.
Data encryption and third party data confidentiality are
examples of security concerns inherent to DBaaS.

In many PaaS (Platform as a Service) environments the
databases offered range from RDBMSs to NoSQL databases.
For example, PaaS vendors such as Heroku'!” run applica-
tions written in a variety of languages and frameworks. As
a storage backend, a Heroku user can choose from a set of
databases including Postgres, ClearDB (a MySQL-based
distributed database), Neo4], Redis and MongoDB.
Another example is OpenShift,'® a PaaS vendor that pro-
vides three database supports, namely MySQL, Postgres
and MongoDB. Therefore, data storage layers where
RDBMSs and NoSQL solutions coexist also seems to be in
the agenda of backend providers. This evidences the fact
that RDBMSs and NoSQL databases are indeed com-
plementary technologies rather than competitors.
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