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Abstract

We discuss area terms in entanglement entropy and show that a recent formula by

Rosenhaus and Smolkin is equivalent to the term involving a correlator of traces of

the stress tensor in Adler-Zee formula for the renormalization of the Newton constant.

We elaborate on how to fix the ambiguities in these formulas: Improving terms for the

stress tensor of free fields, boundary terms in the modular Hamiltonian, and contact

terms in the Euclidean correlation functions. We make computations for free fields

and show how to apply these calculations to understand some results for interacting

theories which have been studied in the literature. We also discuss an application to

the F-theorem.

1 Introduction

The black hole entropy formula has had a large impact in theoretical physics, prompting to
the discovery of the holographic nature of quantum gravity [1] and also influencing rather
distant areas of research. As an example, ideas about area laws of entropy for fundamental
states have been relevant in recent applications of quantum information theory to approxi-
mation methods for complex fundamental states in many body physics [2].

The possibility that the statistical origin of black hole entropy can be explained as entan-
glement entropy (EE) across the horizon [3] has led to a wealth of investigations on statistical
aspects of vacuum fluctuations in quantum field theory (QFT). As it is well known, the area
term of entanglement entropy in QFT is divergent and cannot be renormalized without
gravity. The investigation has then focused mainly in subleading universal terms.

However, as argued in [4] (see also [5]), for regions which are large with respect to the
mass scales on the theory we expect an expansion of the form

S = µLd−2 + shape dependent terms , (1)

µ =

(

kd−2

ǫd−2
+ kd−3

m

ǫd−3
+ ...+ k0m

d−2 log(mǫ) + k′
0m

d−2

)

. (2)

The area term should not depend on the shape as long as the curvatures of the boundary
are much smaller than the scale m. In this expression Ld−2 stands for the area of the
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boundary of the region, m is some physical mass scale of the theory, and ǫ is a short distance
cutoff. The power structure of divergences can change with interactions [6] and contain non-
universal coefficients, but the coefficient k0 of the logarithmically corrected area term should
be universal. In absence of a logarithmic contribution this term is replaced by a universal
cutoff independent area term k′

0m
d−2 (which is not universal in presence of a logarithmic

term). For free theories the logarithmic term appears for even dimensions while it is absent
for odd dimensions [4]. Holographic analysis show this can change with interactions [6, 7, 8].

Hence, there are some universal area terms for non conformal theories. An unambiguous
definition of these terms requires a sufficiently nice regularization [9] or using the mutual
information as a “point splitting” regularization [10].

A useful way to think about the mass corrections in µ in (2) is that these corrections arise
in the area term as we increase the size of a region from L ≪ m−1 to L ≫ m−1. In this
picture the mass dependent area terms in µ for a large planar surface in fact measure the
total change of the area term between the UV and the IR limits of the theory, and depends
on the details of this RG flow. In particular, for d = 3, strong subadditivity combined with
Lorentz invariance imply a negative ∆µ = µIR − µUV for circles [11]. Interestingly, a non
zero running of µ entails a non zero running of the constant term of the entropy of circles
c0. This later acts as the monotonic quantity of the F-theorem [12].

The idea of a running of the area term with the scale of the region together with the
black hole entropy formula suggests that even if we do not understand how gravity regular-
izes the UV divergences and makes the entropy finite and equal to A/4G, a universal low
energy contribution to the black hole entropy should originate in QFT and be calculable
as entanglement entropy [13, 14] (see also [15]). More precisely, the universal piece in the
renormalization of the area term in EE should be the same as the one in the renormalization
of (4G)−1.

The renormalization of the Newton constant due to integration of massive fields can be
computed in the context of QFT in curved spaces, using for instance heat kernel techniques
[16]. Alternatively, it is given by the so called Adler-Zee (AZ) formula [17, 18] in terms of
flat space correlators of the trace of the stress tensor Θ(x) = T µ

µ (x),

∆((4G)−1) = − π

d(d− 1)(d− 2)

∫

ddx x2 〈0|Θ(0)Θ(x)|0〉+ 4π

d− 2
〈O〉 . (3)

Here O = δΘ/δR is the variation of the stress tensor trace with respect to the curvature
for a conformally flat metric [17, 19], and it is relevant when there are non trivial couplings
of the fields with the curvature. Everything is written in Euclidean metric. This formula
follows by identifying the renormalization of the coefficient of the scalar curvature in the
gravitational effective action once the fields have been integrated out.

However, as it stands, the idea that the universal part of the area terms in the entropy of
quantum fields is given by (3) does not quite work since the universal part of AZ formula
depends on the particular way the fields are coupled to gravity, while this is not the case for
µ for the QFT in flat space, which does not know about gravity.
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Important progress in understanding the area term in EE was recently produced by Rosen-
haus and Smolkin [20, 21, 22, 23]. They obtain a formula based on the first law of EE [24, 25]

µ =
1

d− 2

∫

ddx 〈Θ(x)K〉 , (4)

where K = −2π
∫

dd−1xx1T00 is the modular Hamiltonian (the rotation operator in Eu-
clidean formulation, that is the analytic continuation of the real time boost operator) of
the half plane1. As described below, Rosenhaus-Smolkin (RS) formula is easily shown to be
equivalent to the first term in AZ formula (3)

µ = − π

d(d− 1)(d− 2)

∫

ddx x2 〈0|Θ(0)Θ(x)|0〉 (5)

using spectral decomposition for the stress tensor correlators. However, both of these formu-
las have to be treated with some care, and in the subtleties of the precise definition, differences
may appear between renormalizations of (4G)−1 and universal area terms in QFT.

In this paper we focus in trying to understand more precisely the universal terms in µ in
QFT, and the subtleties in the evaluation of the first term of (3) or equivalently (4). Our
guiding principle is that the result must be uniquely defined by the QFT in flat space, that
is, by the operator content and the correlation functions. For example, for free theories there
should not be any dependence on the particular choice of stress tensor, or equivalently, on
couplings of the field with the curvature when the theory is extended to curved space. There
should neither be ambiguities in the definition of the modular Hamiltonian operator due
to boundary terms (see the recent discussions [27, 28, 29, 30]) or ambiguities coming from
contact terms in the expression (3) at the coincident point of the operators. These contact
terms are distributions with support at the contact point in the Euclidean correlators, and
are not determined by analytic continuation of the real time Wightman functions of the
theory [31]. Hence they should not play any role in the universal part of µ. Contact terms
and improvement terms however play an important role in the precise calculation of the
renormalization of the Newton constant. We mainly do calculations for free fields but we
were able to understand the area terms for some interacting theories that have been worked
out in the literature by exploiting free field results: The O(N) scalar model in the ǫ expansion
discussed in [32] and the absence of logarithmically corrected area term in d = 4 for a scalar
mass term computed holographically [6, 7].

The plan of the paper is as follows. In the next section we show how the universal
area terms can be defined using mutual information. We also compute these terms for free
fields using the mutual information between two half planes. In section 3 we make a short
derivation of the RS result and show the formal equivalence between their formula and AZ.
In section 4 we discuss the relations between the formula for area terms to c-theorems in
d = 2 and d = 3. In particular we argue that an area term renormalization with negative

1An expression of the renormalization of the entanglement entropy in terms of expectation values of the
trace θ in a conical manifold was worked out in [26]
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sign in d = 3 drags the running of the c-function to be strictly positive, hence establishing a
property of “isolation of fixed points” analogous to the one in Zamolodchikov’s theorem for
d = 2. In section 5 we discuss free fermion and scalar fields, and study several subtleties,
like the definition of the modular Hamiltonian and the inclusion of improvement terms. In
section 6 we review the calculation of the renormalization of the Newton constant for the
free scalar and discuss the role of couplings with the curvature and the second term in AZ
formula, as well as the importance of contact terms in the first term. We apply these ideas
to interacting examples in section 7. Finally, we present our conclusions.

2 Area terms in mutual information

Mutual information I(A,B) = S(A) + S(B) − S(A ∪ B) for non intersecting sets A and B
is a universal quantity, depending only on the continuous QFT, that is, it is independent
of regularization. It can also be used as a particular geometric regularization of entropy,
analogous to framing regularization for Wilson loops or point splitting regularization for
expectation values of point operators, with the definition [10]

S(A, ǫ) ∼ 1

2
I(Aǫ/2, A

c
ǫ/2) , (6)

where ǫ is a small physical distance between the two regions, Aǫ/2, which is A contracted a
distance ǫ/2 from the boundary, and Ac

ǫ/2, which is the complement Ac of A, contracted ǫ/2
from the boundary.

The mutual information I(Aǫ/2, A
c
ǫ/2) for two parallel planar entangling surfaces separated

by a distance ǫ has an expansion similar to (2), but where all terms are now universal. The
calculation of the divergent universal terms in the expansion is difficult since it is necessary
to compute the entropy for the union of two half spaces in (6) or equivalently the entropy
for a long thin strip between the two planes. We are doing this calculation for free fields
below. However, the ǫ independent term (or the logarithmic term in ǫ, depending on space-
time dimensions) should not retain information on the finite width strip, and hence be
assimilated to the universal part in the half space entanglement entropy for a sufficiently
geometric regularization [9].

The discussion of mutual information will also serve to understand boundary terms in the
modular Hamiltonian for the half space later.

For free fields we can make the calculation by dimensional reduction. We take two half
spaces, say for x1 < −ǫ/2 and for x1 > ǫ/2, separated by a distance ǫ. For a scalar field for
example, the field can be Fourier transformed in the directions parallel to the plane, and we
have the Hamiltonian

H =
1

2

∫

dd−1x
(

π2(x) + (∇φ(x))2
)

+m2φ2(x))

=

(

L

2π

)d−2 ∫

dd−2p‖
1

2

∫

dx1
(

π2
p‖
(x) + (∂x1φp‖(x))

2 + (m2 + p2‖)φp‖(x)
)

. (7)
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Mutual information for the vacuum state can then be decomposed in the different momen-
tum of the direction parallel to the planes, and the result is given by an integral of the two
dimensional mutual informations in the 1 + 1 spacetime of coordinates x0, x1 for the tower
of two dimensional fields with effective masses M2 = m2 + p2‖. These are in turn given in

terms of the one dimensional entropic c-functions. Details are in [33, 34]. We have

I(ǫ,m) = κLd−2md−2

∫ ∞

mǫ

dx
1

xd−1

∫ ∞

0

dq qd−3C(
√

q2 + x2)

= κLd−2 md−2

∫ ∞

mǫ

dx
1

xd−1

∫ ∞

x

dy y (y2 − x2)
d−4

2 C(y) . (8)

Here C(Mǫ) = ǫdS(ǫ,M)/dǫ is the dimensionless c-function of a two dimensional field of
mass M [33, 35], and

κ =
d− 2

2d−2π
d−2

2 Γ[d/2]
. (9)

According to (8) we need to expand the last integral in powers of x to get an expansion
of I(ǫ,m) in powers of ǫ. For even dimensions the coefficient function inside the integral is
a polynomial, and we can expand in x directly

∫ ∞

x

dy y (y2−x2)
d−4

2 C(y) =

d/2−2
∑

i=0

(−1)i
(

d
2
− 2
i

)

C(d−3−2i)x2i+(−1)
d

2
−1C(0)xd−2

d− 2
+O(xd−1) ,

(10)
where C(n) is the nth momentum of the c-function,

C(n) =

∫ ∞

0

dy ynC(y) . (11)

The terms in the sum come from expanding the polynomial in the integrand and taking
x → 0 in the lower limit of the integral. The last term proportional to xd−2 comes from
deriving d− 2 times with respect to x, and evaluating at x = 0.

Plugging this back into (8) we obtain a series expansion for I(ǫ,m) for small mǫ,

I(ǫ,m) = Ld−2





d/2−2
∑

i=0

(−1)ik

d− 2i− 2

(

d
2
− 2
i

)

C(d−3−2i) m2i

ǫd−2−2i
+ (−1)

d

2

kC(0)md−2 log(mǫ)

d− 2



 .

(12)
This equation gives an expansion that contains all the divergent terms as ǫ goes to zero.
Notice that only even powers of ǫ appear. The coefficients depend on the moments of the
c-function, which are slightly different for a scalar and a Dirac fermion. They can be com-
puted numerically with high precision using the expression of C(x) in terms of solutions of
non-linear differential equations [33, 35]. In contrast, the logarithmic term is proportional
to the value of the c-function at the origin, which is 1/3 both for Dirac fermions and real
scalars. Because of this dependence on the function C(x), the coefficients of the non-universal
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divergent terms in the entropy will not be the same as the ones computed with other reg-
ularizations, e.g. heat kernel [4]. However, the coefficients of the mutual information are
physical for all powers. Dividing by two the result of the mutual information we obtain the
logarithmic term for a scalar field in even dimensions

µS
univ = (−1)

d

2

1

2d−13π
d−2

2 Γ[d/2]
md−2 log(mǫ) . (13)

This is exactly the result for µS obtained in [4] by the heat kernel method.

The fermion has half the coefficient of the scalar per spinor component, because it inherits
this from the relation of C for the massless d = 2 case, where we have C(0) = 1/3 both for
Dirac and real scalar fields (one half the scalar result for each fermion component). Hence
we get

µF
univ =

dΨ
2
µS

univ , (14)

where dΨ is the number of spinor components. This also coincides with heat kernel calcula-
tions [7].

For a scalar field, due to the cuspy behavior of the c-function at the origin [34]

C(x) ∼ 1

3
+

1

2

1

log(x)
+ ... , (15)

there is an additional
(−1)d/2md−2

2(d− 2)
log(− log(mǫ)) (16)

term in µ for even dimensions. However, this does not affect the universality of the logarith-
mic term for even d.

For the case of odd dimensions the calculation of the power terms also proceeds by ex-
panding (8), with the same result as in the power terms in (12) where the binomials for d
odd are now

(

d
2
− 2
i

)

=
(d/2− 2)(d/2− 2− 1)...(d/2− 2− (i− 1))

i!
. (17)

The constant term comes from extracting the power terms and evaluating the integrals
for mǫ = 0. This is

kLd−2 md−2

∫ ∞

0

dy C(y)

∫ ∞

0

dx

(

θ(y − x)
y (y2 − x2)

d−4

2

xd−1

−
d/2−3/2
∑

i=0

(−1)i
(

d
2
− 2
i

)

y(d−3−2i) 1

xd−1−2i



 , (18)
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where θ(x) is the step function. Now, the second integral in x gives exactly zero for any non
zero y. However, the whole integral is non zero since

∫ ∞

0

dx

∫ y0

0

dy



θ(y − x)
y (y2 − x2)

d−4

2

xd−1
−

d/2−3/2
∑

i=0

(−1)i
(

d
2
− 2
i

)

y(d−3−2i) 1

xd−1−2i





= (−1)
d−1

2

π

2(d− 2)
, (19)

independently of the value of y0. Hence, the x integral in (18) is proportional to a delta
function δ(y). The constant term in odd dimensions will depend on the value of C(0) alone,
as is the case of the logarithmic term in even dimensions. With this we have the full expansion
for odd d

I(L,m) = Ld−2





d/2−3/2
∑

i=0

(−1)ik

d− 2i− 2

(

d
2
− 2
i

)

C(d−3−2i) m2i

ǫd−2−2i
+ (−1)

d−1

2

kπC(0)md−2

2(d− 2)



 .

(20)

Using C(0) = 1/3 for a scalar, the coefficient of the constant term in the entropy is

µS
univ = (−1)

d−1

2

π

2d3π
d−2

2 Γ[d/2]
md−2 , (21)

and we again have the relation (14) for fermions. This result coincides with the ones previ-
ously obtained in the literature [4, 7].

There is no log(log(−mǫ)) term for the scalar in odd dimensions. This is good, otherwise
the presence of this term in odd dimensions would have spoiled the universality of the
constant term.

3 Formulas for the area term

The variation of the entanglement entropy under a small change of the state is given by

δS = tr(δρK) , (22)

with δS = S(ρ)− S(ρ0), δρ = ρ − ρ0, and where K is the modular Hamiltonian defined by
ρ0 ∼ e−K [24]. The density matrix can be expressed as a path integral in Euclidean space
with boundary values on both sides of a cut at t = 0 on the location of the region V (see
for example [39]). The modular Hamiltonian K is an operator insertion in (22) precisely at
this cut at t = 0, ~x ∈ V . The vacuum state corresponds to unperturbed Euclidean space
in the path integral, while boundary conditions or external sources can be used in the path
integral to choose a different state. Rosenhaus and Smolkin use this representation to obtain
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a formula for infinitesimal variations of the entanglement entropy under changes of relevant
operators in the action. If the action contains a term β

∫

ddxO(x) they get [20, 21]

∂S

∂β
= −

∫

dxd 〈O(x)K〉β . (23)

Hence the variation of the entropy is given by the integral of the expectation value of the
operator over Euclidean space with the modular Hamiltonian inserted at the cut. It is
important to keep in mind that the use of the first law of EE (22) is for small enough
variations of the state, and this can only be achieved with a change in the action if a cutoff
is in place, that is, if we make δβ going to zero first and then take the limit ǫ → 0. While the
opposite order of limits is the correct one for continuum QFT, this should not be a problem
for the calculation of the universal cutoff independent terms.

In order to obtain the universal area term we use the fact that the entropy for a planar
entangling surface has the form S = Ld−2µ. Then we have for the variation of L

L
dS

dL
= (d− 2)S . (24)

Now a variation of the size of the region can be obtained by changing x → λx in the path
integral involved in the density matrix in eq.(22), and keeping all mass parameters and the
coordinate size of the region L fixed. This step is equivalent to pull down from the action
A =

∫

ddxL the quantity

∫

ddx

(

∑

i

∂µφ
i ∂L
∂(∂µφi)

− dL
)

=

∫

ddx gµν

(

∑

i

∂νφ
i ∂L
∂(∂µφi)

− gµν L
)

. (25)

For free fields the quantity within brackets is the trace of the canonical stress tensor. For
interacting fields having a unique stress tensor a variation of the effective action should give
Θ = gµνT

µν . Then we get

λ
∂S

∂λ

∣

∣

∣

∣

λ=1

=

∫

dxd 〈Θ(x)K〉 . (26)

This equation holds only for the universal terms since we have left unspecified how the cutoff
changes with the transformation. Since LdS

dL
= λ∂S

∂λ
|λ=1 we have from (24)

S =
1

(d− 2)

∫

dxd 〈Θ(x)K〉 = − 2π

d− 2

∫

ddx

∫

y1>0

dd−2y y1〈Θ(x)T00(y)〉 . (27)

The coefficient of the area term is then given by

µ = − 2π

d − 2

∫

ddx

∫

y1>0

dy1 y1〈Θ(x)T00(y)〉 . (28)

This is RS formula which the authors obtain from (23) using a Ward identity. The universal
piece has to be extracted regularizing this divergent expression.
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An important simplification of this formula was found in [21] by using the spectral repre-
sentation of the stress tensor correlation functions [40],

〈Tαβ(x)Tρσ(0)〉 =
Ad

(d− 1)2

(
∫

ds c(0)(s)Π
(0)
αβ,ρσ(∂)G0(x, s) +

∫

ds c(2)(s)Π
(2)
αβ,ρσ(∂)G0(x, s)

)

,

(29)
with

Ad =
πd/2

(d+ 1)Γ(d/2)2d−2
, (30)

and where Π
(0)
αβ,ρσ and Π

(2)
αβ,ρσ are fourth-order polynomial tensors in derivatives ∂, c(0)(s) and

c(2)(s) are the spin zero and two spectral functions, and G0(x, s) is the free scalar Green
function of mass s,

G0(x, s) =
1

2π

(

s

2π|x|

)(d−2)/2

K(d−2)/2(s|x|) . (31)

In particular Π
(2)
αβ,ρσ is traceless and hence c(2)(s) does not enter into the formula (28). The

tensor Π
(0)
αβ,ρσ is

Π
(0)
αβ,ρσ =

1

Γ(d)
(∂α∂β − δαβ∂

2)(∂ρ∂σ − δρσ∂
2) . (32)

Eq. (28) becomes simply2 [21]

µ = − 2πAd

(d− 1)(d− 2)Γ(d)

∫ ∞

0

ds c(0)(s) . (33)

Interestingly, by a simple application of the spectral representation we can show that RS
formula is equivalent to the term involving correlators of Θ(x) in the AZ formula for the
renormalization of the Newton constant. We have

〈Θ(0)Θ(x)〉 = Ad

Γ(d)

∫ ∞

0

ds c(0)(s) s4G(x, s) . (34)

Then

µ = − π

d(d− 1)(d− 2)

∫

ddx x2 〈0|Θ(0)Θ(x)|0〉

= − πAd

d(d− 1)(d− 2)Γ(d)

∫

ddx x2 ds c(0)(s) s4G(x, s)

= − 2πAd

(d− 1)(d− 2)Γ(d)

∫ ∞

0

ds c(0)(s) , (35)

2Note that for theories where the stress tensor operator is non unique, in order to obtain this expression
from (28) Θ(x) and T00(x) must involve the same (symmetric and conserved) stress tensor operator for the
spectral representation to be valid.
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coinciding with (33). In the last step we have used

∫

ddxG0(x, s) x
2 =

2d

s4
. (36)

It is interesting to note that the expression (5) gives a formally negative term in any
dimensions, and the same sign for the renormalization of the area term follows from heuristic
application of strong subadditivity [11]. Divergences generally spoil this naive positivity
argument in d > 3.

4 Relations to c-theorems in d = 2 and d = 3

Let us first discuss the connection of the formula for the area term with the c-theorem in
d = 2. The formula (5) cannot be directly applied to two dimensions due to the (d−2) factor
at the denominator. However, we can use the following trick to dimensionally continue this
formula down to d = 2. We can extract from the integral of the correlation functions a mass
parameter to make it dimensionless

µ = − π md−2

d(d− 1)(d− 2)

∫

ddx x2m−(d−2)〈0|Θ(0)Θ(x)|0〉 . (37)

In the limit d → 2 this gives a universal logarithmic term

µ = −π

2

(
∫

d2x x2〈0|Θ(0)Θ(x)|0〉
)

log(m) . (38)

The integral within brackets is dimensionless in d = 2 and is given in terms of the change
in the Virasoro central charge CV between the ultraviolet and infrared fixed points (see for
example [40])

∆CV = CUV
V − CIR

V = 3π

∫

d2x x2 〈0|Θ(0)Θ(x)|0〉 . (39)

This quantity is always positive due to the c-theorem, which in (39) is a manifestation of
the reflection positivity of the correlator together with the convergence of the integral.

Hence we have for (38)

µ = −1

6
(CUV

V − CIR
V ) log(mǫ) , (40)

where we have inserted a distance cutoff ǫ to compensate for the dimensions.

This is indeed what we expect for the renormalization of the “area term” in d = 2 [39].
For a small interval of size R in d = 2 the entropy is

SUV =
CUV

V

3
log(R/ǫ) + k0 , (41)
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with k0 a non universal constant. For a large interval compared to all mass scales in the
theory we should have

SIR =
CIR

V

3
log(R/ǫ) + k′

0 −
CUV

V − CIR
V

3
log(mǫ) . (42)

The coefficient of the last term in this equation is fixed by the requirement that the log(ǫ)
term in both SUV and SIR must be the same. This is due to the fact that this term is
generated by ultraviolet entanglement around the boundaries of the interval, and must be
independent of the size (see also [41]). The physical mass scale m can be chosen at will.

The last term in (42) should be compared with (40). In (40) we have −(CUV − CIR)/6
while the coefficient for a large interval is −(CUV − CIR)/3 because formula (38) is for the
half space, which has only one boundary, while an interval has two boundaries (a double
“area”).

Therefore we conclude that (5) does indeed give the renormalization of the area term in
d = 2 for any theory.

In dimension d = 3 the c-theorem (F-theorem) states that the constant term c0 in the
entropy of a circle decreases from UV to IR fixed points, where for a conformal point the
entropy of a circle writes

S(R) = R

(

k1
ǫ
+ k0

)

− c0 . (43)

No logarithmic term is present for the entropy of spheres in odd dimensions [42]. Outside the
fixed points, due to strong subadditivity and Lorentz invariance, the circle entropy satisfies
[11]

S ′′(R) < 0 . (44)

The running of the constant and area terms are given by [11]

cUV
0 − cIR0 = −

∫ ∞

0

dRRS ′′(R) ≥ 0 , (45)

µ = kIR
0 − kUV

0 =

∫ ∞

0

dRS ′′(R) ≤ 0 . (46)

Then for d = 3 the renormalization of the area term has negative sign.

Interestingly, this result coming from strong subadditivity is in accordance with the sign
implied by reflection positivity in the formula

µ = −π

6

∫

d3x x2 〈0|Θ(0)Θ(x)|0〉 . (47)

In d = 3 there can be some theories where the integral in the right hand side can be divergent,
and hence the formal positivity of the correlator does not imply a negative universal term.
However, the universal term in µ must be negative because of the c-theorem. We will find
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that this is the case for free scalars where the integral diverges because we are forced to
choose the canonical stress tensor, but where the negative sign is preserved for the universal
term.

For free fermions the integral is convergent and we expect the same for most non-free fixed
points and runnings. For example, if we perturb the UV CFT with a relevant scalar operator
of dimension 1/2 < ∆ < 3 we get 〈0|Θ(0)Θ(x)|0〉 ∼ |x|−2∆ and this gives a convergent
integral in (47) for ∆ < 5/2. At the infrared, perturbing with an irrelevant operator of
dimensions ∆ > 3 we get always a convergent integral for large x. Then in principle there is
no problem with divergences at the infrared.

For the case of a perturbation with 3 > ∆ > 5/2 at the UV probably the area term
does have a divergent total running and there is no universal finite area term. This is what
happens holographically. In the holographic case the bulk metric is given generically by

ds2 =
L̃2

z2

(

−dt2 + d~x2 +
dz2

f(z)

)

, (48)

where L̃ is the asymptotic AdS radius, and f(z) describes the behavior of the theory with
scales. The null energy condition implies f ′(z) > 0. We can set limz→0 f(z) = 1 and
limz→∞ f(z) = f(∞) = constant. The bulk minimal surface ending at a d − 2 dimensional
plane at the d-dimensional boundary goes straight to the bulk direction. The entropy is then
proportional to this minimal area [43]

S =
Ld−2

4Gd+1
N

∫

dz
L̃d−1

f 1/2(z)zd−1
. (49)

Near z = 0 we have an expansion f(z) = 1+ (µ̃z)2(d−∆) for a CFT perturbed by an operator
of dimension ∆, and where µ̃ is some mass scale. This gives a variation of the area (49) at
the UV which diverges for ∆ > (d + 2)/2 and gives a logarithmic term for ∆ = (d + 2)/2
[6, 23]. This is 5/2 for d = 3.

Note that a divergent area renormalization does not imply a divergent c0 renormalization
since the variation of c0 is suppressed precisely at the UV by an additional power of R in
(45) as compared to (46).

The renormalization of the area term and the constant term both depend on the second
derivative S ′′(R), eqs. (45) and (46). These formulas however do not constraint much the
relation between ∆c0 and µ except for the following. If µ 6= 0 then necessarily S ′′ 6= 0 (and
hence S ′′ < 0) for some R. This implies that ∆c0 > 0 is not zero. Therefore a non zero
renormalization of the area term implies a non zero renormalization of the constant term c0
in the circle entropy.

In the light of this commentary, the interesting point about formula (47) for the area term
is that it gives µ as an integral over a correlator of the operator Θ with itself, which cannot
be zero unless the operator itself is zero. Hence, if the theory is outside a fixed point, and
Θ(x) 6= 0, it must be necessarily that 〈0|Θ(0)Θ(x)|0〉 > 0 for some x. This then implies that
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µ < 0 and that ∆c0 > 0. Hence, we have a result analogous to the one that follows from (39)
for the Zamolodchikov theorem in d = 2: In the running from a UV to an IR fixed point the
central charge not only decreases but it cannot remain constant.

Of course, for d = 3 (as opposed to the case d = 2) this result is complicated by the
possibility of divergences in the expression for µ in some theories. In principle these can lead
to a universal part of µ = 0. However, according to our previous discussion, holographic
entanglement entropy suggest that in the case where (5) is divergent, the total area running
is also divergent, leading still to a positive ∆c0 > 0.

5 Free fields: Modular Hamiltonians and improvement

term

In this section we study free massive fermion and scalar fields, and focus our attention on
solving possible ambiguities in the area term formulas in order to obtain the correct universal
terms given by mutual information regularization.

5.1 Modular Hamiltonian

RS formula contains the modular Hamiltonian K of the Rindler wedge and the derivation
uses the first law ∆〈K〉 = ∆S for small deviations. Recently there have been discussions in
the literature about possible boundary terms in the modular Hamiltonian involved in the first
law of EE [27, 28, 29, 30]. Regarding this point, let us first note that the (real time) modular
Hamiltonian is involved in the following one parameter group of unitary transformations,
the modular flow,

U(τ) = e−iKτ . (50)

This may be thought as a time evolution operator for the state ρ0 = e−K , which is “thermal”
with respect to the Hamiltonian K. Hence the correlation functions of operators localized
inside the region have to satisfy the KMS condition of periodicity in imaginary time [37]

〈O1U(i)O2U(−i)〉 = 〈O2O1〉 . (51)

This defines the modular flow and implies that any ambiguity in K has to be given by
additions of operators which commute with the operators inside the region, in such a way to
keep the modular flow intact. These possible additional terms have then to be localized at
the boundary.

Another way to see this is using the relative entropy

S(ρ|ρ0) = ∆〈K〉 −∆S . (52)

This is a universal quantity [38] for any region and state. Now, if we take a unitary operator
UV localized inside the region V and as ρV the reduced state corresponding to U |0〉, we have
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∆S = 0 and
S(ρV |ρ0V ) = ∆〈K〉 . (53)

Hence ∆〈K〉 is uniquely defined for any excitation generated by a localized unitary operator.

The question is whether there are ambiguities in the form of boundary terms for K. Ac-
cording to the universality of relative entropy this is equivalent to ask if there are ambiguities
in ∆S in the continuum limit. We do not have for ∆S the monotonicity properties which
ensure the universality of relative entropy, and ultimately this is an open question which de-
serves further study.3 However, heuristically, ultraviolet terms should cancel in ∆S and we
should get a universal quantity. ∆S could be defined using mutual information regularization
for S, giving a universal prescription for it, and hence for K.

Let us take the case of a free massless scalar in Rindler space. The modular flow is given
by boost operators. While the boost generator is uniquely defined this is not so for the boost
generator restricted to one half of the space. The stress tensor for the scalar can be chosen
from the family of conserved d-dimensional tensors

Tµν = ∂µφ∂νφ− 1

2
gµν (∂αφ∂

αφ)− ξ (∂µ∂ν − gµν∂α∂
α)φ2 , (54)

where ξ is a free parameter describing the coupling of the field with the curvature when the
metric is deformed. The case with

ξ = ξc ≡ (d− 2)

4(d− 1)
(55)

gives the conformal tensor with T µ
µ = 0. In flat space, however, the theory is always the

same and ξ only gives an arbitrary choice of stress tensor. All these tensors give the same
boost generator but

Kξ = 2π

∫

x1>0

dd−1xx1 T00(x, ξ) = K0 − 2πξ

∫

x1=0

dd−2xφ2(x) , (56)

where K0 is the “half boost” generator for the canonical (or minimally coupled) choice ξ = 0.

The discussion of the calculation of mutual information in section 2 by dimensional re-
duction shows that the modular Hamiltonian for half space for the free scalar is given by
the sum of the modular Hamiltonians for the region x1 > 0 of massive fields in dimension
d = 2. Therefore, the right choice in dimension d cannot depend on the dimension, as would
be the case with (56) for the conformal choice (55). In d = 2 the canonical stress tensor
coincides with the conformal one, and the natural choice is the minimal one ξ = 0. In fact,
a different choice in d = 2 would change the density matrix in an important way, inserting
an additional operator eξφ

2

at the boundary. This probably will incorrectly change the value
of the entropy for an interval [14].

3Note that in any case possible ambiguities in ∆S are highly constrained in the continuum to be expecta-
tion values of operators localized at the boundary, while the entropy is a non linear functional of the density
matrix.

14



Hence, we expect the canonical stress tensor in the expression of the half boost generator
(56) to give the correct modular Hamiltonian for the free scalar field. When we transform
Rindler modular Hamiltonian to a sphere of radius R in the massless case, the result will
look like containing a boundary term. To make such conformal transformation we can write
the Rindler modular Hamiltonian as

K0 = Kξc + 2πξc
∫

x1=0

dd−2xφ2(x) , (57)

and conformally transform it to the sphere. Kξc is transformed into a generator of conformal
transformations which keep the sphere fixed and the boundary term maps to a boundary
term given by an integral on the surface Σ of the sphere,

Ksphere = 2π

∫

r<R

dd−1x
R2 − r2

2R
T00(x, ξ

c) + 2πξc
∫

Σ

dσ φ2(x) . (58)

This is the result found by Herzog doing numerical calculations of ∆S for a massless scalar
between a thermal state at low temperature and the vacuum [30]. The equation ∆S = ∆K
holds for ∆K with the form (58) in this example. This confirms the minimally coupled choice
is the right one for Rindler space. This is also consistent with an argument by Lewkowycz
and Perlmutter [28] involving matching correlators of the modular Hamiltonian with the
behavior of the Renyi entropies Sn for n near 1.

However, for an interacting conformal theory with unique stress tensor, the modular Hamil-
tonian must be constructed necessarily with the conformal stress tensor. Note that to con-
struct a generic boundary term formed by an integral of a local operator

∫

dd−2xΦ(x) the
theory must contain an uncharged operator of dimension exactly ∆ = d − 2. This is gener-
ically not the case except for free fields. Hence we do not expect boundary terms in the
interacting case, nor for a Dirac field. A similar dichotomic story between free and inter-
acting fixed points was recently found for the modular Hamiltonians of null slabs [44]. For
non conformal theories the presence of masses should not produce additional boundary terms
because these would change the modular Hamiltonian at the x1 = 0 corner where the density
matrix is in principle dominated by the physics at the UV.

5.2 Free fermion

Let us consider a free fermion field. This is the simplest case, since the stress tensor is
unique. We have for the trace

Θ(x) = mΨ̄(x)Ψ(x) . (59)

This vanishes for m = 0, corresponding to the conformal stress tensor. Using Wick’s theorem
we get

µ = − π

d(d− 1)(d− 2)

∫

ddx x2 〈Θ(0)Θ(x)〉

=
πm2

d(d− 1)(d− 2)

∫

ddxx2 ddp

(2π)d
ddq

(2π)d
tr

(

i/p−m

p2 +m2

i/q −m

q2 +m2

)

eipxeiqx . (60)
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Now we replace x2 in the integrand by −i∇p · i∇q applied to the phase factor, and then
integrating by parts apply this differential operator to the rational function of p and q. After
that we are free to perform the integration in x which gives a δ(p + q), and this eliminates
one of the momentum integrals

µ =
πm2

d(d− 1)(d− 2)

∫

ddx
ddp

(2π)d
ddq

(2π)d
tr

(

i/p−m

p2 +m2

i/q −m

q2 +m2

)

(−i∇pe
ipx)(i∇qe

iqx)

=
π dΨm

2

d(d− 1)(d− 2)

∫

ddx
ddp

(2π)d
ddq

(2π)d
e−i(p−q)x∇p∇q

( −p · q +m2

(p2 +m2)(q2 +m2)

)

=
dΨ

d(d− 1)(d− 2)2d−1π(d/2−1)Γ[d/2]

∫ ∞

0

dp pd−1

(

8m4p2

(p2 +m2)4
− dm2

(p2 +m2)2

)

, (61)

where we have introduced the dimension of the spinor space dΨ.

In order to cutoff the integrals we can introduce for example a small distance cutoff in
the integral on the first line in (61), integrating for |x| > ǫ, or introduce a large momentum
cutoff in the last line of (61), integrating for |p| < Λ, or just use dimensional regularization
in this last expression in momentum space. All these calculations give the same result for
the universal terms (and of course different results for the non universal ones). The result is
given more compactly using dimensional regularization, that leads to

µF =
dΨ
2

md−2Γ[1− d/2]

3πd/2−12d
(62)

for any dimension d. Expanding around specific dimensions we get as expected

µF =
dΨ
2
µS (63)

with µS given by (13) and (21) for even and odd dimensions, respectively. Then, this coincides
both with the result of the heat kernel method in [7], and with the calculation of mutual
information in section 2. An evaluation of the RS formula for the free fermion through the
integral of the spectral function was done in [21] with the same result.

As mentioned in section 4, the integral (61) is convergent in d = 3, and gives a negative
result µF = −dΨ

2
m
12

.

5.3 Free scalar field

The modular Hamiltonian and the operator Θ(x) in (25) both involve the canonical stress
tensor. Hence, the derivation of AZ formula from RS proceeds as in section 3. The calculation
of the universal area term is essentially the one in [21], but here we perform it using correlators
of Θ(x). We have also explained why the calculation involves the minimally coupled stress
tensor, and that this is not one possible choice, but the only one giving a sensible result for
the free scalar.
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We have

Θ(x) = −
(

d

2
− 1

)

(∇φ)2 − d

2
m2φ2(x) . (64)

Using Wick’s theorem it follows that

− π

d(d− 1)(d− 2)

∫

ddx x2 〈Θ(0)Θ(x)〉 =

− π

d(d− 1)(d− 2)

∫

ddxx2 ddp

(2π)d
ddq

(2π)d
ei(p+q)x 2

(

(d
2
− 1)p · q − d

2
m2
)2

(p2 +m2)(q2 +m2)
. (65)

As for the fermion case, we replace x2 in the integrand by −∇p · ∇q and integrate by parts.
At the end we get an integral over only one momentum,

µ = − π

d(d− 1)(d− 2)

(

2πd/2

Γ[d/2]

)

(2π)−d

∫ ∞

0

dp pd−1

(−4m4p2 + 8m2p4 + 4p6

(p2 +m2)4

+
8dp2

(p2 +m2)3
+

d2(2m2 + 5p2)

(p2 +m2)2
− d3

(m2 + p2)

)

. (66)

The integral can be performed in d ∈ (0, 2) and then continued analytically in d giving

µS =
md−2Γ[1− d/2]

3πd/2−12d
. (67)

Expanding around the different dimensions this gives the right numbers (13) and (21) for
even and odd dimensions respectively. The result for the universal terms are the same if
we use a distance or momentum cutoff. For d = 3 we have µS = −m

12
, which is negative as

expected. However, the integral (65) is not convergent, due to the fact that the stress tensor
is not the conformally coupled one, and Θ(x) in (64) contains a term that does not vanish
for m = 0.

6 Renormalization of the Newton constant

Let us review the calculation of the renormalization of Newton constant for a scalar [19]
to highlight the differences with the area term in EE. For the fermion field there are no
couplings with the curvature and these two quantities simply coincide. This discussion will
also serve to understand the role of contact terms for non-minimally coupled stress tensors
which will be useful in the next section where we discuss the area term in EE for some
interacting models.

The renormalization of (4G)−1 is given by (3). Now we allow the stress tensor to have
an arbitrary coupling ξ. Since this is related to the way the theory couples to gravity, with
action (signature (−++ . . .))

A = −
∫

ddx
√−g

1

2

(

∂µφ∂
µφ+m2φ2 + ξRφ2

)

, (68)
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the parameter ξ will appear in the expression for the renormalization of (4G)−1. From this
action we get

Θ(x) = −
(

d

2
− 1− 2(d− 1)ξ

)

(∇φ)2 − d

2
m2φ2(x) + 2(d− 1)ξφ∇2φ− (d− 2)ξ

2
φ2R , (69)

where the stress tensor in the AZ formula is given by its curved space definition

Tµν = − 2√−g

δA
δgµν

. (70)

The calculation of the first term in (3) proceeds as in the previous section, with Θ given
by (69) in the flat space limit with R = 0. In the third term of (69) we can be tempted
to use the equation of motion (−∇2 + m2)φ = 0. However, in the computation of (3) the
correlation of 〈∇2φ(0)∇2φ(x)〉 contains a second derivative of the delta function. Since the
integrand contains a factor x2, this contact term will give an additional contribution. If we
evaluate Θ(x) on the equations of motion the contact term disappear and we will get an
incorrect result for the renormalization of Newton’s constant. We will come back to this
calculation with the operator evaluated on the equations of motion in the next subsection.
Note that the contact term issue did not arise for the minimally coupled scalar calculation
of the previous section since Θ does not contain the term proportional to φ(x)∇2φ(x) in this
case.

We get

− π

d(d− 1)(d− 2)

∫

ddx x2 〈Θ(0)Θ(x)〉 =

− π

d(d− 1)(d− 2)

(

2πd/2

Γ[d/2]

)

(2π)−d

∫ ∞

0

dp pd−1

(−4m4p2 + 8m2p4 + 4p6

(p2 +m2)4

+
8d(1− ξ)p2

(p2 +m2)3
− d2((−2 + 4ξ)m2 + (12ξ − 5)p2)

(p2 +m2)2
+

d3(4ξ − 1)

(m2 + p2)

)

. (71)

Even if this integral apparently depends on ξ, the universal part evaluated with dimensional
regularization is independent of ξ, and gives the same result µS as for the minimally coupled
case, eq. (67).

This result depends crucially on the contact term and we do not get the same result if we
impose a distance cutoff integrating x2〈Θ(x)Θ(0)〉 for |x| > ǫ.

For the other term in AZ formula (3) we have for the operator O

O =
∂Θ

∂R
= −(d− 2)ξ

2
φ2 . (72)

Then the contribution is4

4π

d− 2
〈O〉 = −2πξ〈φ2〉 = −2πξ

∫

ddp

(2π)d
1

p2 +m2
= (−6ξ)

md−2Γ[1− d/2]

3πd/2−12d
. (73)

4This term has been connected to a term in Wald’s entropy of black holes by several authors, see for
example [45, 29].
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Hence the full correction of the Newton constant is given by

∆(4G)−1 = (1− 6ξ)
md−2Γ[1− d/2]

3πd/2−12d
= (1− 6ξ)µS . (74)

As expected this depends on ξ, in contrast to the universal part of the QFT entanglement
entropy. This result coincides with the usual calculation of renormalization of (4G)−1 using
the heat kernel method [16]. The result (74) can be unphysical if is interpreted as area term
in EE, for example, it gives the wrong sign for the area term renormalization in d = 3 for
ξ > 1/6.

6.1 Setting Θ on the equations of motion

Now, following [19] we analyze what happens if we apply the equation of motion for the field

(−∇2 +m2 + ξR)φ = 0 (75)

in the expression for Θ. This has two consequences. On the one hand we replace ∇2φ by
m2φ+ξRφ in the equation (69). This will eliminate the effect of the contact term in the term
involving correlators of Θ. On the other hand, this at the same time changes the dependence
of Θ on R and leads to a change in the term (73),

4π

d− 2

∂Θ

∂R
= 4π

2(d− 1)ξ2

d− 2
〈φ2〉 − 2πξ〈φ2〉 = 4π

ξ2

2ξc
〈φ2〉 − 2πξ〈φ2〉 (76)

with ξc the conformally coupled value (55). It turns out that Newton constant renormaliza-
tion does not change under this transformation. That is,

− π

d(d− 1)(d− 2)

∫

ddx x2 〈0|Θ̂(0)Θ̂(x)|0〉+ 4π
ξ2

2ξc
〈φ2〉 − 2πξ〈φ2〉 , (77)

with Θ̂ on the equations of motion, gives the correct result for all ξ.

To check this we get from the previous calculation (73)

4π
ξ2

2ξc
〈φ2〉 = 6

ξ2

ξc
µS . (78)

The first term of (77) with

Θ̂(x) = − (d/2− 1− 2(d− 1)ξ) (∇φ)2 + (2(d− 1)ξ − d/2)m2φ2 , (79)

gives

− π

d(d− 1)(d− 2)

∫

ddx x2 〈0|Θ̂(0)Θ̂(x)|0〉 = µS − 6
ξ2

ξc
µS . (80)

Combining the two terms, the full ∆(4G)−1 = (1−6ξ)µS is equal to the one computed above.

This shows that AZ formula is robust under interpretations of the contact terms provided
we adequately take into account the role of the second term in (3). Remarkably, the correction
of Newton’s constant for a conformally coupled field ξ = ξc is the same as the term depending
on 〈Θ(0)Θ(x)〉 without taking into account contact terms, or what is the same, with the
operators evaluated on the equations of motion (compare (74) and (80)).
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7 Interacting examples

7.1 O(N) model

The universal correction for the area term of a O(N) model at the Wilson Fisher fixed point
at the UV was computed in [32] at the lowest order in the ǫ = 4−d expansion for d = 3 (this
ǫ should not be confused with the distance cutoff we used in other sections of the paper).
The model has Euclidean Lagrangian

L =
1

2
(∂φ)2 +

t

2
φ2 +

u

4
φ4 , (81)

for an N dimensional vector of scalars φ. For the Gaussian fixed point they find

µ = − N

24πǫ
m . (82)

This follows from the free scalar formula (67) by replacing d = 4 − ǫ and expanding the
coefficient of the mass around dimension 4 [32]. Hence, this is the first approximation to the
correct result for d = 3 (ǫ = 1),

µ = −N

12
m. (83)

Note that the ǫ−1 behavior around ǫ = 0 corresponds to the expansion around d = 4 where
the gamma function in (67) has a divergence giving place to the universal logarithmic term
in this dimension.

For the interacting Wilson Fisher fixed point they find that

µ = − N

144π
m , (84)

to leading order in ǫ, where m is the gap of the excitations. Note the result is parametrically
suppressed in ǫ with respect to the Gaussian case (82). Interactions are perturbative in ǫ
for the interacting fixed point, for example, the scalar dimension is ∆ = 1− (3ǫ)(N + 8) for
the interacting case as opposed to 1 − ǫ/2 for the Gaussian model. One could have naively
expected the result for µ would have coincided with the Gaussian one (82) to leading order,
and differences to show up for the subleading terms in ǫ. The authors arrive to this result
by the replica methods for a half space and a careful treatment of the partition function in
presence of a conical singularity. They find that, in contrast to the Gaussian case, in the
interacting case the partition function develops an effective operator ∼

∫

dd−2xφ2 localized
at the singular surface, and this insertion is the one responsible for the different parametric
dependence on ǫ.

Here we can obtain this result directly from the formula (5) for µ as follows. We have
argued that for a theory with an interacting UV fixed point, the modular Hamiltonian for
Rindler space is simply given in terms of the unique stress tensor of the theory. The area
term is given by the formula (5) involving the correlator of Θ(x). The stress tensor is
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conformal for m = 0 in the interacting case. To lowest order in the ǫ expansion, which
controls the interactions, this must be the stress tensor for free scalars but improved such
that is conformal in the massless limit. Hence, to obtain the lowest order in ǫ for the area
term we have to use (5) where Θ(x) is the trace of the stress tensor for a scalar with ξ = ξc.
We have already done this calculation in our discussion of the renormalization of the Newton
constant in section 6. For ξ = ξc formula (80) gives

µ = (1− 6ξc)µS = −(d− 4)π1−d/2Γ[1− d/2]

3(d− 1)2d+1
md−2 . (85)

Including a factor of N to account for the N scalars, setting d = 4 − ǫ, and expanding to
lowest order in ǫ we get precisely (84). The additional factor (1−6ξc) in (85) with respect to
the free scalar vanishes for d = 4, eliminating the power ǫ−1 of the free case. It is important
to emphasize that (80) has been computed using the equations of motion on the stress tensor,
or equivalently, eliminating possible contact terms by setting a short distance cutoff on the
integral over x of the correlator. Hence, we have to interpret formula (5) with this distance
cutoff in place, that prevents ambiguous contact terms to show up in the universal term.

This example gives a non trivial confirmation for the formula of area terms in EE, the fact
that contact terms should not be taken into account, and the interpretation of the stress
tensor based on the modular Hamiltonian.

7.2 A commentary on holographic calculations

In [6] the authors computed area term corrections to holographic EE induced by perturbing
the theory with relevant operators. These relevant operators are described in the bulk by
scalar fields whose backreaction changes the geometry and the area of the minimal surfaces
giving the EE [43]. They discover the puzzling result that perturbing with a dimension
∆ = d − 2 operator, corresponding to the scalar mass term, a logarithmic correction to the
area term appears for even dimensions but only for d ≥ 6. This is in contrast to the free
scalar field where logarithmic divergences also appear for d = 4. The puzzle is that this
result suggests there is a logarithmic term for the weak coupling limit of a theory with scalar
masses in d = 4 while this logarithmic term should be absent in the large coupling limit.

However, this puzzle disappear if we apply the same reasoning that explains the result
for the O(N) model. The holographic models describe interacting CFT at the UV fixed
point. In the weak coupling limit we should then use the conformally coupled stress tensor
for the modular Hamiltonian and Θ(x). This gives the coefficient of the area term (85),
which has an additional factor of (d − 4) with respect to the free scalar case. Hence, there
is no logarithmic term for these theories even at small coupling, and the holographic result
is consistent with this fact.

In [7] the authors made an explicit holographic computation of the area term for a N = 2∗

gauge theory in d = 4 which is a massive deformation of N = 4 SYM at large N . This defor-
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mation gives masses to scalars and fermions in the theory and they obtain holographically

µ =
N2

12π
m2 log(mǫ) , (86)

where m is a mass parameter. At weak coupling the theory contains N2 Dirac fermions of
mass m and 6N2 real scalars of the same mass. As we have seen above, for models with an
interacting UV fixed point, the scalars do not contribute to the logarithmic term in d = 4 at
weak coupling, and we have from (14) that, at small coupling,

µ = N2 × 1

12π
m2 log(mǫ) , (87)

which coincides with (86).5 The puzzle here is then why the weak coupling result coincides
with the strong coupling one.

8 Conclusions

We have studied area terms in EE in flat space quantum field theory and shown there are
universal terms that can be well defined through mutual information. These terms should
be non ambiguous and cannot depend on how the theory is extended to curved space. We
have argued that the formula

µ = − π

d(d− 1)(d− 2)

∫

|x|>ǫ

ddx x2 〈0|Θ(0)Θ(x)|0〉 (88)

gives the area terms in EE for a general QFT. For free scalar fields there are some subtleties:
The minimally coupled stress tensor have to be used in (88). The specific distance cutoff in
(88) is important to eliminate possible contributions from contact terms.

This is equivalent to RS formula (4) provided we use the correct modular Hamiltonian and
operator Θ. For theories with interacting UV fixed point we expect a unique stress tensor
enters into all these formulas.

The differences between free and interacting UV fixed points imply a discontinuous change
of modular Hamiltonian for some models between zero and non zero coupling. This phe-
nomenon has also been found in terms of the replica partition function in [32].

We have argued that an interesting consequence of (88) is that the constant term in the
entropy of a circle in d = 3, which acts as the monotonous quantity in the F theorem,
must necesarily change from the UV to the IR. This must be the case when (88) in d = 3
is convergent. However, holographic calculations suggest this should be also the case for
divengent µ. From (88) we have also recovered the well known Zamolodchikov’s formula for
the running of the Virasoro central charge in d = 2 QFT.

5It was noted in [7] that the strong coupling result coincided with the weak coupling one for the fermions
alone.
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The formula (88) does not give in general the renormalization of the Newton constant,
eq. (3), because in this later there is another term depending on the curvature couplings.
Moreover the renormalization of Newton’s constant depends on the contact terms in the
correlators, while (88) does not. However, it seems that for any theory it is possible to find
a specific extension of the theory to curved space where the universal correction in (4G)−1

coincides with the one in the area terms in EE.

It would be nice to study (88) holographically. It would also be interesting to try to
understand the difference between area terms in EE and the AZ formula for the Newton
constant thinking on the entanglement interpretation to BH entropy.6 This difference may
contain some clues on how gravity renormalizes EE and at the same time conserves its
entropic origin.
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