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Abstract In the present study, three different physico-

chemical molecular properties for peptides were calculated

using the program MARCH-INSIDE: atomic polarizability,

partition coefficient, and polarity. These measures were

used as input parameters of a linear discriminant analysis

(LDA) in order to develop three different quantitative

structure–property relationship (QSPR)-perturbation mod-

els for the prediction of B-epitopes reported in the immune

epitope database (IEDB) given perturbations in peptide

sequence, in vivo process, experimental techniques, and

source or host organisms. The accuracy, sensitivity and

specificity of the models were[90 % for both training and

cross-validation series. The statistical parameters of the

models were compared to the results achieved with the

electronegativity QSPR-perturbation model previously

reported by González-Dı́az et al. (J Immunol Res. doi:10.

1155/2014/768515, 2014). The results indicate that this

type of approach may constitute a potentially valuable

route for predicting ‘‘in silico’’ new optimal peptide

sequences and/or boundary conditions for vaccine

development.

Keywords Epitopes � Vaccine design � Perturbation
theory � QSAR/QSPR models � Markov chains

Introduction

The immune epitope database (IEDB: http://www.iedb.org)

contains data related to antibody and T cell epitopes for

humans, non-human primates, rodents, and other animal

species (Vita et al. 2010). This system registers an

important amount of information about the molecular

structure and the experimental conditions (cij) in which

different i-th molecules were determined to be immune

epitopes or not. With the availability of these types of

databases (Gao and Kurgan 2014), epitope prediction using

computational methods has emerged as a promising

approach for developing peptide-based vaccines. Such

techniques allow for screening among large numbers of

possible immune-active peptides in order to find those

likely to induce an immune response to a particular cell

type, providing a fast and cost-effective way to identifi-

cation of potential candidates for vaccine development (Du

et al. 2007; Chen et al. 2007).

Quantitative structure–activity/property relationship

(QSAR/QSPR) methods let transform molecular structures

into numeric molecular descriptors (ki) and find relationships

between these structures and their biological activity. Con-

sequently, these techniques are widely used today to predict

the properties of complex molecular systems, including

peptides, proteins, RNAs, drug-protein complexes, and pro-

tein–protein complexes (see, e.g., Bermúdez et al. 1999;

Agüero-Chapı́n et al. 2005; Du et al. 2005; Galindo et al.

2006; Chou and Shen 2008; Du et al. 2008a, b; Prado–Prado

et al. 2008; Chou 2009; Du et al. 2009; Rodrı́guez-Soca et al.

2009; Viña et al. 2009; Wei et al. 2009; Toropov et al. 2012;
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Toropova et al. 2015). Likewise, QSAR/QSPR methods have

been successfully used in immunoinformatics to predict the

propensity different molecular structures have for playing

different roles in immunological processes (see, e.g.,

Doytchinova et al. 2004; Estrada et al. 2004; Gerberick et al.

2004; Xiao and Segal 2005; Bhasin et al. 2006; Barh et al.

2010; Bremel and Homan 2010; Dı́ez-Rivero et al. 2010;

Roberts and Patlewicz 2010; Bi et al. 2011; Martı́nez-Naves

et al. 2011; Tenorio-Borroto et al. 2012; Fagerberg et al.

2013; Patlewicz et al. 2013).

On the other hand, perturbation theory comprises meth-

ods that add ‘‘small’’ variation terms to the mathematical

description of problems with known solutions in order to

find an appropriate solution for related problems with no

known solutions. Accordingly, this theory has been widely

used in all branches of knowledge, including bio-molecular

sciences. The reader may see the interesting review by

González-Dı́az et al. (2013a) on this topic. In the same

work, the authors also formulated a general-purpose per-

turbation theory for multiple-boundary QSAR/QSPR prob-

lems. Subsequently, this new modeling method was applied

by González-Dı́az et al. (2014) to develop an electronega-

tivity QSPR-perturbation model for B-epitopes reported in

IEBD able to predict the probability of occurrence of an

epitope after a perturbation in the peptide sequence (mi),

source organism (so), host organism (ho), immunological

process (ip), and experimental technique (tq) used.

In principle, there are more than 1600 different molec-

ular descriptors (ki) that may be generalized and used to

solve QSPR problems in chemical structures (Todeschini

and Consonni 2008). In the present study, three different

physicochemical molecular properties for peptide sequen-

ces reported in IEDB were calculated in order to develop

three different QSPR models able to predict the efficiency

of a new peptide as B-epitope given perturbations in mi, so,

ho, ip, and tq. The statistical parameters of the models were

compared to the results achieved by the model developed

by González-Dı́az et al. (2014).

Materials and Methods

Calculation of Molecular Descriptors for Peptides

The same database recently utilized by González-Dı́az

et al. (2014) was used in the present study. The data con-

tains variations in[50,000 peptides determined in exper-

imental assays with boundary conditions involving [500

source organisms, [50 host organisms, [10 biological

process, and[30 experimental techniques (González-Dı́az

et al. 2014). The calculation of the molecular descriptors

was implemented in the program MARCH-INSIDE (Gon-

zález-Dı́az et al. 2007), which makes use of a Markov

Chain method to calculate the k-th mean values of different

physicochemical molecular properties kk(mi) for i-th

molecules (mi). These
kk(mi) values are calculated as an

average of atomic properties (ki) for all atoms in the pep-

tide molecule and its neighbors placed at a topological

distance d B k. The parameter k is called the parameter of

the Markov Chain, the natural power of the Markov matrix.

In this work, the average value of all atomic polarizabilities
ka(mi), partition coefficients kP(mi), and polarities kPol(mi)

for all di atoms connected to the i-th atom (i ? j) and their

neighbors placed at a distance d B 5 was calculated for all

peptides (González-Dı́az et al. 2013b):

kk mið Þ ¼ 1

6

X5

k¼0

kkj ¼
1

6

X5

k¼0

Xdi

i!j

pk kj
� �

� kj ð1Þ

The probabilities kp(kj) for the atomic properties in

question were calculated using a Markov Chain model for

the gradual effects of the neighboring atoms at different

distances in the molecular backbone, as has been explained

in detail in González-Dı́az et al. (2013b).

Derivation of the QSPR-perturbation Models

In a recent work, González-Dı́az et al. (2014) have applied

the perturbation theory to the QSPR peptide prediction

problem and formulated an electronegativity QSPR-per-

turbation model able to predict the probability of occur-

rence of a B-epitope after a variation in the structure and/or

the boundary conditions of a peptide of reference. There-

fore, the theoretical foundations of the method are not

detailed here. In the present work, three new QSPR-per-

turbation models for prediction of B-epitopes reported in

IEDB were developed using different types of molecular

descriptors k(mi) to codify structural information: atomic

polarizability, partition coefficient, and polarity. The con-

struction of this type of models has been explained in detail

before (González-Dı́az et al. 2014); therefore, only the

general equation is presented:

k eij
� �

new
¼ 0c0 � k eqr

� �
ref
þ
X4

j¼1

0dij � DDkijqr þ 0e0 ð2Þ

Here, in line with González-Dı́az et al. (2014), k(eij)new
is the efficiency function as epitope of a new peptide

obtained after a change in the structure and/or the boundary

conditions cj : (c0, c1, c2, c3… cn) of a peptide of refer-

ence. The set of boundary conditions used here are the

same reported in IEDB: c0 = the specific peptide; c1 = the

organism that expresses the peptide (soj); c2 = the host

organism exposed to the peptide (hoj); c3 = the immuno-

logical process (ipj); and c4 = the experimental technique

(tqj). The variable k(eqr)ref refers to a known efficiency

function as epitope of a peptide of reference experimentally
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determined under a set of cj boundary conditions. The

function k(eij) was defined as a discrete value function for

classification purpose: k(eij) = 1 for epitopes reported in

the conditions cj and k(eij) = 0, when otherwise. The val-

ues c0 and dij are the coefficients obtained for the linear

discriminant analysis (LDA) classification functions. The

variational perturbation terms DDkijqr account both for the

deviation of the molecular descriptors of all amino acids in

the sequence of the new peptide with respect to the peptide

of reference and with respect to all boundary conditions.

The constant e0 represents the independent term of the

model (González-Dı́az et al. 2014). The expanded formula

of the models is given below:

k eij
� �

new
¼ 0c0 � k eqr

� �
ref

þ
X4

j¼1

0dij � ki � kj
� �

� kq � kr
� �� �

þ 0e0 ð3Þ

Statistical Analysis

An LDA was carried out using the STATISTICA 6.0 soft-

ware (StatSoft.Inc. 2002). In the absence of a true external

data set, the original data set was randomly divided into two

series, a training series for model development and a cross-

validation series for model validation (75 and 25 % of the

data set, respectively). A forward stepwise strategy was used

for variable selection, and the statistical significance of the

models was determined by calculating the canonical corre-

lation coefficient (Rc) and U-statistic. The accuracy, speci-

ficity, and sensitivity for the training and cross-validation

series were also examined (Hill and Lewicki 2006). In sta-

tistical prediction, the following three cross-validation

methods are often used to examine a predictor for its effec-

tiveness in practical application: independent dataset test,

subsampling test, and jackknife test (Chou and Zhang 1995).

However, of these three test methods, the jackknife test is

deemed the least arbitrary that can always yield a unique

result for a given benchmark dataset as elaborated in Chou

(2011). Accordingly, the jackknife test has been widely rec-

ognized and increasingly used by investigators to examine the

quality of various predictors (see, e.g., Zhang et al. 2008;

Esmaeili et al. 2010; Mohabatkar 2010; Sahu and Panda

2010; Khosravian et al. 2013; Mohabatkar et al. 2013).

However, to reduce the computational time, the independent

dataset test was adopted in this study.

Results and Discussion

In the present work, three different QSPR-perturbation

models were developed, one for each class of molecular

descriptor calculated with the software MARCH-INSIDE:

atomic polarizability (a), partition coefficient (P), and

polarity (Pol). The following were the best QSPR-pertur-

bation models found:

Polarizability-perturbation model:

k eij
� �

new
¼ �4:683 � k eij

� �
ref
�44:099 � Daseq

þ 2:666 � DDaho þ 16:482 � DDaso
� 21:668 � DDaip þ 47:096 � DDatq þ 2:0103

N ¼ 155169 Rc ¼ 0:91 U ¼ 0:18 p\0:01

ð4Þ

Partition coefficient-perturbation model:

k eij
� �

new
¼ �4:345 � k eij

� �
ref
�98:689 � DPseq

þ 7:741 � DDPho þ 30:378 � DDPso

� 7:073 � DDPip þ 69:851 � DDPtq þ 1:851

N ¼ 155169 Rc ¼ 0:89 U ¼ 0:21 p\0:01

ð5Þ

Polarity-perturbation model

k eij
� �

new
¼ �4:846 � k eij

� �
ref
�708:845 � DPolseq

þ 37:565 � DDpolho þ 206:803 � DDPolso
� 204:545 � DDPolip þ 661:274 � DDPoltq
þ 2:084

N ¼ 155169 Rc ¼ 0:92 U ¼ 0:16 p\0:01

ð6Þ

In these equations, N is the number of cases used to train

the models, RC is the canonical correlation coefficient, and

U is the Wilk’s lambda or U-statistic. In line with Gon-

zález-Dı́az et al. (2014), the output of the models k(eij)new
is a real value function that scores the propensity with

which a new peptide obtained after perturbation of the

initial conditions acts as B-epitope. On the other side, the

first input term k(eij)ref is the scoring function k of the

efficiency of the initial process eij. The function k(eij)-

ref = 1, if the i-th peptide could be experimentally

demonstrated to be a B-epitope in the assay of reference

(ref) carried out in the conditions cj. k(eij)ref = 0 if other-

wise. The perturbation terms Dkcj = k(mq)ref - k(mi)new
are the difference in the mean value of the molecular

property in question for all amino acids in the sequence of

the peptide of reference. The independent variables

DDkcj = Dkcj-ref - Dkcj-new = [k(mq)ref -
*k(cqr)ref] -

[k(mi)new - *k(cij)new] quantify values of the conditions of

the new assay cj-new that represent perturbations with

respect to the initial conditions cij-ref of the assay of ref-

erence. The quantities *k(cij) and *k(cqr) are the average

values of the mean values k(mi) and k(mq) of the molecular

property in question for all new and reference peptides in

IEDB that are epitopes under the j-th or r-th boundary
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condition (González-Dı́az et al. 2014). The variational

perturbation terms DDkcj resemble terms typical of per-

turbation theory and moving average functions used in

Box-Jenkins models in time series (Box and Jenkins 1970;

González-Dı́az et al. 2013a). This type of information has

been recently incorporated inside QSAR/QSPR models

(Speck-Planche et al. 2013a, b, c; Vázquez-Prieto et al.

2014).

The models obtained here are very stable and robust,

yielding values of accuracy, sensitivity and specificity

[90 % for both training and cross-validation series (see

Table 1). The present results are excellent compared with

other similar models in the literature including moving

average or perturbation models (Speck-Planche et al.

2012a, b; González-Dı́az et al. 2013a). These models are

not able to improve the model developed by González-Dı́az

et al. (2014) in terms of specificity (97 and 97.1 %), sen-

sitivity (93.6 and 93.3 %), and accuracy (95.5 and 95.4 %)

for both training and cross-validation series respectively.

However, the results obtained are very similar and the

values of different statistical parameters demonstrate the

high significance of the models, validating the consistency

of the method. Thus, the information obtained from the

four different types of QSPR-perturbation models devel-

oped to date may be combined to increase the likelihood of

a correct prediction of new epitopes or the optimization of

known peptides towards computational vaccine design

(González-Dı́az et al. 2014).

Because user-friendly and publicly accessible web-ser-

vers represent the future direction for developing more

practically useful models, simulated methods and predic-

tors (Chou and Shen 2009), efforts shall be made in the

future work to provide a web-server for the method pre-

sented in this paper, as done in a series of recent papers

(see, e.g., Guo et al. 2014; Lin et al. 2014; Liu et al. 2014;

Qiu et al. 2014a, b; Xu et al. 2014).

Conclusions

In conclusion, this work has demonstrated that atomic

polarizability, partition coefficient, and polarity values

calculated with MARCH-INSIDE seem to also be good

molecular descriptors for finding QSPR-perturbation

models which are able to predict the results of variations in

peptide sequences and experimental assay boundary con-

ditions reported in IEBD. Consequently, this type of

approach may constitute a potentially valuable route for

predicting ‘‘in silico’’ new optimal peptide sequences and/

or boundary conditions for vaccine development. In addi-

tion, this study may serve as a basis for building better and

more reliable models in the future (e.g., consensus QSPR

models). This computational technique is by no means

aimed at replacing experimentation but rather helps us to

somewhat rationalize this process, while at the same time

reducing costs in terms of material resources and time.
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