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Abstract. We give a short and geometric proof, based on Jacobi fields, of
a theorem of K. Abe that asserts that the relative index of nullity is trivial
for complete non-totally geodesic complex projective submanifolds. Using this
idea we prove a splitting theorem for complex Euclidean submanifolds with a
non-trivial relative index of nullity.

1. Introduction

In this paper we denote by CP
n the complex projective space endowed with

its Fubini-Study metric gFS of constant holomorphic sectional curvature. By a
complete submanifold M ⊂ CP

n we mean that the induced Riemannian metric
gFS on M is complete.

Let α be the second fundamental form of M ⊂ CP
n. The index of relative nullity

μ̄(p) = dimC(RNp)

at p ∈ M is the dimension of the relative nullity subspace RNp:

RNp := {X ∈ TpM : α(X,Y ) = 0 for all Y ∈ TpM} .
The minimum μ of {μ̄(p) : p ∈ M} is called the index of relative nullity of M .

The following theorem was first stated in [2, Corollary 5].

Theorem 1.1. Let Mm ⊂ CP
n be an m-dimensional complex submanifold. If M

is complete, then the index of relative nullity μ of M is either zero or M is a totally
geodesic complex submanifold of CPn.

The proof of Abe [2] uses the so-called conullity operator (also called splitting
tensor [5, p. 761]). The idea of the Riccati type differential equation for the conullity
operator comes back to Ferus [6].

If the submanifold M ⊂ CP
n is compact, then it is algebraic due to a well-

known theorem of W-L. Chow. In this case the above theorem is phrased, in
algebraic geometry, by means of the Gauss map [8, p. 393, (2.29)] and [12, Corollary
2.8]. Indeed, the second fundamental form α is the differential of the Gauss map
[8, p. 379] which is degenerated, in the sense of [8], if and only if μ > 0.
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2 ANTONIO J. DI SCALA AND CARLOS OLMOS

One of the goals of this paper is to give a short and geometric proof of Theorem
1.1 based on Jacobi fields.

For complex submanifolds of the complex Euclidean space Cn, Theorem 1.1 does
not hold. Indeed, cylinders in C3 over complete curves of C2 are examples showing
that μ can be different from zero. A more interesting example is the hypersurface
H of C4 defined by the equation w = xz2 − yz, where (x, y, z, w) are the standard
complex coordinates of C4. The hypersurface H is not a cylinder but it is complete
and its index of relative nullity μ = 1. So in order to generalize Theorem 1.1 to
complex submanifolds of Cn one needs further assumptions. In this direction, Abe
[2, Theorem 7] proved a splitting result under a non-vanishing assumption of the
holomorphic sectional curvatures.

By imposing conditions on the Ricci curvatures we have the following splitting
theorem.

Theorem 1.2. Let Mm ⊂ Cn be an m-dimensional complex submanifold and let
RicM be its Ricci tensor w.r.t. the induced Riemannian metric. Let U be the open
subset of M where μ̄(x) = μ. Assume that there is a point q ∈ U such that for
any sequence of unit tangent vectors Xpj

∈ RN⊥
pj
, where pj ∈ U is an unbounded

sequence of points, the following holds:

(1) lim sup
j→∞

|RicM (Xpj
, Xpj

)|dist2(pj , q) = ∞.

If M is complete, then M splits as an extrinsic product of a leaf of the relative
nullity distribution by a complex complete submanifold, i.e., M is cylindrical.

In the special case that the Ricci tensor has a pinching we have the following
corollary.

Corollary 1.3. Let Mm ⊂ C
n be an m-dimensional complex submanifold and let

RicM be its Ricci tensor w.r.t. the induced Riemannian metric. Let U be the open
subset of M where μ̄(x) = μ. Assume that there is a constant c < 0 such that for
all Xp ∈ TpU perpendicular to RNp the following holds:

RicM (Xp, Xp) ≤ c‖Xp‖2 .

If M is complete, then M splits as an extrinsic product of a leaf of the relative
nullity distribution by a complex complete submanifold M ′ with RicM ′ ≤ c < 0 (in
particular, M is cylindrical).

Observe that any complex submanifold of Cn is minimal and so its Ricci curva-
tures are non-positive. Moreover, there are examples of complete complex subman-
ifolds M ′ ⊂ Cn with RicM ′ ≤ c < 0 (see Section 5.1).

2. Preliminaries

We will follow the usual notation of submanifold geometry in [3]. The Rie-
mannian metric will be denoted by 〈 , 〉. The symbols ∇ and R will denote the
Levi-Civita connection and its curvature tensor of either the Fubini-Study metric
of CPn or the flat standard metric of Cn. The curvature tensor R is explicitly given
by (see [9, Proposition 7.3]):

(2) RX,Y Z =
c

4
((X ∧ Y )Z + (JX ∧ JY )Z − 2〈JX, Y 〉JZ)Proo
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NULLITY OF COMPLEX SUBMANIFOLDS AND THE GAUSS MAP 3

where J is the complex structure and c ≥ 0 is the holomorphic constant curvature.
If c > 0, then the Jacobi operator Jξ = R ·,ξξ, when restricted to the orthogonal
complement W of Rξ, has two different eigenvalues λ1, λ2. Namely, λ1 = c‖ξ‖2, as-
sociated to the (real) eigenspace RJξ and λ2 = c

4‖ξ‖2, associated to the eigenspace

V = (Cξ)⊥.
Let γ(t) = exp(tξ) be a geodesic of CPn. A Jacobi vector field X(t) along γ(t)

is a solution of the so-called Jacobi equation (for details see [9, Chapter VIII]):

X ′′(t) +RX(t),γ′(t)γ
′(t) = 0 ,

where X ′′(t) = (Ddt )
2X(t) and D

dt is the covariant derivative along γ(t) associated
to ∇.

If both initial conditions X(0), X ′(0) of a Jacobi vector field X(t) are in V, then

(3) X(t) = cos(ωt)a+ sin(ωt)b

where ω2 = c‖ξ‖2

4 and a,b are parallel vector fields along γ(t) with initial conditions
X(0) = a(0), X ′(0) = ωb(0).

Let M,N be Riemannian manifolds and let f : M → N be a smooth map of
constant rank. We use the language of fiber bundles, although f need not be a
fiber bundle. In particular, V = ker(df) is the vertical distribution and H = V⊥

the so-called horizontal distribution. A vector field X of M (resp. Y) is called
vertical (resp. horizontal) if it is tangent to V (resp. if it is tangent to H). A vector
field X of M is basic if it is horizontal and locally it is f -related to a vector field v
(locally) defined on the image of f .

For us f will be the well-known Gauss map of a submanifold M . For the conve-
nience of the reader we explain it for CPn. Let M ⊂ CP

n be a complex submanifold
of CPn. The Gauss map

f : M → G(m,n)

is where G(m,n) is the Grassmannian of all totally geodesic CPm in CP
n [8, p. 363]

and f is the map

p → f(p) := exp(TpM)

where exp(TpM) is the totally geodesic projective subspace of CPn tangent to TpM
at p ∈ CP

n. The Grassmannian G(m,n) is identified with the usual Grassmannian
G(m+ 1, n+ 1) of (m+ 1)-dimensional complex subspaces of Cn+1. Let U be the
open subset of M where μ̄(x) = μ. Observe that for p ∈ U the vertical distribution
Vp is the relative nullity distribution RNp defined in the introduction.

The following result is well known.

Theorem 2.1 ([6]). The nullity distribution RN in U is autoparallel. If M is
complete, then the (totally geodesic) fibers of f|U are also complete submanifolds.

The first part of the above theorem is a simple consequence of the Codazzi
equations (see e.g. [1, Proposition 5]). The second part was first proved in [6] by
using the conullity operator. Recently, in [11], C. Olmos and F. Vittone gave a
conceptual proof without using the conullity operator. It is interesting to notice
that in complex or algebraic geometry the above theorem is stated and proved by
using quite different language and methods (e.g. [8, p. 388, (2.19)], [12, c), Theorem
2.3]).Proo
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4 ANTONIO J. DI SCALA AND CARLOS OLMOS

3. Proof of Theorem 1.1

The proof is by contradiction. So assume that M is not a totally geodesic
submanifold of CPn and that μ > 0. We will show that this is not possible hence
either μ = 0 or M is a totally geodesic submanifold i.e. μ = dimC(M).

Fix p0 ∈ U and let Hp0
:= (RNp0

)⊥ ⊂ Tp0
M be the horizontal distribution at

p0. Let, for ξ ∈ RNp0
\{0}, γξ(t) := expp0

(t.ξ) be the geodesic starting at p0 in the
ξ-direction. For v ∈ Hp0

let X(t) be the Jacobi vector field along γξ(t) obtained by
the horizontal lift, along γξ(t), of the vector df(v) ∈ Tf(p0)f(U) (see [11, p. 91]).
We define a map T : RNp0

×Hp0
→ Hp0

as follows:

T(ξ, v) := X ′(0) =
D

d t

∣∣∣∣
t=0

X(t) .

That T(ξ, v) lands in Hp0
is due to the first part of Theorem 2.1 (cf. with the

example of the Segre embedding of the last section where X ′(0) is not horizontal
w.r.t. the projection f to a factor).

Observe that T(ξ, v) can be defined as

(4) T(ξ, v) := (∇ξX)p0

whereX is the horizontal lift of df(v)∈Tf(p0)f(U) along the whole fiber f−1(f(p0)).

Lemma 3.1. The map T : RNp0
×Hp0

→ Hp0
is C-bilinear.

Proof. The C-linearity in v is clear due to the facts that the Riemannian metric of
CP

n is Kähler and f is holomorphic. The R-linearity in ξ follows from equation
(4). Let v be a vector field defined around f(p0) ∈ f(U) such that vf(p0) = df(v).

Let X be the horizontal lift of v and let ξ be a vertical local extension of ξ around
p0 ∈ M . Let J be the complex structure of CPn. Then a direct computation shows

∇JξX = J∇ξX+ J [X, ξ] + [Jξ,X] .

Since T(ξ, v) is horizontal we conclude that

(∇JξX) = J∇ξX and J [X, ξ] + [Jξ,X] = 0

(we have used that the Lie bracket of a basic vector field by a vertical one is vertical).
This shows that T(ξ, v) is also C-linear in ξ. �

For fixed ξ ∈ RNp0
\ {0} let us denote by Tξ := T(ξ, · ). The proof of Theorem

1.1 is based on the following lemma:

Lemma 3.2. Assume that 0 < μ < dimM . Then, for any 0 
= ξ ∈ RNp0
\ {0}, the

linear map Tξ has no real eigenvalues.

Proof. Assume that there is λ ∈ R and v ∈ H \ {0} such that

Tξ(v) = λv .

Let X(t) be the Jacobi vector field along γξ(t) obtained by the restriction to γξ(t),
of the horizontal lift of the vector df(v) ∈ Tf(p0)f(U). Observe that both initial
conditions of X(t) are proportional to v and that X(t) is a Jacobi vector field of
CP

n along γξ(t). Then from equation (3) we get

X(t) = cos(ωt)v + sin(ωt)
λ

ω
v =

(
cos(ωt) + sin(ωt)

λ

ω

)
v .Proo
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NULLITY OF COMPLEX SUBMANIFOLDS AND THE GAUSS MAP 5

Since the fibers of the Gauss map are complete the vector field X(t) is defined
for all values of t ∈ R. So if we take t0 ∈ R such that cos(ωt0) + sin(ωt0)

λ
ω = 0,

then X(t0) = 0. But this contradicts the construction of X(t) as the horizontal lift
of a non-zero vector df(v) ∈ Tf(p0)f(U). �

Let us now prove Theorem 1.1. Choose any ξ ∈ RNp0
\ {0}. Let λ be a complex

eigenvalue of Tξ. Hence there is v 
= 0 such that T(ξ, v) = λv. From Lemma 2.1
λ /∈ R and so λ 
= 0. Then T(λ−1ξ, v) = v. Hence 1 is an eigenvalue of Tλ−1ξ

contradicting Theorem 2.1. This completes our proof of Theorem 1.1. �

4. Proof of Theorem 1.2

Let M ⊂ C
n be a complex submanifold and let f : M → G(m,n) be its Gauss

map. Let gG be the standard Riemannian metric of G(m,n). The following identity
is crucial for the proof:

(5) RicM = −f∗gG

where RicM is the Ricci tensor of M . That is, the Ricci tensor is minus the pull-
back, via the Gauss map, of the canonical metric of the Grassmannian.

Then ifX(t) is the basic Jacobi vector field along the geodesic γξ(t) := expp0
(t.ξ),

defined in the proof of Theorem 1.1, we get

−RicM (X(t), X(t)) = f∗gG(X(t), X(t))

= gG(df(X(t)), df(X(t))) = gG(df(v), df(v))).

So gG(df(v), df(v))) is a constant hence RicM (X(t), X(t)) does not depends on t.
On the other hand, the Jacobi vector field X(t) along the geodesic γξ(t) of Cn

has the form

X(t) = X(0) + tX ′(0) .

So if X ′(0) 
= 0 we get that ‖X(t)‖2 = o(dist2(γξ(t), q)) as t → ∞. Then

|RicM (X(t), X(t))| = ‖X(t)‖2|RicM (
X(t)

‖X(t)‖ ,
X(t)

‖X(t)‖)|

= o(dist2(γξ(t), q))|RicM (
X(t)

‖X(t)‖ ,
X(t)

‖X(t)‖)|

as t → ∞. If we now assume equation (1), then |RicM (X(t), X(t))| goes to infinity.
This is a contradiction, since it is constant as explained above. Thus, we must have
X ′(0) = 0 for any basic Jacobi vector field constructed as in the proof of Theorem
1.1. So ∇ξX = 0 for any ξ vertical and X basic vector field. This implies that
M is a local product Cμ ×M ′ around each point of the open subset U ⊂ M . Let

M̃ be the universal cover of M endowed with the pull-back Riemannian metric.
Since the Riemannian metric is real analytic the local Riemannian product (of an

open subset) implies that also the global holonomy group of M̃ has a flat factor

C
μ. Then by De Rham’s splitting theorem M̃ splits as C

μ × M ′. Then also the
submanifold M is an extrinsic product as it follows by using either Moore’s Lemma
[1, Theorem 16] or Calabi’s rigidity theorem [4, Theorem 2]. �Proo
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6 ANTONIO J. DI SCALA AND CARLOS OLMOS

5. Examples

In the first part we construct an example of a complete complex submanifold
M ′ ⊂ Cn with RicM ′ ≤ c < 0. In the second part, by using the Segre embedding
CP

1 ×CP
1 ⊂ CP

3 we will see the importance of various ingredients of our proof of
Theorem 1.1.

5.1. Example of complete complex submanifold M with RicM ′ ≤ c < 0.
Let S be a non-hyperelliptic compact Riemannian surface of genus g ≥ 3. That S is
non-hyperelliptic means that any non-constant holomorphic map f : S → CP

1 has
degree greater than 2. Here we follow the notation in [7, p. 228]. Let J (S) := Cg/Λ
be the Jacobian variety of S. Then there is a natural embedding

τ : S → J (S) .

The map τ is usually called the Abel-Jacobi map. Then the flat metric of the
torus J (S) induces a metric ρ0 on S called the Bergmann metric in [10, p. 317]
(ρ0 is also called the theta metric by other authors). Since S is non-hyperelliptic
the theorem in [10, p. 317] implies that the Gauss curvature κ(p) of the metric
ρ0 is different from zero at all points p ∈ S. Thus, since S is compact, there are
constants a < b < 0 such that

a < κ(p) < b < 0

for all points p ∈ S.

Let S̃ be the universal cover of S. Then, by a basic property of universal covers

concerning the lifting of mappings, we have a map τ̃ : S̃ → C
g making the following

diagram commutative:

S̃ C
g

S J (S)

τ̃

π π

τ

Then M ′ := τ̃(S̃) is a complex submanifold of Cg such that the induced metric
is complete and RicM ′ = 2κ < 2b = c < 0 on M ′.

Remark 5.1. The immersion τ̃ : S̃ → M ′ is not injective. Indeed, the fundamental
group of M ′ is the commutator group [π1(S), π1(S)], i.e., M

′ is the Galois covering
of S associated to the commutator group [π1(S), π1(S)].

5.2. The Segre embedding. The Segre embedding CP
1 × CP

1 ⊂ CP
3 is defined

in homogeneous coordinates as

([x, y], [u, v]) → [xu : xv : yu : yv] .

It is standard to check that the above map is isometric w.r.t. the Fubini-Study
metrics. Let f : CP

1 × CP
1 → CP

1 be the projection to the first factor. We
can regard as vertical distribution the tangent spaces to the fibers of f i.e. the
tangent spaces to the second factor. The horizontal distribution coincides with the
distribution associated to the first factor. Observe that both horizontal and vertical
distributions are totally geodesic. Then any tangent vector vp, where p is a point
of the first factor, can be horizontally lifted to Jacobi vector field X along the fiber
f−1(p). In this case the initial condition X ′(0) cannot be horizontal for all such
Jacobi vector fields. Indeed, if for all horizontal lifts X the initial condition X ′(0)Proo
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is horizontal, then the shape operator of CP1 ×CP
1 preserves the factors. But this

is not possible as proved in [1, Theorem 17].
Then it is crucial, in Theorem 1.1, that the totally geodesic fibers are given by

the Gauss map.

References

[1] Dmitri V. Alekseevsky and Antonio J. Di Scala, The normal holonomy group of
Kähler submanifolds, Proc. London Math. Soc. (3) 89 (2004), no. 1, 193–216, DOI
10.1112/S0024611504014662. MR2063664 (2005m:53075)

[2] Kinetsu Abe, Applications of a Riccati type differential equation to Riemannian manifolds
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