
Engineering Applications of Artificial Intelligence 53 (2016) 86–104
Contents lists available at ScienceDirect
Engineering Applications of Artificial Intelligence
http://d
0952-19

n Corr
E-m

asoria@
journal homepage: www.elsevier.com/locate/engappai
Artificial intelligence in service-oriented software design

Guillermo Rodríguez n, Álvaro Soria, Marcelo Campo
ISISTAN Research Institute (CONICET-UNICEN), Campus Universitario, Paraje Arroyo Seco. Also CONICET – Argentina, B7001BB Tandil, Buenos Aires,
Argentina
a r t i c l e i n f o

Article history:
Received 29 April 2015
Received in revised form
10 February 2016
Accepted 28 March 2016

Keywords:
Artificial Intelligence
Service-oriented design
Web services discovery
Web service composition
Web service development
x.doi.org/10.1016/j.engappai.2016.03.009
76/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: grodri@exa.unicen.edu.ar (G. Ro
exa.unicen.edu.ar (Á. Soria), mcampo@exa.un
a b s t r a c t

Service-Oriented Architecture (SOA) has gained considerable popularity for the development of dis-
tributed enterprise-wide applications within the software industry. The SOA paradigm promotes the
reusability and integrability of software in heterogeneous environments by means of open standards.
Most software companies capitalize on SOA by discovering and composing services already accessible
over the Internet, whereas other organizations need internal control of applications and develop new
services with quality-attribute properties tailored to their particular environment. Therefore, based on
architectural and business requirements, developers can elaborate different alternatives within a SOA
framework to design their software applications. Each of these alternatives will imply trade-offs among
quality attributes, such as performance, dependability and availability, among others. In this context,
Artificial Intelligence (AI) can assist developers in dealing with service-oriented design with the positive
impact on scalability and management of generic quality attributes. In this paper, we offer a detailed,
conceptualized and synthesized analysis of AI research works that have aimed at discovering, composing,
or developing services. We also identify open research issues and challenges in the aforementioned
research areas. The results of the characterization of 69 contemporary approaches and potential research
directions for the areas are also shown. It is concluded that AI has aimed at exploiting the semantic
resources and achieving quality-attribute properties so as to produce flexible and adaptive-to-change
service discovery, composition, and development.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Service-Oriented Architecture (SOA) has been chosen by the
software industry for building distributed and enterprise-wide
software applications, which should be both high-quality and
adaptable to market changes (Erickson and Siau, 2008). Moreover,
SOA creates opportunities to improve agility and speed in aligning
business needs with information technology infrastructure (Has-
sanzadeh et al., 2011). In this context, SOA promotes service reuse
to rapidly build applications by assembling already-implemented
and Internet-accessible software pieces, called services.

Both the amount of Web Services available on the Internet and
the need to satisfy multiple user requirements and Quality-of-
Service (QoS) concerns create a niche for the application of Arti-
ficial Intelligence (AI). The main advantage of the use of AI stems
from its efficient performance in dynamic, distributed, non-de-
terministic and uncertain environments; reducing the search
space. Further, AI seems to be promising when high scalability and
dríguez),
icen.edu.ar (M. Campo).
management of generic quality attributes are required, and when
verification and validation of service composition (deadlock free-
dom and safety properties) are demanded.

Those services can be accessed, matched and integrated by
discovery and composition applications. Service discovery is the
process of locating existing services based on the description of
their functional and non-functional properties. In general, a sys-
tem for discovering services needs a service description language,
a service selection means (i.e., matchmakers) and discovery ar-
chitecture (e.g., decentralized P2P). Service composition combines
roles and functionality to aggregate multiple services into a single
composite service that can be used in further compositions;
composing services involves complex issues that exceed human
capabilities to address this process completely manually. The dis-
covery and composition of services have been addressed by sev-
eral approaches to facilitate the outsourcing of functionality in
SOA-based applications (Dustdar and Schreiner, 2005; Rao and Su,
2005). However, the services resulting from discovery and com-
position might fail to fulfill required QoS concerns or business
goals, leading developers to build new services by using devel-
opment guidelines. Far from being a random process, the devel-
opment of service alternatives is generally driven by a set of
guidelines, incorporating knowledge about recommendable

www.sciencedirect.com/science/journal/09521976
www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2016.03.009
http://dx.doi.org/10.1016/j.engappai.2016.03.009
http://dx.doi.org/10.1016/j.engappai.2016.03.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.03.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.03.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.03.009&domain=pdf
mailto:grodri@exa.unicen.edu.ar
mailto:asoria@exa.unicen.edu.ar
mailto:mcampo@exa.unicen.edu.ar
http://dx.doi.org/10.1016/j.engappai.2016.03.009


G. Rodríguez et al. / Engineering Applications of Artificial Intelligence 53 (2016) 86–104 87
design practices, in order to select the most suitable among the
numerous alternatives available, even for small search spaces.

In the light of the above, the use of AI arises as a suitable
strategy to explore possible solutions for discovering, composing
and developing services. Choosing a suitable alternative can be
both error-prone and time-consuming (Tekinerdogan and Aksit,
2002); therefore, developers need to be assisted by AI in selecting
among effective design alternatives that are also suitable in terms
of quality-attribute properties. Considerable advances in AI re-
search and the popularity of AI Planning and Evolutionary Com-
puting in software development have made it possible to widen
the research field towards assisting developers in discovering,
composing and developing services that satisfy certain QoS con-
cerns, among other constraints.

In this paper, we provide a detailed, conceptualized and syn-
thesized analysis of 69 significant research works that describe AI-
based approaches aimed at discovering, composing, or developing
services. We also identify open research issues and challenges in
the aforementioned research area. Our results can be used by both
researchers and practitioners, who can analyze current approaches
to identify potential niches for further research or analyze
strengths and weaknesses of current approaches and select the
most suitable for their professional contexts, respectively.

This article is organized as follows: Section 2 describes our
research methodology; Section 3 reports on approaches for dis-
covering services; Section 4 discusses works that have attempted
to compose services; Section 5 presents works that have addressed
automated or semi-automated development of services; Section 6
discusses future trends and open issues in discovering, composing
and developing services. Final remarks and conclusions are stated
in Section 7.
Fig. 1. Distribution of research works by year of publication.
2. Research methodology

The goal of this research is to identify major works on the use
of AI in discovering, composing and developing Web Services, and
thereafter, to classify these works so as to discover gaps, critical
issues and opportunities for further study and research. We exe-
cuted our survey according to Kitchenham's well-established
guidelines for systematic literature reviews in software engineer-
ing, aiming to achieve objective, unbiased and reproducible results
(Kitchenham and Charters, 2007). We present the research ques-
tions (RQ) that guided our review process:

� RQ1: What evidence is there that AI contributes to achieve
better results in comparison with other approaches for dis-
covering, composing or developing services?

� RQ2: What are the main characteristics, common features, and
differences among the available AI-based approaches for dis-
covering, composing or developing services?

� RQ3: Should we expect more accurate results when discovering,
composing or developing services by using Planning, or by
using Genetic Algorithms?

� RQ4: What are the research challenges, needs and future trends
in the areas of discovering, composing or developing services?

Our survey procedure starts with a keyword-based search
using the following databases:

� Google Scholar
� ACM Digital Library
� IEEE Explore
� Science Direct
� Springer Link
The publication search was firstly conducted in terms of a
structured combination of related keywords. Any “Web Service
composition”, “Web Service discovery”, “service-matchmaking”,
“semantic service composition”, “semantic service discovery”, “Web
Service development”, or “Web Service realization” related pro-
blems involving the concepts of “automatic”, “intelligent”, “service-
oriented computing”, “service-oriented architecture”, were covered
by highlighting the support of AI techniques to achieve optimal
results. After a first quick check, the qualified publications were
acquired through cross-referencing. The delimitation of the pub-
lications is listed as follows:

� Only publications concerning Web Service discovery, Web Ser-
vice composition, and Web Service development problems are
considered.

� Only publications involving the use of AI-based approaches are
considered.

� Only peer-reviewed journal/conference papers written in Eng-
lish are considered.

Our research spans over twelve years (2002 to 2014) and we
reviewed a total of 69 AI-based approaches for discovering (29
approaches), composing (34 approaches) and developing services
(6 approaches). Fig. 1 depicts the distribution of the research
works by year of publication. The number of research works that
use the support of AI for discovering, composing and developing
services has increased from 2007 to 2012, since the SOA paradigm
has gained important popularity in software industry. It is worth
noting that the application of AI in service-oriented software de-
velopment research has been increasing since 2007 and this trend
seems to increase even more. The most popular AI techniques
surveyed are AI Planning, Evolutionary Algorithms, Markov Chains,
and Clustering, among others. Our study of the surveyed works
has revealed that more research in this field is required to over-
come current limitations of the application of such AI techniques
to solve open issues in service discovering, composing or
development.

2.1. Classification schema

To evaluate the works reviewed and make a comparative de-
scription among them, we have identified common criteria in
terms of strengths and weaknesses regarding relevant issues in the
field of service discovery, service composition and service devel-
opment. First of all, we read all the analyzed research works. Then,
we searched for common features within the whole set of articles;
if more than half of the articles contained a feature, it was selected



G. Rodríguez et al. / Engineering Applications of Artificial Intelligence 53 (2016) 86–10488
as a common feature. Along this line, we repeated the same pro-
cedure for each of the subsets of articles: service discovery, service
composition and service development. For all the cases, the fea-
tures emerged from the articles by considering the domain
knowledge in each article and the values that each feature could
take. Next, we provide the common criteria:

� AI Technique. This feature represents the AI technique or set of
AI techniques (e.g. AI Planning) used by the approach, together
with parameters and main operators. This criterion attempts to
detect the benefits of the technique, as well as its limitations to
deal with certain issues.

� Language. This criterion refers to the underlying programming
language of each research approach, such as Java, or a model for
notation such as Meta-object Facility (MOF).

� Modeling Language. This feature describes the specification
model to describe domain knowledge such as BPEL, and models
to specify Semantic Web issues such as OWL-S, among others.

� Platform and Deployment Environment. This criterion deals with
the set of tools that are part of the development environment,
such as Eclipse or Visual Studio. Furthermore, this criterion
addresses deployment environment (i.e. Web or desktop ap-
plications), architectural style (e.g., CORBA or ESB), and oper-
ating systems (Windows or Linux), amongst others.

� Exhaustive Test. This criterion evaluates whether the approach
was exhaustively validated with a considerable number of case
studies.

� Quality-attribute properties. This criterion describes the Quality
of Service (QoS), meaning both functional and non-functional
aspects of a Web Service (Ngan and Kanagasabai, 2013). We
mainly included non-functional features maximized by each
approach (Lo et al., 2015). A complete list is presented as
follows: availability, accessibility, scalability, efficiency, flexibil-
ity, integrity, interoperability, maintainability, portability, secur-
ity, performance, reliability, reusability, robustness, testability,
and usability.

2.2. Specific criteria for discovering services

Complementing the aforementioned criteria, we outline the
specific criteria to evaluate service discovery works as follows:

� Mediation Support. This criterion addresses the strategies and
tools to support the process of discovering services. In other
words, this criterion focuses on the matchmaking process be-
tween queries and service descriptions. The possible values are
none, syntactic, semantic, context-aware and ontology-support.

� Query Specification. This feature describes the available me-
chanisms and manners to specify a query for service discovery.
The possible values for this criterion are: keywords, natural
language, constraints (e.g., performance greater than 0.75),
template (e.g., WSDL template) and meta-model (queries based
on service properties).

� Discoverable Service Information. This criterion refers to the kind
of information that can be discovered throughout the registries.
The values can be service descriptions, or operation descriptions.

2.3. Specific criteria for composing services

We outline the specific criteria to evaluate service composition
works as follows:

� Optimization of Composition. This criterion deals with the en-
vironment in which the optimization takes place, such as net-
work, runtime, compilation time and design time.

� Semantic Web. This criterion refers to the use of Semantic Web
technologies to represent the user requirements for each service
in service composition, such as OWL-S.

2.4. Specific criteria for service development assistance

This sub-section outlines the specific criteria to evaluate service
development works:

� Design Patterns. This criterion describes design patterns used by
the approaches (e.g., Mediator, Proxy, Broker or Visitor).

� Development output. This feature represents the format in which
the development is presented by the approach; for example, a
UML (Unified Model Language) class diagram, a piece of code, or
a workflow, amongst others.

2.5. Comparison

In order to compare and contrast the approaches surveyed, we
have developed an evaluation model that assigns a value to each
criterion according to the weight of that attribute. Our model as-
sumes that the values given for the criteria create an incremental
scale that allows the comparison of the research works. For ex-
ample, considering the criterion “Optimization of composition” of
composition approaches, “design time” represents a higher value
than “runtime”, since an optimization level at design time provides
developers with a valuable insight to assess the application design
at early stages.

We have selected some criteria for service discovery, compo-
sition and development and assigned a numerical value to them.
In order to make the different criterion scales clear each value
ranges from 0 to 2, to 3 or to 4, depending on the number of
possible values that could be taken by each criterion. Finally, the
evaluation points for each approach are calculated by summing up
all numerical values assigned to each criterion (rightmost column
of Tables 1–3). It is worth mentioning that rows of Tables 1–3 are
ordered descending by the evaluation points.

For service discovery, composition and development, the pos-
sible values to exhaustive test are 0 to indicate that the research
work did not perform exhaustive tests and 1 otherwise. The cri-
terion “quality-attribute properties” may take the value 1, only if
more than one non-functional requirement has been maximized
and 0 otherwise.

As for service discovery, we have selected the following criteria
to make comparisons: exhaustive test, quality-attribute properties,
mediation support, query specification and discoverable service
information. Mediation support could take 0 for “none”, 1 for
“syntactic”, 2 for “semantic/ontology support” and 3 for “semantic
and context-aware”. Query specification may take 1 for “keyword”,
2 for “natural language”, 3 for “templates” and 4 for “meta-models”.
Finally, “discoverable service information” could take 1 if the
support is at operation level or at service level and 2 if the support
is at service and operation level.

With regard to service composition, the criteria selected to
compare are exhaustive test, quality-attribute properties, optimi-
zation of composition and Semantic Web. The criterion “optimi-
zation of composition” may take 1 for “network level”, 2 for “run-
time”, 3 for “compilation time” and 4 for “design time”. The last
criterion may take 0 for “none”, 1 for “ontologies” and 2 for en-
riched ontologies, such as “ALE (Attributive Language and full
Existential qualification) ontologies”, “semantic annotations”, “dis-
tributed operational semantics” and “knowledge-based operators”.

As for service development, the criteria used for comparison
are exhaustive test, quality-attribute properties and development
output. The latter may take 0 for “none”, 1 for “diagrams”, 2 for
“specification documents” such as WSDL-based documents, and
3 for “code”.



Table 1
Characterization of Web Service discovery systems.

Research work AI technique Language Model language Platform and de-
ployment
environment

Exhaustive test Quality-attribute
properties

Mediation
Support

Query Specification Discoverable Ser-
vice Information

Sum of
Points

Rong and Liu (2010) Matching N/A OWL-S, WSDL-S,
WSML, DAML-S

N/A No Precision, Reliability Syntactic, se-
mantic, context-
aware

Keywords, meta-
model

Service, operation 10

Shao et al. (2007) Collaborative
Filtering

Java Custom Model Eclipse, Axis 1.4 Yes Availability,
Responsiveness

Semantic Keyword, meta-
model

Service, operation 10

Suraci et al. (2007) Matching SLP, XML,
UPnP

OWL-S N/A No Precision,
Effectiveness

Semantic, con-
text-aware

Keywords, meta-
model

Operation 9

Kuck (2007) Information
Retrieval

N/A WSDL, tModel UDDI API v. 3 No Reliability, Accuracy Semantic, con-
text-aware

Meta-model Operation 9

Manikrao and Prab-
hakar (2005)

Collaborative
Filtering

N/A DAML-S UDDI API No Precision, Availability Semantic Meta-model Service 9

Xiao et al. (2010) Ontologies Java OWL Eclipse, OWL API, RDF
parser

Yes Precision, Reliability Semantic, con-
text-aware

Keywords Service, operation 8

Chan et al. (2012) Collaborative
Filtering

Flex (front-
end), Java
(back-end)

VSM (Vector Space
Model)

Remote Object and
BlazeDS framework
(Web Platform)

Yes Usability, Precision,
Reliability

Semantic, con-
text-aware

Natural language Operation 8

Li et al. (2006) Ontologies Java WSDL-S Radiant, Lumina,
Saros, Eclipse

No Precision, Reliability Ontology
support

Template, meta-
model

Operation 8

Sivashanmugam et al.
(2003)

Ontologies N/A DAML-S, tModels
(technology
models)

UDDI API v. 1 No Scalability and
Robustness

Semantic Template, meta-
model

Operation 8

Liang (2006) Service Mining N/A OWL-S, BPEL4WS Web Services interac-
tion mining archi-
tecture (WSIM)

No Precision, Availability Semantic Keywords, meta-
model

Service 8

Kawamura et al.
(2005)

Ontologies Java WSSP (Web Ser-
vice Semantic
Profile)

Eclipse, Voice of the
Customer (VOC), UDDI
API

Yes Accuracy Semantic Template, meta-
model, keyword,
constraint

Operation 8

Cardoso and Sheth
(2003)

Ontologies HTML DAML-S METEOR-S, Web
platform

No Cost-effectiveness,
Reliability

Ontology
support

Template, meta-
model, natural
language

Operation 8

Paolucci et al. (2002) Ontologies N/A DAML-S, tModels UDDI API v. 1 No Interoperability Semantic Template, meta-
model, keyword,
constraint

Operation 7

Sangers et al. (2013) Ontologies Java WSMO WordNet, Eclipse Yes Precision, Reliability Semantic Keywords Service, operation 7
Ma (2008) Clustering

Semantic
N/A OWL-S N/A Yes Precision, Availability Semantic Natural language,

Keyword
Service 7

Kokash et al. (2007) Collaborative
Filtering

Java Implicit Culture Eclipse, Axis Yes Precision, Availability Semantic,
matching

Natural language Operation 7

Mistry et al. (2012) Ontologies Java OWL-S JUDDI server, JENA,
Protégé, Eclipse

Yes Precision, Learnability Semantic Keywords Service, operation 7

Dong et al. (2004) Information
Retrieval

HTML WSDL Web platform Yes Trust-worthiness Syntactic Template,
composition

Service, operation 6

Mecar et al. (2005) Ontologies Java DAML-S Eclipse, DAML JessKB No Precision, Reliability Semantic Keywords Service, operation 6
Balke and Wagner
(2003)

Collaborative
Filtering

N/A OWL-S, WSML,
DAML-S

N/A No Precision, Reliability,
Accuracy

Semantic Keywords Service, operation 6

Crasso et al. (2008) Information
Retrieval

Java WSDL Eclipse Yes Flexibility, Precision Syntactic Keyword Service, operation 6

Roman et al. (2005) Ontologies MOF WSMO SDK-cluster No Cost-effectiveness,
Scalability and
Robustness

Semantic Natural language Service 6

Pathak et al. (2005) Ontologies Java OWL-S JESS engine No Interoperability Semantic Keywords,
constraints

Service, operation 5

Martin et al. (2007) Ontologies N/A OWL-S UDDI, WSDL, SOAP No Interoperability Semantic Natural language Service 5

G
.R

odríguez
et

al./
Engineering

A
pplications

of
A
rtificial

Intelligence
53

(2016)
86

–104
89



Ta
b
le

1
(c
on

ti
nu

ed
)

R
es
ea

rc
h
w
or

k
A
I
te
ch

n
iq
u
e

La
n
gu

ag
e

M
o
d
el

la
n
gu

ag
e

P
la
tf
o
rm

an
d
d
e-

p
lo
ym

en
t

en
vi
ro

n
m
en

t

Ex
h
au

st
iv
e
te
st

Q
u
al
it
y-
at
tr
ib
u
te

p
ro

p
er
ti
es

M
ed

ia
ti
o
n

Su
p
p
o
rt

Q
u
er
y
Sp

ec
ifi
ca

ti
o
n

D
is
co

ve
ra
b
le

Se
r-

vi
ce

In
fo
rm

at
io
n

Su
m

o
f

P
o
in
ts

B
ir
u
ko

u
et

al
.(
20

07
)

In
fo
rm

at
io
n

R
et
ri
ev

al
Ja
va

X
M
L

En
te
rp
ri
se

Ja
va

B
ea

n
s

(E
JB
)

Ye
s

R
ob

u
st
n
es
s

Sy
n
ta
ct
ic

K
ey

w
or
d

O
p
er
at
io
n

4

Sr
ee

n
at
h
et

al
.(
20

03
)

C
ol
la
bo

ra
ti
ve

Fi
lt
er
in
g

N
/A

W
SD

L,
D
A
M
L-
S

U
D
D
I
A
PI

Ye
s

In
te
ro
p
er
ab

ili
ty
,

Tr
u
st
w
or
th
in
es
s

Se
m
an

ti
c

N
/A

N
/A

4

Zh
u
ge

an
d
Li
u
(2
0
04

)
In
fo
rm

at
io
n

R
et
ri
ev

al
G
ri
d
O
p
er
at
io
n

La
n
gu

ag
e
(G

O
L)

tM
od

el
W

eb
p
la
tf
or
m

N
o

Ef
fe
ct
iv
en

es
s

Sy
n
ta
ct
ic

K
ey

w
or
d

Se
rv
ic
e

3

W
an

g
an

d
St
ro
u
lia

(2
0
03

)
In
fo
rm

at
io
n

R
et
ri
ev

al
N
/A

W
SD

L
N
/A

Ye
s

Pr
ec
is
io
n

N
on

e
K
ey

w
or
d
s,

n
at
u
ra
l

la
n
gu

ag
e

Se
rv
ic
e

3

St
ro
u
lia

an
d
W

an
g

(2
0
05

)
In
fo
rm

at
io
n

R
et
ri
ev

al
N
/A

W
SD

L,
D
A
M
L-
S

W
or
d
N
et

N
o

Pr
ec
is
io
n

N
on

e
K
ey

w
or
d
s,

n
at
u
ra
l

la
n
gu

ag
e

Se
rv
ic
e

3

G. Rodríguez et al. / Engineering Applications of Artificial Intelligence 53 (2016) 86–10490
In accordance with our research questions, in the following
sections we summarize, categorize and evaluate the 69 ap-
proaches reviewed.
3. Approaches to discover services

Discovering services that fulfill the functional requirements of
the client through common service registries is a burdensome and
daunting task (Garofalakis et al., 2006) that requires developers to
choose from a plethora of services, a typical scenario in massively
distributed environments as the Web (Crasso et al., 2010).

3.1. Web service discovery

A challenging issue for service discovery application systems,
which have to locate existing Web Services, is to represent and
discover information related to those services. The documents
written in WSDL (Web Service Description Language) are the ones
used to describe and represent a Web Service.

Some research has been conducted in the context of service
discovery and matchmaking. Rambold et al. (2009) have reported
on autonomic service discovering approaches by performing a
comparison with eight prime criteria. A crucial remark stated by
the authors is that autonomic service discovery is an essential
prerequisite for an autonomic service composition later on and
therefore helps to tackle the high complexity of current service
infrastructures. Ngan and Kanagasabai (2013) provided an ex-
tensive review of semantic Web Service discovery. This review
concluded that a synergy of service discovery and semantic tech-
nologies facilitates rich and formal representations of services and
agent interactions, as well as specialization and generalization of
service needs.

Shvaiko and Euzenat (2005) systematically discussed ap-
proaches and systems developed in schema and ontology match-
ing domains. Most of the schema/ontology matching systems ex-
ploit only syntactic and external techniques following the input
interpretation classification. Syntactic techniques interpret the
input in function of its sole structure following some clearly stated
algorithm, whereas external techniques exploit auxiliary resources
of a domain and common knowledge in order to interpret the
input. The input interpretation classification is based on the
granularity of match, i.e., element- or structure-level, and then on
how the techniques generally interpret the input information.

Additionally, terminological and structural techniques are also
exploited by the schema/ontology matching systems. Terminolo-
gical techniques can be string-based or based on the interpretation
of these terms as linguistic objects, whereas structural techniques
are split into two types of methods: those which consider the
internal structure of entities such as attributes and their types, and
those which consider the relation of entities with other entities.
These techniques are performed by following the kind of input
classification, which is based on the kind of input used by ele-
mentary matching techniques.

Finally, only one schema/ontology matching system uses se-
mantic techniques following both input interpretation classifica-
tion and the kind of input classification. Semantic techniques use
some formal semantics to interpret the input and justify their
results. Nonetheless, the category of semantic techniques requires
further research.

Bellur et al. (2008) provided a taxonomy of semantic match-
making algorithms by considering functional and non-functional
requirements of Web Services. The authors have described Greedy
algorithms, bipartite matching, heterogeneous ontologies, algo-
rithms based on description logics, and algorithms based on
ranked instance retrieval. Dong et al. discuss dimensions used to



Table 2
Characterization of Web Service composition systems.

Research Work AI Technique Language Model Language Platform and De-
ployment
Environment

Exhaustive test Quality-attribute Properties Optimization of
Composition

Semantic Web Sum of
Points

Lècuè et al.
(2008)

Planning Golog DL Eclipse, Prolog Yes Performance,
Expressiveness

Runtime, design
time

ALE ontology 8

Sirin et al. (2005) HTN-Planning Semantic Web
Rule Language
(SWRL), Golog,
Java

OWL, SHOP2 SHOP2, Eclipse No Performance,
Trustworthiness

Design time OWL-S 7

Fajiang et al.
(2014)

Genetic Algorithm (binary tour-
nament, crossover, mutation)

Java WS-BPEL Eclipse (Windows),
OWL API

Yes Availability, Performance,
Cost-effectiveness

Design time OWL-S 7

Tang et al. (2011) Propositional Logic Java Horn model,
Petri nets,
SAWSDL, OWL

JENA No Performance, Cost-
effectiveness

Design time Semantic
annotations

7

Zhou et al. (2010) Planning Java OWLS-XPLAN Eclipse Yes Scalability, Interoperability,
Cost-effectiveness

Runtime OWL-S 6

Fajiang et al.
(2010)

Genetic Algorithm (crossover,
mutation)þCBR

N/A WS-BPEL N/A No Feasibility, Flexibility Design time Ontology 6

Tang and Ai
(2010)

Genetic Algorithm (crossover,
optimizers)þ Constraint
Optimization

Visual C# Custom model .Net Yes Reliability, Precision Runtime Knowledge-based
crossover operator

6

Santofimia et al.
(2008)

Multi-Agent System (MAS) Java Belief-Desire-In-
tention model
(BDI)

Jadex platform No Usability, Adaptability Design time Ontology 6

Li et al. (2010) Planning N/A BPEL JBOSS No Performance Design time OWL-S 6
Liu et al. (2006) Genetic Algorithm (selection,

crossover)þParticle Swarm
Optimization

N/A none N/A No Feasibility, Performance Design time None 5

Kuzu and Cicekli
(2012)

Goal Decomposition and RPG
(Relaxed Planning Graph)

Java PDDL Eclipse, WSIF,
WSDL2Java, Apache
Kandula Project

No Responsiveness (High), Sacal-
ability (low)

Runtime OWL-S 5
PDDXML

Klusch et al.
(2005)

FastForward Planning and HTN-
Planning

PDDL, Cþþ , Java OWL Eclipse, OWLS2PDDL No Availability Design time OWL-S 5

Yang et al. (2011) Genetic Algorithm (crossover: cut
& splice, mutation)

Java Custom model Eclipse (Windows) Yes Scalability Design time None 5

Ponnekanti and
Fox (2002)

Propositional Logic Java, Prolog Horn model JESS No Performance, Expresiveness Design time None 5

Wagner et al.
(2011)

Functional Clustering þ Planning N/A OWL-S Keikaku algorithm
tool, IBM UDDI

Yes Reliability, Flexibility, Cost-
effectiveness

Runtime Ontology 5

Kun et al. (2009) MDP þ HTN-Planning N/A OWL-S, MDP
models

N/A No Flexibility, Usability, Avail-
ability, Reliability, Perfor-
mance, Cost-effectiveness

Design time None 5

Bertoli et al.
(2010)

Planning N/A DAML-S, OWL-S,
BPEL

N/A Yes Reachability Compilation and
run time

None 4

Zhang et al.
(2010)

Swarm IntelligenceþGenetic
Algorithm

Visual Basic workflow .Net (Windows Vista) Yes Scalability, Performance Runtime None 4

Canfora et al.
(2005)

Genetic Algorithm Java BPEL Eclipse (Windows
3 GHz Intel Pentium)

Yes Reliability, Availability Runtime None 4

Wang et al.
(2010)

Reinforcement LearningþMDP N/A MDP model Q-Learning algorithm Yes Adaptability, Performance Runtime None 4

Ai and Tang
(2008)

Genetic Algorithm (crossover,
mutation)

Visual C# YAWL .Net Yes Scalability, Extensibility Runtime None 4

Hatzi et al. (2012) Planning (PORSCE II, VLEPO) PDDL, Java OWL Eclipse Yes Performance, Availability Runtime OWL-S 4
Liu et al. (2010) Genetic Algorithm (selection,

crossover, mutation)þAnt Colony
N/A BPEL N/A Yes Reliability, Availability, Cost-

Effectiveness, Performance
Runtime None 4

Aggarwal et al. Constraint Optimization N/A BPEL4WS, OWL-S LINDO Solver, No Performance, Precision Runtime Ontology 4

G
.R

odríguez
et

al./
Engineering

A
pplications

of
A
rtificial

Intelligence
53

(2016)
86

–104
91



Table 2 (continued )

Research Work AI Technique Language Model Language Platform and De-
ployment
Environment

Exhaustive test Quality-attribute Properties Optimization of
Composition

Semantic Web Sum of
Points

(2010) METEOR-S
Hassine et al.
(2006)

Constraint Optimization N/A OWL-S N/A No Performance, Interoperability,
Usability

Runtime Ontology 4

Doshi et al.
(2006)

Markov Decision Process (MDP)þ
Bayesian Learning

Java BPEL4WS, MDP
model

BPELWS4J API, IBM
Websphere

Yes Robustness, Adaptability Runtime None 4

Narayanan and
McIlraith
(2002)

Propositional Logic N/A DAML-S,
DAMLþOIL

KarmaSIM No Reachability Runtime Distributed Opera-
tional semantics

4

Tan et al. (2009) Propositional Logic N/A BPEL, Petri nets N/A No Reachability Design time None 4
Zou et al. (2012) Planning PDDL, Java WSDL, OWL Intel Pentium dual

core processor
2.4 GHz

Yes Decentralization Concurrency,
and Contingency

Runtime None 4

Chan and Lyu
(2008)

Propositional Logic PSL Petri nets, BPEL N/A Yes Reliability Runtime None 3

Paik et al. (2012) HTN-Planning Java UML, OWL-S NASC System Yes Scalability Runtime None 3
Oh et al. (2008) Planning PDDL, Java WSDL Eclipse Yes Effectiveness, Scalabilty,

Robustness
Network level None 3

Falou et al. (2008) Planning (Tree Search, Graph
Plan)

PDDL XML N/A No Usability Runtime None 2

McDermott
(2002)

Estimated-regression planning PDDL, Prolog Custom model UNPOP Planner No Cost-effectiveness N/A None 0

Table 3
Characterization of approaches to develop services.

Research Work AI Technique Language Model Language Platform and De-
ployment
Environment

Exhaustive test Quality-attribute
Properties

Design Patterns DevelopmentOutput Sum of
Points

Elgedawy (2009) Concept Substitutability
Graph (CSG)

N/A Gþmodel, Sequence Med-
iation Procedure

N/A No Business agility,
Responsiveness

Adapter Code 4

Elgedawy (2013) Concepts Substitutability
Enhanced Graph (CSEG)

N/A Gþmodel, context match-
ing,Sequence Mediation
Procedure

N/A Yes Interoperability Conversation Pat-
terns, Adapter

Code 4

Bhakti et al.
(2010)

CBR Java UML Eclipse, Axis2, SOAP,
MySQL

No Robutness, Depend-
ability, Availability

Broker UML class and sequence
diagrams

4

Arnold et al.
(2008)

Search-based Graph
Isomorphism

Java Custom models IBM Rational Software
Architect, Websphere

Yes Performance, Avail-
ability and Security

Deployment Patterns UML class diagram 3

Mannava and Ra-
mesh (2012)

CBR Java,.Net WSDL, Feature-Oriented
Programming, UML

Eclipse,.Net No Modifiability and
Transparency

Visitor, Service Injec-
tion, Composite

WSDL documents 3

Bhakti and Ab-
dullah (2011)

CBR Java UML Eclipse, Axis2, SOAP,
MySQL

No Robutness, Depend-
ability, Availability

Broker, CBR Pattern None 1

G
.R

odríguez
et

al./
Engineering

A
pplications

of
A
rtificial

Intelligence
53

(2016)
86

–104
92



G. Rodríguez et al. / Engineering Applications of Artificial Intelligence 53 (2016) 86–104 93
analyze technical features of semantic Web Service (SWS)
matchmakers such as the markup languages used for describing
the semantics of Web Services, the SWS discovery mechanisms,
the SWS discovery architecture, the approaches used for SWS
matching and the extent of matching for service selection, the
semantic parts of SWS for service matching and selection, and the
platforms or collections for testing the performance of SWS
matchmakers (Dong et al., 2013). Klusch (2012) presents an
overview and selects results of the international contest on se-
mantic service selection (S3) which has shown a significant im-
provement in precision from 2007 to 2010. This gain stems from
the use of better matching filters, ontology caching strategies and
hybrid semantic matchmakers. Platenius et al. (2013) conducted a
systematic literature survey of service matching approaches which
consider fuzzy matching. The authors considered different aspects
of the services’ specifications that are matched: ontologies, input/
outputs, pre-/post-conditions, protocols, and quality of service
(QoS). Also, the authors highlighted that current challenges in the
field are related with the combination of different matching ap-
proaches and the generation of more expressive matching results.

In the following sub-section, we describe different approaches
that use the AI support to discover Web Services, such IR-based
approaches, semantic-aware approaches and context-aware
approaches.

3.2. IR-based approaches

The use of Information Retrieval (IR) has gained considerable
attention in the field of discovering, since IR provides a rich catalog
of techniques to process natural language present in service de-
scriptions. Dong et al. (2004) and Korfhage (1997) have suggested
removing stop-words and pull out stems from Web Service
documents. Regarding the former, the authors developed an ap-
proach called Woogle that combines multiple vector spaces with
clustering techniques and assesses the similarity between two
Web Service descriptions, by separately assessing the similarity
between each part of these descriptions, and then comparing the
individual results. With regard to the latter, the authors proposed
to assess the retrieval effectiveness of the approaches by using IR
measures such as Recall, Precision and R-Precision.

Wang et al. have proposed to combine a Vector Space Model
(VSM) method with a structural-matching heuristics (Wang and
Stroulia, 2003). This heuristics consists of two phases: firstly, a
textual WSDL description is translated into a vector; secondly,
most similar WSDL files to the translated WSDL description are
retrieved by comparing XML syntax. In line with the suggestions
provided in Stroulia et al.'s survey (Stroulia and Wang, 2005),
Wang et al. plan as future work to incorporate WordNet Lexical
Database for enhancing semantic distance calculus when exploit-
ing WSDL semantic description. Along this line, Zhuge et al.
complement syntactic exact matching techniques by connecting
terms that semantically include other terms, even different from a
syntactical viewpoint by utilizing flexible matching (Zhuge and
Liu, 2004). Birukou et al. have combined VSM with past informa-
tion of Web Services used in a community of developers (Birukou
et al., 2007). To gather this information, the authors propose
analyzing the query descriptions made by the community, the
retrieved list of WSDL candidates for each query, and finally, the
successfully invoked Web Services.

Crasso et al. (2008) proposed heuristics for bridging different
WSDL message styles by mining relevant terms from data-type
definitions. The approach consists in a combination of query-by-
example and VSM along with a classification system, and allows
developers to state a query using their preferred programming
language by specifying the functional interface of the desired
service. In this context, the approach looks for services relevant to
the example only within a sub-space generated by the classifier.
The approach outperforms aforementioned approaches such as
the ones described in (Wang and Stroulia, 2003) and (Dong et al.,
2004). However, a considerable limitation of the mentioned UDDI-
based approaches in this section is the lack of semantic description
of Web Services and its analysis so as to enrich the discovery
process by increasing service matching.

3.3. Semantic-aware approaches

In order to tackle the limitation of the aforementioned AI
techniques, enrichment of the discovery process with ontologies
has been addressed; these tools attempt to disambiguate the re-
trieval documents by supporting semantic matching. This is crucial
for software agents that attempt to discover services auto-
matically. Three main efforts have defined a meta-model for de-
scribing Web Services: OWL-S (Martin et al., 2007), WSMO (Ro-
man et al., 2005) and WSDL-S (Sivashanmugam et al., 2003). The
first provides a framework for describing both the functions and
advertisements (actually published in UDDI) for Web Services by
using OWL (Ontology Web Language) to allow for adding anno-
tations to operations and quality-attribute properties. The second
is a conceptual model for Web Services which comprises ontolo-
gies, Web Service goals and mediators. The ontologies allow
publishers to add annotations to the interfaces, quality-attribute
properties, pre- and post-conditions, as well as effects and as-
sumptions of service operations. The goals model allows dis-
coverers to annotate functional requirements and quality-attribute
properties. The mediator model can be used to define mediators
responsible for aligning different ontologies. Finally, WSDL-S in-
corporates semantic descriptions into current Web Service stan-
dards; the approach also uses standard extensibility elements to
refer from WSDL documents to external ontologies. The semantic
information specified in WSDL-S consists of definitions of pre-
conditions, inputs, outputs and effects of Web Service operations.

The aforementioned approaches have gained popularity to the
extent that other authors develop discovery systems based on them.
It is worth clarifying that the use of semantic descriptions requires
to manage shared and distributed ontologies, and to annotate Web
Services. Paolucci et al. have described a matchmaking algorithm
for Web Service descriptions written in OWL-S, which infers the
logical relations between the inputs and outputs of a request with
the inputs and outputs of published semantic services (Paolucci
et al., 2002). Improving this idea, Kawamura et al. have proposed
Matchmaker to incorporate IR-based techniques, semantic annota-
tions and constraint declarations into UDDI (Kawamura et al., 2005).
To reduce the search space, the authors decided to use filters,
namely namespaces, text, I/O type and constraint. Cardoso et al.
have proposed an algorithm to exploit syntactic and semantic in-
formation (Cardoso and Sheth, 2003). The approach enriches WSDL
documents with semantic descriptions to increase matching preci-
sion, acting as a mediator between different ontologies. A further
improved implementation of the approach of Sivashanmugam et al.
was proposed by (Li et al., 2006), by which users can find highly
suitable and partner services efficiently and effectively; the ap-
proach also allows partner services to be bound at design-time,
deployment-time or execution-time. Moreover, the proposed ap-
proach eases the adaptation of the Web Service environments
which change dynamically. Along this line, Sangers et al. propose a
semantic Web Service discovery framework by making use of nat-
ural language processing techniques (Sangers et al., 2013). The
framework allows for searching through a set of semantic Web
Services in order to find a match with a keyword-based user query.
Techniques such as part-of-speech tagging, lemmatization, and
word sense disambiguation are used for matching keywords with
semantic Web Service descriptions.



Fig. 2. Distribution of research works of AI in WS discovery.

G. Rodríguez et al. / Engineering Applications of Artificial Intelligence 53 (2016) 86–10494
Pathak et al. describe a framework for ontology-based flexible
discovery of semantic Web Services modeling functional and non-
functional properties (Pathak et al., 2005). The proposed approach
relies on user-supplied, context-specific mappings from user on-
tology to relevant domain ontologies used to specify Web Services;
moreover, the matchmaking engine is aware of the relevant do-
main ontologies and Web Services. Mecar et al. deal with im-
plementation issues of semantic matchmaking of Web Services
using intelligent middle agents (Mecar et al., 2005). The match-
making algorithm is based on the DAML-S (DARPA Agent Markup
Language for Services) ontology, which contains required semantic
information for discovery and comparison, as well as execution
and monitoring of Web Services in order to find the most appro-
priate service that meets user preferences. Along this line, Mistry
et al. propose a new architecture of SOA that incorporates a new
adaptive technique called social learning; the technique improves
service provider's domain ontology through service consumer's
concept contributions and, thus, eventually makes the service
more discoverable (Mistry et al., 2012). The provider's ontology is
updated over time through learning from the Internet, by means of
social concept contributions of service consumers; this learning
(social learning) is conducted by introducing new ontology
matching and merging algorithms so as to meet the exact re-
quirement. Nevertheless, the main limitation of the AI techniques
applied to the aforementioned works is related to the use of
contexts. Disregarding contexts as a knowledge entity may impair
the performance of discovery approaches.

3.4. Context-aware approaches

In the light of the above, the use of context-aware computing
arises as a promising instrument to explore. According to Suraci
et al., context-aware service discovery may be defined as the use of
context information to retrieve the most relevant services for the
user, which requires an association between the service consumer,
service provider and context provider (Suraci et al. 2007). Rong
et al. stated that context can be explicitly provided by the user
during the matchmaking process or implicitly collected by the
system in an automatic or semi-automatic way (Rong and Liu,
2010). Subsequently, the authors have proposed to divide context-
aware approaches to discover Web Services into four categories:
personal-profile oriented context, usage-history oriented context,
process-oriented context, and other contexts.

Personal-profile oriented context has been dealt with in several
works aiming to build user profiles with specific user attributes to
personalize the Web Service discovery process (Balke and Wagner,
2003; Kuck and Gnasa, 2007). Along this line, Xiao et al. (2010)
have utilized the relations among context values to infer users’
needs, and then dynamically generated service searching criteria
based on those needs to discover and recommend services.
Usage history provides a context by identifying users' con-
sumption pattern to be employed for predicting users’ future be-
havior. This last category has branched into two lines of research:
personal usage history and group usage history. According to Ko-
kash et al., the personal usage history profile is built by keeping
system log information for each user-system interaction (Kokash
et al., 2007), while group usage history profile building pre-
supposes that most Web Service discovery systems offer re-
commendations to groups of users to simplify the matchmaking
process (Chan and Lyu, 2008; Manikrao and Prabhakar, 2005; Shao
et al., 2007; Sreenath and Singh, 2004). Collaborative Filtering (CF)
has been a widely used AI technique for recommending services in
the context of service discovery. In sum, six research works have
used CF: (Balke and Wagner, 2003), (Kokash et al., 2007), (Chan
and Lyu, 2008), (Manikrao and Prabhakar, 2005), (Shao et al.,
2007) and (Sreenath and Singh, 2004).

Process-oriented context is created by the information gath-
ered during the current discovery process; this kind of context
aims to study the effectiveness of the candidate Web Services and
then to optimize the discovery. For example, (Suraci et al., 2007)
has proposed a context-aware semantic service discovery archi-
tecture using a context-aware filtering process in order to suit the
users’ preferences (Liang et al., 2006; Ma et al., 2008).

3.5. Discussion

As we mentioned in Section 2, we employed the six general
criteria, together with the three specific criteria to analyze relevant
and contemporary discovery systems throughout this section,
identifying how AI techniques have facilitated the service dis-
covery task. Fig. 2 depicts the distribution of the most relevant
research works, between 2002 and 2013, that have applied AI in
the Web Service discovery process. The most popular techniques
used by the approaches are Ontologies, Information Retrieval and
Collaborative Filtering.

On the one hand, the reported reasons for using ontology are
its ability to carry out machine-interpretable descriptions, WSDL-
extension support and providers’ trustworthiness assurance. On
the other hand, the widespread use of IR-based approaches stems
from the fact that there is rich background inherited from IR;
however, these approaches fail to support non-functional de-
scriptions and depend on provider use of self-explanatory names
and comments. Table 1 shows the results in terms of the criteria to
characterize the reviewed Web Service discovery systems. The
characterization results show that some features are more popular
than others depending on the environment. For instance, IR
techniques (column 2) are effective in keyword-based searching
environments (column 9); however, due to the heterogeneity of
the Internet, different keywords are commonly used for advertis-
ing services that offer the same functionality. This occurs because
different services are built by diverse development teams, who
might not share the same programming conventions. The incon-
sistency between keywords and in interfaces of already-available
services and queries may be the cause of many problems related to
the retrieval effectiveness of discovery approaches. Moreover, for
example, a common situation is that the name of an output of a
service operation fails to be meaningful enough. Thus, it is ne-
cessary to link this name to a concept so that the discoverer can
deduce what a service provides. For these reasons, most of the
discovery systems (12 out of 29 approaches, column 1) use
ontologies as AI support, model the domain by means of OWL-S
(column 4), in combination with query specifications based on
keywords and natural language, and follow a semantic match-
making process. Along this line, context-aware approaches are
suitable for situations in which service registries are full of nu-
merous services, and it is required to know user data, such as



G. Rodríguez et al. / Engineering Applications of Artificial Intelligence 53 (2016) 86–104 95
location, type of terminal in use, or control policies (for example,
row 18 of Table 1). These data are highly necessary for the dis-
coverer to meet user requirements in terms of QoS, performance,
cost, accessibility, among others.

From a quality-attribute viewpoint, we can conclude that there
are crucial criteria that should be considered when designing
service discovery systems. First, the systems should be standards-
compliant and should support reuse. Second, depending on the
contexts, the semantic formalism should be rich enough to encode
service descriptions, requests and goals. Third, by means of AI
support, the systems should require minimal user involvement.
Fourth, if the context of the systems should deal with a large
number of services and a large numbers of users at the same time,
the scalability becomes essential, particularly in the matchmaking
phase. Fifth, the systems should continue working without per-
formance loss under faults or network changes. Finally, the use of
WSMO has been a suitable tool to address issues related to het-
erogeneous contexts such as different platforms, data formats, and
ontologies, among others.

It would be rational to expect that approaches that are medi-
ated by means of ontologies and semantic annotations rely on
semantic model languages, such as WSDL-S and OWL-S together
with its variants. After analyzing the research works, we cannot to
provide evidence of acceptable satisfaction of quality attributes
such as scalability, robustness and testability. Information Re-
trieval and Collaborative Filtering techniques exploit semantic
annotations within WSDL documents to provide developers with
more precise and accurate Web Services that satisfy challenging
functional and non-functional requirements. It is also worth not-
ing that most of the programming platforms are based on Java;
from an architectural viewpoint, the aforementioned approaches
are centralized, decentralized P2P or hybrid (Klush, 2008).

It is worth mentioning that there are a number of fuzzy tech-
niques for service discovery (Platenius et al., 2013); however, they
are out of the scope of this research. There are situations in which
no service exactly satisfies the request; thus, approximate
matching is necessary to deal with a certain amount of fuzziness.

After summing up, the following research works come out on
the top five of the most valuable works: Rough et al. (2010), Shao
et al. (2007), Suraci et al. (2007), Kuck and Gnasa (2007) and
Manikrao and Prabhakar (2005). Most of these works use context-
aware mediation, support specifying queries by using meta-mod-
els and discover information at operation level and at service level.
4. Approaches to compose services

The main purpose of Web Services is to achieve interoperability
among distributed and heterogeneous applications to combine the
functionality of several Web Services (Alonso et al., 2004). There-
fore, flexible composition of Web Services to fulfill the given
challenging requirements is one of the most important objectives
in this research field. According to (Klush, 2008), service discovery
and service composition are in the context of service coordination,
which aims at the coherent and efficient discovery, composition,
negotiation, and execution of semantic Web Services in a given
environment and application context. Service discovery is the
process of locating existing Web Services based on the description
of their functional and non-functional semantics, whereas service
composition is the act of taking several compatible services, and
bundling them together to meet the needs of a given customer.

Generally, to obtain a required composite Web Service, the user
has to specify an abstract workflow consisted of single services
that are bound at runtime. In particular, the mainstream approach
to composition is to have a single entity responsible for manually
scripting such workflows (orchestration and choreography)
between WSDL services of different business partners (Klush,
2008). Nonetheless, neither WSDL nor BPEL (Business Process
Execution Language) or any other workflow languages such as
UML have formal semantics which would allow for an automated
logic-based composition. Thus, AI emerges as a suitable support
for addressing automatic service composition.

4.1. Web service composition

Along Web Service composition, five phases can be identified:
service description, service matchmaking, service classification,
service combination, and service selection (Syu et al., 2012). Cur-
rently, service description uses WSDL as the most widely-accepted
and de-facto standard, yet WSDL lacks formal semantics and me-
tadata of service; thus, the Semantic Web community has pro-
vided service specification ontologies, such as Semantic Markup
for Web Services (OWL-S), Web Service Modeling Ontology
(WSMO) and Semantic Annotations for WSDL (SAWSDL), to ac-
curately and semantically describe services (Loutas et al., 2012).
Service matchmaking detects functional similarity or compatibility
among service's information, such as functional and non-func-
tional properties. Service classification supports both service
combination and service selection. In the case of service combi-
nation, service classification allows for clustering and treating
services that have identical functionality as a single unit; while in
service selection, classification can aggregate services providing
needed or required functionality, but posing different non-func-
tional properties, and then the service selector can choose the
most appropriate.

A Web Service may have numerous alternative development
solutions, all of which have the same functionality, but may have
different QoS properties. Thus, a significant research problem in
Web Service composition is how to select a Web Service alter-
native for each of the Web Services so that the composite Web
Service delivers the optimal overall performance. There may be
incompatibilities between Web Services at the time of develop-
ment; these incompatibilities may be due to dependency con-
straints and/or conflict constraints. The former occur when the
implementation of a certain Web Service demands the im-
plementation of another particular Web Service; whereas the
latter occur when the implementation of a certain Web Service
excludes the possibility of including a set of alternatives in the
Web Service composition (Tang and Ai, 2010).

In order to enhance the research carried out by (Dustdar and
Schreiner, 2005; Rao et al., 2005; Peer, 2005; Küster et al., 2005;
Klush, 2008; Strunk, 2010; Bartalos and Bieliková, 2011), we pro-
vide readers with approaches that exploit AI to assist developers in
service composition.

Dutsdar et al. discuss an urgent need for service composition,
along with the required technologies to perform service compo-
sition, and present numerous composition strategies based on
existing composition platforms and frameworks (Dustdar and
Schreiner, 2005). Rao et al. (2005) present an overview of research
efforts on automatic Web Service composition, both from the
workflow and AI Planning research community. Peer exclusively
addresses the use of AI Planning in dynamic and incomplete-in-
formation Web Service composition contexts (Peer, 2005). Küster
et al. (2005) classify applications of service compositions, espe-
cially automatic service compositions. The classification is orga-
nized into three categories such as fulfilling conditions, generating
multiple effects and overcoming lack of knowledge. Klush (2008)
reports on the use of AI Planning in service discovery and com-
position in the context of semantic Web Services. As for service
discovery, he classifies research works related to service descrip-
tion languages, service selection means and discovery archi-
tectures. With regard to service composition, he has classified



G. Rodríguez et al. / Engineering Applications of Artificial Intelligence 53 (2016) 86–10496
service composition planners at different levels such as functional
level and process level, and at different conditions under un-
certainty, such as static and dynamic service composition. Strunk
summarizes, classifies and evaluates research efforts on QoS-
aware service composition; firstly, the author indicates that the
tasks required by the composite service and their interactions, the
control and data flow are identified. Then, an appropriate concrete
service is selected and bound to the task (Strunk, 2010). Bartalos
et al. survey automatic Web Service composition approaches re-
garding not only issues related to semantics of services, but also
formalization of pre/post-conditions of the automatic dynamic
composition problem (Bartalos and Bieliková, 2011). In the fol-
lowing sub-sections, we review widely used AI techniques, namely
Planning, Genetic Algorithms, Information Retrieval, and Colla-
borative Filtering, among others.

4.2. AI planning approaches

The aim of AI Planning is to find a series of actions that allow
any entity, in this case a service composition problem, to mutate
from an initial state towards a final state by achieving a pre-
determined goal. OWL-S, which facilitates modeling and specify-
ing Web Service composition problems, is particularly suitable for
the application of Planning techniques (Stavropoulos et al., 2013).

According to Küster et al., a typical situation when composing
services could be the chaining of services. This occurs when some
preconditions of a required service are not fulfilled; then, a
chaining of services takes place, in which a combination of services
can fulfill the required preconditions of the initial service. There
exist four approaches to deal with service chaining, such as graph
search, forward chaining, backward chaining and estimated re-
gression planning. Graph search proposes to build a graph to re-
present all services available. Forward chaining starts with the
available knowledge about the world to find services whose pre-
condition can be met, inferring additional knowledge until the
requested effects are fulfilled. Unlike forward chaining, backward
chaining starts with those services generating the requested ef-
fects instead of those whose preconditions are grantable. Esti-
mated regression planning arises as a strategy to improve the
performance of the latter heuristics (Küster et al., 2005).

Bertoli et al. propose a planning approach via model checking,
in which the planning domain is represented by finite states with
asynchronous communication primitives (Bertoli et al., 2010). The
approach may work in non-deterministic, partially-observed, and
asynchronous domains; the planning domain is generated auto-
matically from the WS-BPEL specification of the component ser-
vices by considering reachability requirements. Then, the gener-
ated plans are automatically translated back into executable WS-
BPEL processes that implement the composite service so it can be
run on standard execution engines. This approach covers relevant
service composition scenarios and overcomes limitations of cur-
rent approaches in effectiveness and expressiveness. The relevant
scenarios are described in terms of real-life contexts, such as
scenarios where components feature loops and where the com-
position requirement can be reached after they traverse such loops
a finite number of times; symmetric scenarios where services play
different roles (P&S, Producer and Shipper scenario), among other
scenarios. The current limitations of the approach are stated in
terms of expressiveness and effectiveness. For this reason, the
research work of Bertoli et al. aims to address the problem of
composing stateful Web Services according to complex behavioral
requirements. Finally, Bertoli et al. have tested scalability of their
approach over the number of asynchronous component services in
the context of symmetric scenarios; however, the authors pose
that techniques for further improving the scalability have to be
investigated.
Another planning approach is introduced by McDermott who
represents atomic services as state transition operators and em-
ploys estimated regression planning with heuristics to compose
Web Services by extending current standards such as PDDL, UN-
POP planner and HSP. PDDL was extended with a polymorphic
type system, whereas UNPOP and HSP are planners that were
extended to handle simple Web Service composition problems.
Despite of the encouraging results in precision and cost-effec-
tiveness, there is still room for improvement as regards scalability
using this approach (McDermott, 2002). Oh et al. explore an AI
Planning framework for automatic and flexible composition of
Web Services to fulfill challenging requirements, such as achieving
interoperability between distributed and heterogeneous applica-
tions, and the publication, location and execution of loosely cou-
pled software components as integral parts of distributed appli-
cations (Oh et al., 2008). The polynomial-time heuristic is based on
Graph Plan and aims to minimize the number of actions (i.e. Web
Services); nonetheless, the approach fails to incorporate semantic
information into the Web Service specifications. By using the
general approach of AI Planning, El Falou et al. propose to model
services as actions, and business processes as planning to connect
Web Services (El Falou et al., 2008). To carry out the research, the
authors use the Planning Domain Definition Language (PDDL) to
describe the planning domain and two AI Planning algorithms:
Tree Search and Graph Plan. The advantage of this approach is
allowing for the creation and elimination of objects when ex-
ecuting actions. This advantage contributes to meeting new and
more expressive requests, in which goals may contain objects that
have been generated by the plan. Klusch et al. (2005) use semantic
descriptions of Web Services in OWL-S to derive planning domains
and problems, and then invoke a planning module, called XPlan, to
generate composite services. This system is compliant with an
XML dialect of PDDL, yet semantic information provided by do-
main ontologies is not utilized; therefore, the planning module
requires exact matching between service inputs and outputs. To
address this issue, Hatzi et al. facilitate the composition by adding
semantic information to WSDLs by means of ontologies (Hatzi
et al., 2012). The Web Services are described by using OWL-S and
translated into planning by PDDL using the tool PORSCE II and
executed by VLEPO. The approach achieves high quality, by con-
sidering the accuracy metric, and avoids expert's intervention;
thus, even non-experienced users can compose services.

In the research conducted by Lècuè et al., semantics and causal
laws on the Web Service composition problem are considered.
Utilizing Situation Calculus (SC) allows for adding expressiveness
to service parameters, adapting Golog by means of Description
Logics (DL) (Lécué et al., 2008). The approach attempts to address
how to effectively retrieve a conditional composition of services by
means of its causal links and laws (through AI Planning). To this
end, the authors suggest adding explicit DL reasoning between
input and output parameters of services (causal links) to the si-
tuation calculus, and combining them with reasoning on causal
relationships between their preconditions and effects (causal
laws). By combining causal links and causal laws, it is possible to
reduce search space, reduce the number of alternative plans and
increase performance; these advantages stem from the fact that
Lècuè et al.’s approach is more restrictive than approaches that
consider only causal links or only causal laws. Moreover, con-
sidering conditional plans is obviously flexible and adapted to the
available plethora of Web Services. Li et al. introduce the separa-
tion model to isolate the representation of Web Service type de-
finition from the definition of instances, in order to improve the
organization of Web Services (Li et al., 2010). In this context, the
AFlow system is introduced by combining planning and service
matchmaking, which yields favorable reductions in the planning
domain. This reduction of the planning domain scope is achieved



G. Rodríguez et al. / Engineering Applications of Artificial Intelligence 53 (2016) 86–104 97
by abstracting service types from lots of service instances, en-
hancing the performance and efficiency of the planner. The AI
Planner receives user requirements and builds abstract workflows,
whereas the Service Matchmaker selects the most suitable in-
stances from each abstract workflow.

Sirin et al. present SHOP2, a Hierarchical Task Network (HTN)
planning approach for automated composition of OWL-S Web
Services by executing Web-provided information during the
planning process (Sirin et al., 2004). Since HTN planning is similar
to the concept of decomposition process in OWL-S ontologies, the
backward-chaining approach translates OWL-S service descrip-
tions into the SHOP2 domain, and executes resulting plans on the
Web. However, this approach presents two limitations: one is that
mental states of agents involved are not modeled; and the second
is that it fails to generate conditional plans. The first limitation is
the lack of modeling of agents’ mental states. The authors assume
that all effects in planning are physical; in complex situations,
there may be other changes, such as in the mental states of the
agents involved in the planning process, but they are out of the
scope of the research. The second limitation is the lack of condi-
tional plans; these plans are important to mitigate the constraint
on information change during planning. Zou et al. propose a fra-
mework of service composition in multi-cloud based environ-
ments. The importance of multi-cloud based environments stems
from the fact that cloud computing is evolving as a widely used
computing platform where many different Web Services are
published and available in cloud data centers. The approach
combines planning and combinatorial optimization by exploiting
OWL-S XPlan to generate composition plans, achieving a superior
trade-off between response time and quality. This quality is
measured in term of the collection of the most suitable clouds for
service conversion and planning (Zou et al., 2010). The approach is
a practical solution for deployment in multi-cloud Web Service
provision environments and can effectively and efficiently find a
desirable cloud combination for Web Service composition. In line
with highly dynamic environments, Kuzu et al. present SimPlanner,
a dynamic planning approach to solve current issues in automated
service composition. These issues are partial observability of the
environment, non-deterministic effects of Web Services, service
execution failures and compensation mechanisms (Kuzu and Ci-
cekli, 2012). The approach proposes to address these issues by
providing a real application of a dynamic recovery system, not
only for service failure, but also for the situations where the user
cannot provide input for services. Also, the approach addresses the
issue in which the semantic Web Service descriptions and the
relations between them are discovered automatically. SimPlanner
is an anytime planner and domain independent for critical time
operation that addresses the limitation of HTN-based approaches
regarding insufficient knowledge due to domain dependence. In
this context, availability must be checked repeatedly; the planner
keeps track of the current state of the workflows and, in case of
errors in the composition, the Web Service composer informs the
planner about the situation and the planner provides alternatives.
The connection between semantic and syntactic Web Service de-
scriptions is carried out by OWL-S. During the Web Service com-
position, user interaction is needed to validate the plans found; in
case users fail to provide the tool with the required input, Sim-
Planner tries to find a Web Service that supplies that information
needed. Paik et al. (2012) deal with small, restricted parts of fully
automated composition, to enable nested multilevel composition
for achieving scalability, by means of workflow orchestration.
However, the Web Service environment is highly complex and
sometimes it is not feasible to generate compositions auto-
matically. Although planning has been used for orchestration, Zou
et al. propose to generate a distributed choreography plan based
on automated planning, since planning is more suitable for
constructing the composition plan from the perspective of a single
party in orchestration. The approach starts from a repository of
related WSDL-based documents and user-defined contingencies,
and represents them in PDDL; then, a master plan that provides a
global view of the choreography is built, and it is further decen-
tralized and localized in each peer using a dependency graph (Zou
et al., 2012). The main encouraging results are: (1) a method to
generate distributed plans for Web Service choreography is pre-
sented, and (2) efficiency and fully automation by means of AI
Planning and dependency graph analysis are achieved, and (3) as-
surance of correct collaboration of multiple peers is demonstrated.
Nonetheless, the quality optimization of the plan introducing non-
functional properties is mentioned as future work.

We think that the widespread use of AI Planning may stem
from the fact that it is a suitable technique to deal with dynamic
composition in contexts with incomplete information; however,
the technique may be enhanced with semantic information for
approximating the optimal composite services when exact solu-
tions are not found. Moreover, AI Planning fails to be suitable for a
choreography-based Web Service composition, since it involves
decentralized control, concurrent workflows, and contingency.

4.3. Evolutionary approaches

In order to address the aforementioned issues of AI Planning,
evolutionary approaches arise as feasible tools to explore. From a
computational point of view, the Web Service selection problem is
a typical constrained combinatorial optimization problem. Thus,
Genetic Algorithms (GAs) have resulted effective and efficient tools
for solving the problem. Canfora et al. propose a QoS-aware evo-
lutionary approach to bind a set of concrete services to abstract
services within an orchestration. To address constraints, the ap-
proach uses either a static or a dynamic fitness function based on
penalty; however, the performance of the Genetic Algorithm is
sensitive to the increase of search space. The authors conclude
that, depending on the size of the concrete service sets, the GA
outperforms the Integer Programming algorithm (Canfora et al.,
2005). Aligned with service dependencies and conflicts, Ai et al.
also use a penalty-based GA to tackle that the overall QoS of the
composite Web Service is optimal, along with the constraints on
inter-service dependencies and conflicts. Programmed in Visual C#
2005, the algorithm uses crossover and mutation operators
achieving high-quality solutions (Ai and Tang, 2008). The main
advantages of the approach are scalability (minor changes have to
be made) and extensibility (more non-functional properties can be
added). Fanjiang et al. use GA and Case-Based Reasoning (CBR) to
deal with dynamic service composition. The approach supports
flexible service workflow according to users’ requirements by
composing services (Fanjiang et al., 2010). The GA is used to sup-
port the service composition, while CBR is used to reuse workflow
structure and services. Besides, the GA uses WS-BPEL descriptions
and operators such as crossover and mutation; the fitness function
takes into account satisfaction of user requirements, workflow
feasibility and Quality of Services (QoS) values. In a later work,
Fajiang et al. propose a GA to address semantic-based composition,
in which functional and non-functional requirements are con-
sidered; this approach disregards human intervention and is
special for cases in which multiple composition concerns must be
addressed simultaneously, namely overall functionality, internally
workable dataflow, non-functional transaction, and QoS (response
time, cost and availability, among others) (Fanjiang and Syu, 2014).
The operators used in the algorithm are binary tournament (se-
lection), crossover and mutation; the goal is optimized by com-
posing four independent fitness functions ordered by priority for
scoring chromosomes. However, the approach is yet to be tested
(i) with large-scale real-world service repository and (ii)



G. Rodríguez et al. / Engineering Applications of Artificial Intelligence 53 (2016) 86–10498
exhaustively and extensively considering all possible scenarios.
Liu et al. propose a hybrid approach to tackle the lack of fea-

sibility in Web Service composition based on GA and Particle
Swarm Optimization (PSO); for this reason the work belongs to the
category Swarm Intelligence. The GA is responsible for searching
throughout the problem space, while PSO enhances local search-
ability (Liu et al., 2007). The approach uses feedback information
to balance both algorithms and is independent of knowledge re-
presentation. In line with hybrid approaches, Liu et al. address
QoS-aware Web service composition by means of a GA improved
with ant colony algorithms, suiting real-time requirements. The
approach proved to be more efficient than classical ant colony
approaches and demonstrated a better convergence (Liu et al.,
2010); for this reason the work also belongs to the category Swarm
Intelligence. The operators used are selection, crossover and mu-
tation, along with a static fitness function. Despite the benefits of
the approach, scalability has not been tested. Tang et al. propose a
GA plus a local optimizer, in which each individual represents a
Web Service selection plan (Tang and Ai, 2010). Because of this
optimizer, this work belongs to the category Constraint Optimi-
zation (CO). The optimizer is used twice: at the beginning to im-
prove fitness values, increasing QoS and reducing constraint vio-
lations, and at the end of each generation to improve the in-
dividuals in the population. However, this optimizer evidences
high execution time and instability. Unlike Ai et al.’s, this approach
uses a knowledge-based crossover operator. Jiang et al. propose a
variable length chromosome GA for QoS-aware service composi-
tion among multiple paths. The operators of the GA are mutation
and crossover; the latter is carried out by the cut-and-splice
technique based on service parameter matching (Jiang et al., 2011).
The approach presents considerable scalability for abstract service
construction in a changing context, and supports important
workflow structures and re-composition; additionally, new paths
can be added at will. Nevertheless, the approach fails to support
gene exchange inside And/Or workflow patterns, and the para-
meter matching is unsuitable for universal service composition
problems. Another considerable drawback is the decrease in per-
formance caused by the fitness function conducted at the begin-
ning of the GA.

To sum up, the aforementioned works reported that GAs re-
present a more scalable option and are more suitable to handle
generic QoS attributes than AI Planning and Integer Programming
approaches. Furthermore, evolutionary approaches provide faster
composition when re-planning takes place, since current QoS de-
viates from the estimated one, leading to constraint violations;
nonetheless, there are issues that jeopardize the application of GA
to compose Web Services. Firstly, it is not possible to define high-
priority goals within the fitness function. Secondly, the size of the
input directly impacts the performance of the algorithm. Finally,
GA may become instable when the constraints’ density is con-
siderably high.

4.4. Other AI approaches

Aiming to address the aforementioned issues, other AI techni-
ques have been applied to compose Web Services. For instance,
propositional logic was used in the context of SWORD, a developer
toolkit for building composite Web Services using rule-based plan
generation (Ponnekanti and Fox, 2002). In SWORD, by following a
forward-chaining heuristic, a service is modeled by its pre- and
post-conditions, which are specified in a world model that consists
of entities and relationships among entities. A Web Service is re-
presented in the form of a Horn clause denoting that the post-
conditions are achieved if the pre-conditions are true. An im-
portant limitation is that SWORD can sometimes generate un-
certain results if a precondition cannot determine a unique post-
condition. The use of Petri nets has been proposed for service-
composition verification and validation (Narayanan and McIlraith,
2002). The authors propose to specify Web Services by using
DAML-S, allowing for semantic markup of services. Then, the
specifications are translated into Petri nets to leverage their ability
for both offline analysis tasks (i.e., Web Service composition) and
online execution tasks (i.e., deadlock determination, resource sa-
tisfaction and quantitative performance analysis). In line with
service-composition verification, Chan et al. introduce an auto-
mated composition algorithm with Petri net verification. The al-
gorithm composes Web Services as a choreography based on
WSDL specifications; then, this composition is verified to be
deadlock free by modeling the Web Service interaction as a Petri
net (Chan and Lyu, 2008).

In combination with logical inference of Horn clauses, Petri
nets have been chosen to model the rule set, and its structural
analysis techniques are used to obtain the composite service. In
this context, every basic service is represented by a situation cal-
culus formula whose operational semantics is provided using Petri
nets. The existence of the composite service can be determined by
checking the reachability of Petri nets. Petri nets concentrate on
the conceptual level, making reasonable simplification on some
nontrivial details, for example, the partial compatibility issue. This
contribution to the automation in service composition led us to
consider Petri nets as an AI technique. Compared with other ex-
isting Web Service automatic composition approaches, Petri nets
do not only consider the input/output type-compatibility of ser-
vices, but also take the behavioral-constraint compatibility into
account.

Petri nets are also used in Tan et al.’s approach (Tan et al.,
2009), in which a method is proposed to analyze compatibility
between any two services specified in BPEL, by converting them
into Colored Petri nets (CPNs). The approach uses a set of form-
alisms derived from CPNs, such as the Service Workflow Net (SWF-
net), defined to describe services, compositions and mediators.
Then, the feasibility of mediation is checked by a state-space
method by means of the Communicating Reachability Graph
(CRG); nonetheless, the approach leaves room for further research
regarding cost of the reachability method and full automation of
the mediator generation, which depends on services' specific
properties. Besides using Petri nets, Tang et al. (2011) propose to
use Horn clauses to perform logical inference; the Web Service
composition problem is translated into Horn clauses by exploring
dependency relations among services. Petri nets model both the
rule set, which is gathered based on hyper-graph theory for
composition, and its structural analysis for obtaining the service
composed. Moreover, the approach considers behavioral-con-
straint compatibility among services, by using Semantic Annota-
tions for WSDL (SAWSDL) to specify Web Services. Despite the
advantages of using Petri nets, there are a number of issues to
address, such as the inability to map workflow patterns. These
patterns usually involve multiple instances, complex synchroni-
zations or non-local withdrawals onto high-level Petri nets (van
der Aaslt, 2005).

In this context, Wagner et al. (2011) propose a Functional
Clustering-based approach to enhance reliability, QoS awareness,
compliance with QoS constraints and flexibility in Web Service
composition. The approach identifies clusters of services with si-
milar functionality by means of functional alignment and QoS
aggregation, in which attributes of each cluster, such as price or
reliability, are determined. After clustering, the planning phase
takes place by the Keikaku algorithm, a regression planning tool
that performs iterative depth-first search; for this reason, this
approach also belongs to the category Planning in Table 2 The
advantage of this algorithm is that reliability and utility of com-
puted workflows are significantly increased; however, the



Fig. 3. Distribution of research works of AI in WS Composition.

G. Rodríguez et al. / Engineering Applications of Artificial Intelligence 53 (2016) 86–104 99
approach has not been tested with different selection algorithms
to show how they impact on the results. Aggarwal et al. (2004)
propose METEOR-S, an approach that allows designers to bind
Web Services to an abstract process by service templates, based on
business goals and process constraints. To model the process flow,
a BPWS4J API is utilized to parse the abstract BPEL. By means of
ontologies, this approach uses Semantic Web concepts, such as
data semantics, functional semantics and QoS semantics, to re-
present the users’ requirements. All criteria that affect the solution
of the services are represented as constraints or objectives, which
are treated with LINDO (Integer Linear Programming Solver); for
this reason, this approach belongs to the category CO in Table 2.
The promising points of this work are high flexibility and im-
provements in global optimization. Belonging to the same cate-
gory, Hassine et al. (2006) propose formalization of Web Service
composition as a constraint-optimization problem compatible
with any WSDL to tackle Web Service composition. The approach
deals with dynamic, distributed and uncertain contexts with
incomplete information; moreover, the approach increases user
intervention to find optimal solutions at runtime. However, the
authors have started to work on extending the approach to a
Multi-Agent System (MAS) in order to be more effective in realistic
environments. In the work of Santofimia et al., a MAS is proposed
to automatically compose services, as a constituent of middleware
architecture, providing transparency from the users’ viewpoint
(Santofimia et al., 2008). This is an important issue since users
generally find themselves involved in the composition, by select-
ing or deciding what services to compose and how.

Another considerable issue in Web Service composition is to
deal with non-deterministic behavior of services, which is an in-
herent stochastic nature of Web Services in dynamic environ-
ments. To tackle this issue, Markov Decision Process (MDP) has
been used by (Doshi et al., 2004). MDP optimally guides a stateful
workflow towards its goal, by using Bayesian learning to learn
probabilities within the model, generating robust and adaptive
workflows. The approach uses the BPWS4J API and runs in IBM's
Websphere application suite; however, scalability remains to be
tested. Kun et al. (2009) propose to combine HTN Planning with
MDP, since HTN Planning fails to consider the choice of decom-
positions available to a problem, which can lead to a variety of
valid solutions. Thus, the approach uses the decomposition model
proposed by SHOP2, yielding more flexibility, among other non-
functional properties of Web services. However, exploring a re-
planning mechanism is still a challenging issue to be addressed
when plan execution fails.

Zhang et al. (2010) use Ant Colony Optimization (ACO) and
QoS-based dynamic service composition. The Swarm Intelligence
(SI) approach uses a multi-objective optimal-path selection mod-
eling for Web Service composition. The ACO algorithm uses a
technique named “the evaporation of pheromones” to find Pareto
optimality; this algorithm yields favorable results in efficiency,
performance and scalability; despite its lack of QoS-aware dy-
namic Web Service composition. Wang et al. (2010) propose a
Reinforcement Learning (RL) approach in combination with MDP
to achieve optimal Web Service composition at runtime, by means
of the Q-Learning algorithm. MDP is used to perform composition,
whereas RL is used to perform optimization. This approach re-
quires no prior knowledge about QoS and allows the composition
process to be adaptive to environment; however, a main limitation
is that the approach is yet to be exhaustively tested for scalability.

4.5. Discussion

We have reviewed numerous approaches and frameworks that
have been developed in order to provide widely usable Web
Service composition platforms. The analysis of relevant and
contemporary Web service composition systems was carried out
applying 6 general and 2 specific criteria; this exploration evi-
denced how AI techniques have contributed to facilitate service
composition. Fig. 3 depicts the distribution of the most relevant
research works between 2002 and 2015 that have applied AI in the
Web Service composition. As shown in Table 2 and Fig. 3, planning
techniques (36.11% of the research works) and evolutionary algo-
rithms (22.22% of the research works) have been widely used to
build executable workflows of composed Web Services that satisfy
users’ requirements, especially non-functional requirements such
as availability, robustness, performance, and adaptability, among
others (column 6 of Table 2).

Most of the approaches described in Table 2 are modeled by
means of BPEL (column 7), since they are in charge of building
workflows, and use Java-based tools and inference engines (col-
umn 4). Furthermore, semantic tools are utilized through ontolo-
gies modeled using OWL-S. Thus, as expected, most approaches
address runtime composition optimizations. A limitation widely
detected in the aforementioned approaches is the lack of in-
dependence of programming platforms and vendors. Moreover,
few research works are focused on robustness and observability of
devices and services (column 6). Consequently, we consider that it
is necessary to conduct further research to develop reliable and
robust Web Service compositions.

It is worth highlighting that some AI techniques are more ap-
propriate than others depending on the composition environment.
For instance, AI Planning is suitable for dynamic Web Service
composition with incomplete information. Along this line, con-
straint-optimization techniques are useful for dynamic, distributed
and uncertain environments, especially when user intervention at
runtime is required to find optimal solutions. In case of high-
scalability requirements and management of generic quality at-
tributes, evolutionary techniques seem to be promising strategies.
Instead, Markov techniques are suitable for environments in which
designers have to address non-deterministic behavior of Web
Services along service composition. In environments where both
input/output compatibility and exceptional paths (e. g. faults) are
considered, the use of Petri nets is highly recommended. Finally,
functional clustering techniques are suggested for environments in
which reliability, QoS-awareness and flexibility are highly re-
quired. We can provide a complete list of quality attributes in
service composition addressed by reviewed research works: effi-
ciency, effectiveness, expressiveness, scalability, accuracy, re-
sponse time, availability, cost, extensibility, suitability, reliability,
utility, flexibility, robustness, adaptability, performance, con-
vergence, execution time, (in) stability.

It is also noticeable that the works of Lecue et al. (2008), Sirin
et al. (2007), Fajiang et al. (2014) and Tang et al. (2011) come out
on the top four of the most valuable research works related to AI-
based service composition. These works propose optimization of



G. Rodríguez et al. / Engineering Applications of Artificial Intelligence 53 (2016) 86–104100
service composition at design time, which is valuable for devel-
opers to effieciently assess alternative solutions. Further, these
works propose ontologies and OWL-S to support Semantic Web
and satisfy several quality-attribute properties simultaneously.
Fig. 4. Distribution of AI-based research works to develop services.
5. Approaches to service development assistance

It is well known that SOA allows developers to rapidly build
applications by assembling already-implemented and Internet-
accessible services, which allows software organizations to hasten
development of distributed applications and their consequent
time-to-market (Papazoglou and Heuvel, 2006). However, this
approach to develop SOA applications is unsuitable for particular
organizations with high-priority and critical demands of internal
control, security, flexibility, confidentiality and data integrity of
their services, since the development of core functionality may be
jeopardized by either uncertainty or changing environment. For
this reason, we consider that assisting software developers in
building services is a crucial issue when discovering or composing
services fail to achieve critical quality-attribute properties. Given
that automated software generation is a demanding task, an ex-
haustive review of the latest literature has evidenced that few
approaches aim at applying AI techniques to provide automated
development assistance during the software design phase. Next,
we shed some light on the use of design patterns and Case-Based
Reasoning (CBR) to explore service design alternatives.

5.1. Pattern-driven approaches

At this stage, we have reviewed relevant catalogs of SOA design
patterns in the literature, such as Erl (2008), Bell (2010) and
Daigneau et al. (2011). Having these catalogs in mind, we have
reviewed the research work by detecting and classifying the de-
sign patterns. Arnold et al. (2008) propose the use of deployment
patterns that represent the structure and constraints of composite
solutions, including non-functional properties. The realization is
performed by Search-Based Graph Isomorphism (SBGI) and pat-
terns expressed in a formal object-relationship based modeling
language, under the IBM Rational Software Architect platform. As
for limitations, this work could be furthered to address interactive
pattern realization and reverse pattern discovery, among others.

Elgedawy (2009) advise the application of adapters to match
requests in the context of service conversations, i.e., interaction
among Web Services, yielding improvements in business agility
and responsiveness (Elgedawy, 2009). The approach uses Concept
Substitutability Graph (CSG) to capture conversation semantics
represented by ontologies. CSG consists of segments, where each
segment gathers the substitution semantics between application
domain concepts with respect to a given application domain op-
eration. Also, the Gþmodel is used to capture conversation pat-
terns, conversation context matching, and Sequence Mediation
Procedure (SMP) in message exchanges; this procedure is used to
match different state sequences generated from the conversation
patterns to be matched. Mannava et al. combine Visitor pattern, on
the server side, and CBR pattern (Ramirez and Cheng, 2010), on the
client side, for service invocation and Web Service composition
(Mannava and Ramesh, 2012). In a context of feature-oriented
programming and aspect-oriented programming, the authors
propose the use of the Service Injection pattern to introduce new
services at runtime by maintaining transparency to users. The
approach is able to handle service requests from clients and injects
new services into a server's code as feature module. Although the
approach is suitable for distributed environments, it has not been
tested yet. An improved work presented in Elgedawy et al. in-
troduces Concept Substitutability Enhanced Graph (CSEG), which
is able to capture the aggregated concept substitution semantics of
application domain concepts in a context-aware manner (Elgeda-
wy, 2013). Unlike CSG, CSEG captures both bilateral as well as
aggregated conditional substitution semantics of application do-
main concepts. The approach generates the conversation patterns
from the services Gþmodel, and then, matches these patterns
using context matching and SMP to find the operation mappings,
which determine the structure of the adapter required. After that,
converters between different operations, using the concepts sub-
stitution semantics captured in the CSEG, are generated. For the
sake of simplicity, CSG and CSEG belong to category “Matching” as
shown in Fig. 4.

5.2. Case-based reasoning approaches

Widespread use of CBR may be attributed to the resemblance
between this technique and human problem solving strategies
construed on previous experiences. Furthermore, on the one hand,
using CBR reduces the amount of input needed, since CBR searches
the current case knowledge base for solutions rather than working
out solutions from a rule base which can contain irrelevant rules.
On the other hand, a CBR-based approach expands its knowledge
base by adding new cases to its repertoire, which makes this
technique both time and cost effective. However, CBR presents
certain limitations, namely an inefficient method to index and
access cases, poor and slow retrieval techniques, avoidable re-
dundancy of similar cases in the knowledge base, and insufficient
attempts to adapt solutions to the needs of a current problem
(Mansouri and Hamdi-Cherif, 2011). Bhakti et al. (2010) propose
SOA autonomic computing by means of CBR along the adaptation,
learning and planning phases of self-organizing computing. The
authors use a similarity metric called Heterogeneous Euclidean
overlap metric, whereas for modeling the SOA meta-model the
authors apply the Unified Model Language (UML). As a result, the
research attempts to shed some light on improving the usability,
adaptability, and robustness of traditional SOA; however, the ap-
proach remains to be tested for scalability. Along this line, given
that a SOA is capable of changing its structure and functionality
autonomously with little human intervention, Bhakti et al. pro-
pose the use of CBR to address unpredictable events which could
cause unavailability of services in cases of crashes or other net-
work issues (Bhakti and Abdullah, 2011).

5.3. Discussion

As mentioned in Section 2, we applied 6 general and 2 specific
criteria to analyze relevant and contemporary approaches to de-
velop services throughout this section, identifying how AI



G. Rodríguez et al. / Engineering Applications of Artificial Intelligence 53 (2016) 86–104 101
techniques have contributed to facilitate the development process.
Fig. 4 depicts the distribution of the most relevant research works
that have applied AI to assist developers in the service develop-
ment process. Table 3 describes the results after characterizing the
approaches for developing services presented in Section 6. One the
one hand, we observe that some approaches use CBR (50% as
shown in Fig. 4) in order to fully achieve the essence of autonomic
computing, such as robustness, dependability and availability,
among others (column 7 of Table 3). In autonomic computing, a
system needs to exhibit four aspects of self-management: self-
configuration, self-optimization, self-healing, and self-protection,
some of which are met by means of CBR. We conclude that CBR is
useful when it is necessary to find previous solutions to current
problems with similar conditions; however, it is advisable to apply
CBR in delimited and well-defined application domains, such as
SOA, J2EE, among others, in order to leverage a contextualized case
base with more retrievable cases.

On the other hand, we noticed that the use of design patterns
(column 8 of Table 3) to materialize SOA applications is suitable for
situations in which functional and non-functional requirements re-
main both and equal along the materialization process. Nonetheless,
little attention has been paid to assisting developers in developing
quality-attribute driven services. Furthermore, none of the ap-
proaches has been exhaustively tested with a significant number of
case studies. Although some approaches deal with automated reali-
zation of code (rows 1 and 2 of Table 3), they are focused only on
specific quality attributes and design patterns, and fail to provide
customized development alternative solutions. Table 3 also shows
the research works that have obtained the highest scores in the
comparison procedure: Elgedaway et al. (Elgedaway et al., 2009,
2013). These high scores can be mainly explained by the develop-
ment outputs provided by the approaches’ system applications,
which are in the form of UML class diagrams or code.
6. Future trends and open issues

In the previous sections, we summarized the most relevant
approaches for discovering, composing and developing services
from an AI viewpoint. We identified the main characteristics and
common features between these approaches. So far, we have ad-
dressed the first three research questions stated in Section 2. The
present section addresses the fourth and final research questions
by identifying open issues and research challenges in the areas of
service discovery, service composition and service development.

6.1. Service discovery

A future trend in service discovery research is the study of
protocols for mobile environments, opening new challenges con-
cerning mobility, decentralized P2P architectures and hetero-
geneity. Mobility is an issue that needs to be further researched,
since discovery approaches have to cope with limited resources
and computational capabilities of mobile devices, Scalability of
discovery platforms is an issue in this environment, both because
of the vast number of mobile devices available as service provi-
ders/consumers, and for the number of services to be indexed by a
registry. A service discovery protocol should be available to service
providers/consumers at any time, being sensitive to current en-
vironmental conditions; moreover, the protocol should be con-
versant with the availability and quality of the services that are
indexed, and adapt their content. Consequently, as the number of
devices increases, monitoring mechanisms require further ex-
ploration to provide widespread security and trust.

Despite recent advances in decentralized P2P architecture, the
scalability of semantic service discovery in real-time mobile ad-
hoc network applications is a considerable open issue. From an
architectural viewpoint, reviewed AI support should be broadly
applied to decentralized architectures in order to address mobility
issues and services may get fulfilled. Up to now, provided solutions
have focused only on the expressivity of semantic service de-
scription, and the complexity of semantic matching means. As a
consequence, to successfully identify service providers over the
Internet, it is necessary to monitor the Web, for example, by Web
crawling techniques so as to access services with the appropriate
functional and non-functional properties.

As for heterogeneity, an environment that consists of hetero-
geneous devices supposes an agreement on the protocol via which
services are advertised and discovered. For instance, Mokhtar et al.
have proposed an automated approach to mapping facilities from
the discovery source to a discovery target; however, extensibility
mechanisms and adaptability strategies remain challenging
(Mokhtar et al., 2010). Moreover, in a heterogeneous environment
the probabilities of introducing malicious code are high, as well as
the number of devices involved in an attack.
6.2. Service composition

Current service composition research also proposes a niche to
enhance and enrich approaches concerning mobility, decen-
tralized P2P architectures and heterogeneity.

As for mobility, self-adapting service composition must also
deal with mobile devices with limited resources and computa-
tional capabilities; thus, it is necessary to explore strategies
adaptable to topology changes within the environment to co-
ordinate service composition by considering mobility patterns,
platform battery lifetime, fault tolerance and reliability. Moreover,
it is extremely daunting for current service composition ap-
proaches to be aware of the numerous devices and their failures;
as a consequence, observability of what a service provides is still
an issue to address by exploiting semantic information. Inference
of machine-interpretable information about what a service can do
and what it can provide also requires further research. Syntactic
interpretation of service-based information lacks the reliability to
perform this function properly because the meaning of underlying
information is missing (Blake and Wei, 2010).

The advent of the decentralized paradigm yields as a result
challenges to service composition. It is still complicated and time
consuming to develop, test, and debug compositions of low-cou-
pled services in service-oriented systems with current strategies
and tools. Interoperability mechanisms are highly necessary due to
the heterogeneity of devices in a decentralized environment. That
is to say, service composition should be independent of pro-
gramming languages, vendors, and operating systems, amongst
others; in this context, the exploration of ontologies seems to
be a promising line of research to achieve portability and
interoperability.

With regard to heterogeneity, security, privacy and trust are
still open issues for enabling service access in heterogeneous en-
vironments because services taking part in the composition can
scarcely be aware of the sources of information they actually in-
teract with (Issarny et al., 2011). The introduction of diverse agent
technologies would help to constitute more complex systems in
open and dynamic environments. Thus, Web Services would be-
come more autonomous, and the exploration of mechanisms for
composing Web Services enacted by autonomous agents will be
imperative (Lee et al., 2012), providing significant evidence of the
required support of AI techniques to deal with this service com-
position issues.



G. Rodríguez et al. / Engineering Applications of Artificial Intelligence 53 (2016) 86–104102
6.3. Service development

Although considerable efforts have focused mainly on facil-
itating service discovery, and the outsourcing and reuse of services
in SOA-based applications, little attention has been paid to aiding
developers in service development associated with business goals
and quality-attribute properties. As stated in Section 5, some lines
of research have attempted to shed light on developing services
within the organizations by exploring different AI techniques to
assist developers in building software pieces; however, quality-
attribute properties of the service assemblies have been dis-
regarded, which often leads to mismatches between the quality-
attribute behavior prescribed by the architecture specification and
the behavior resulting after its development (Diaz-Pace et al.,
2012).

In this context, a future line of research should focus on de-
veloping services driven by quality-attribute properties within a
software organization. Thus, the development of a service nor-
mally starts with some form of architectural description (e.g.,
public interface, main features to be provided, operating en-
vironment) and a set of quality-attribute properties, which are
taken by the designer to produce a more concrete design model of
the service. For example, developing a connection between ser-
vices can be achieved by applying design patterns depending on
the quality attributes defined by the SOA application. As this de-
cision on the suitable candidate design is error-prone and time-
consuming, developers need to be assisted in choosing from two
or more alternative solutions. It is worth mentioning that these
alternatives may be just as effective from a functional standpoint,
but might still diverge from the intended architecture in terms of
quality-attribute properties. In this light, we have conducted some
research on the use of Case-Based Reasoning to assist software
developers in choosing suitable object-oriented designs from a
quality-attributes perspective to reify service-oriented archi-
tectures (Rodríguez et al., 2014).
7. Conclusions

Many different approaches have been proposed to create
widely accepted and usable systems for discovering, composing
and developing Web Services. In this paper, we have provided a
detailed, conceptualized and synthesized analysis of 69 significant
research works that presented AI-based approaches aimed at
discovering, composing, or developing services in a loosely cou-
pled way. In this context, the use of AI has shed light on both
exploiting the semantic resources and achieving quality-attribute
properties so as to produce flexible and adaptive-to-change ser-
vice discovery, service composition and service development sys-
tems. Additionally, QoS-aware and semantic descriptions have
been suggested to extend the current standards in order to en-
hance the SOA development process.

Furthermore, three aspects have been reported for being an
important influence on future research directions: mobility, de-
centralized P2P architectures, and heterogeneity. As for mobility,
we have observed that the trend in service discovery is the use of
ontologies, which support increased reliability, cost-effectiveness,
precision and accuracy when retrieving services; however, scal-
ability of semantic service discovery in real-time mobile applica-
tions requires further research. Current service composition re-
search should explore strategies adaptable to topology changes
within the environment to coordinate service composition by
considering mobility patterns, platform battery lifetime, fault tol-
erance and reliability.

Regarding decentralized P2P architectures and heterogeneity,
despite the widespread use of ontologies, scalability of semantic
service discovery in different networks, even in decentralized P2P
networks, is an issue that needs to be addressed. Planning and
evolutionary algorithms have been the most widely used AI
techniques to automate the Web Service composition process in
dynamic environments; however, issues related to Web Service
compatibility and portability demand research to efficiently com-
pose Web Services in heterogeneous and decentralized
environments.

To cope with service development, various approaches have
provided software developers with guidelines and design patterns
to streamline the exploration of alternative solutions. Never-
theless, providing software organizations with semi-automated
approaches, both to develop service-oriented applications driven
by quality-attribute properties and to assess the fulfillment of
functional and non-functional requirements, is a line of research
that demands further exploration.

Finally, the current evolution of the Internet presents new
possibilities and opens a new research area facing existing chal-
lenges in terms of other important issues such as security, trust,
awareness and adaptability. That is to say, researchers need to
incorporate these issues to the agenda of current limitations sur-
veyed in this research work related to service discovery, compo-
sition and development.
Acknowledgments

We acknowledge the financial support provided by ANPCyT
through grant PICT 2011 No. 0080. Also, we acknowledge the fi-
nancial support provided by Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET) through doctoral grant no. 4936.
References

Aggarwal, R., Verma, K., Miller, J., Milnor, W., 2004. Constraint driven web service
composition in METEOR-S. In: Proceedings of the 2004 IEEE International
Conference on Services Computing, pp. 23–30.

Ai, L., Tang, M., 2008. A penalty-based genetic algorithm for QoS-aware Web service
composition with inter-service dependencies and conflicts. In: Proceedings of
the 2008 International Conference on Computational Intelligence for Modelling
Control & Automation.

Alonso, G., Casati, F., Kuno, H., Machiraju, V., 2004. Web Services. Concepts, Ar-
chitectures and Applications. Springer-Verlag, Berlin, Heidelberg.

Arnold, W., Eilam, T., Kalantar, M., Konstantinou, A.V., Totok, A.A., 2008. Automatic
realization of SOA deployment patterns in distributed environments. In: Proceed-
ings of the Service-Oriented Computing. Springer, Berlin Heidelberg, pp. 162–179.

Balke, W.T., Wagner, M., 2003. Towards Personalized Selection of Web services. In
WWW (Alternate Paper Tracks), pp. 20–24.

Bartalos, P., Bieliková, M., 2011. Automatic dynamic web service composition: a
survey and problem formalization. Comput. Inform. 30, 793–827.

Bell, M., 2010. SOA Modeling Patterns for Service-Oriented Discovery and Analysis.
John Wiley and Sons, Inc., United States.

Bellur, U., Gupta, A., Vadodaria, H., 2008. Semantic Matchmaking Algorithms. IN-
TECH Open Access Publisher, Croatia, pp. 586–604.

Bertoli, P., Pistore, M., Traverso, P., 2010. Automated composition of Web services
via planning in asynchronous domains. Artif. Intell. 174 (3–4), 316–361.

Bhakti, M.A.C., Abdullah, A.B., 2011. Autonomic computing approach in service or-
iented architecture. In: Proceedings of the 2011 IEEE Symposium on Computers
& Informatics, Kuala Lumpur, pp. 231–236.

Bhakti, M.A.C., Abdullah, A.B., Jung, L.T., 2010. Autonomic, self-organizing service-
Oriented Architecture in service ecosystem. In: Proceedings of the 4th IEEE
International Conference on Digital Ecosystems and Technologies, Dubai, pp.
153–158.

Birukou, A., Blanzieri, E., D’Andrea, V., Giorgini, P., Kokash, N., 2007. Improving web
service discovery with usage data. IEEE Softw. 24 (6), 47–54.

Blake, M.B., Wei, Y., 2010. Service-oriented computing and cloud computing:
challenges and opportunities. IEEE Internet Comput. 14 (6), 72–75.

Canfora, G., Di Penta, M., Esposito, R., Villani, M.L., 2005. An approach for QoS-aware
service composition based on genetic algorithms. In: Proceedings of the ACM
2005 conference on Genetic and evolutionary computation, pp. 1069–1075.

Cardoso, J., Sheth, A., 2003. Semantic e-workflow composition. J. Intell. Inf. Syst. 21
(3), 191–225.

Chan, N.N., Gaaloul, W., Tata, S., 2012. A recommender system based on historical
usage data for web service discovery. Serv. Oriented Comput. Appl. 6 (1), 51–63.

http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref2
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref2
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref3
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref3
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref3
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref4
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref4
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref5
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref5
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref5
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref6
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref6
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref6
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref7
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref7
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref7
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref8
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref8
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref8
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref9
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref9
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref9
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref10
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref10
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref10


G. Rodríguez et al. / Engineering Applications of Artificial Intelligence 53 (2016) 86–104 103
Chan, P., Lyu, M., 2008. Dynamic web service composition: a new approach in
building reliable web service. In: Proceedings of the IEEE International Con-
ference on Advanced Information Networking and Applications, pp. 20–25.

Crasso, M., Zunino, A., Campo, M., 2008. Easy web service discovery: a query-by-
example approach. Sci. Comput. Program. 71 (2), 144–164.

Crasso, M., Mateos, C., Zunino, A., Campo, M., 2010. EasySOC: making web service
outsourcing easier. Inf. Sci. 259 (0), 452–473.

Daigneau, R., 2011. Service Design Patterns: fundamental design solutions for SOAP/
WSDL and restful Web services. Addison-Wesley, United States.

Diaz-Pace, J.A., Soria, A., Rodriguez, G., Campo, M., 2012. Assisting conformance
checks between architectural scenarios and implementation. Inf. Softw. Tech-
nol. 54, 448–466.

Dong, H., Hussain, F.K., Chang, E., 2013. Semantic web service matchmakers: state of
the art and challenges. Concurr. Comput.: Pract. Exp. 25 (7), 961–988.

Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J., 2004. Similarity search for
Web services. In: Proceedings of the Thirtieth international conference on Very
large data bases, vol. 30, pp. 372–383.

Doshi, P., Goodwin, R., Akkiraju, R., Verma, K., 2004. Dynamic workflow composi-
tion using markov decision processes. In: Proceedings of the 2004 International
Conference on Web services, pp. 576–582.

Dustdar, S., Schreiner, W., 2005. A survey on Web services composition. Int. J. Web
Grid Serv. 1 (1), 1–30.

El Falou, M., Bouzid, M., Mouaddib AI, Vidal, T., 2008. Automated web service
composition using extended representation of planning domain. In: Proceed-
ings of the 2008 IEEE International Conference on Web services, Beijing, pp.
762–763.

Elgedawy, I., 2013. Web services Conversation Adaptation Using Conditional Sub-
stitution Semantics of Application Domain Concepts. Hindawi Publishing Cor-
poration. ISRN Software Engineering, Cairo.

Elgedawy, I., 2009. Automatic generation for Web services conversations adapters.
In: Proceedings of the 24th IEEE International Symposium on Computer and
Information Sciences, pp. 616–621.

Erickson, J., Siau, K., 2008. Web service, service-oriented computing, and service-
oriented architecture: separating hype from reality. J. Database Manag. 19 (3),
42–54.

Erl, T., 2008. SOA Design Patterns. Pearson Education, United States.
Fanjiang, Y.Y., Syu, Y., 2014. Semantic-based automatic service composition with

functional and non-functional requirements in design time: a genetic algorithm
approach. Inf. Softw. Technol. 56 (3), 352–373.

Fanjiang, Y.Y., Syu, Y., Wu, C.H., Kuo, J.Y., Ma, S.P., 2010. Genetic algorithm for QoS-
aware dynamic Web services composition. In: Proceedings of the 2010 Inter-
national Conference on Machine Learning and Cybernetics (ICMLC), vol. 6, pp.
3246–3251.

Garofalakis, J.D., Panagis, Y., Sakkopoulos, E., Tsakalidis, A.K., 2006. Contemporary
web service discovery mechanisms. J. Web Eng. 5 (3), 265–290.

Hassanzadeh, A., Namdarian, L., Elahi, S.B., 2011. Developing a framework for
evaluating service oriented architecture governance (SOAG). Knowl.-Based Syst.
24 (5), 716–730.

Hassine, A.B., Matsubara, S., Ishida, T., 2006. A constraint-based approach to hor-
izontal web service composition. In The Semantic Web-ISWC. Springer Berlin
Heidelberg, pp. 130–143.

Hatzi, O., Vrakas, D., Nikolaidou, M., Bassiliades, N., Anagnostopoulos, D., Vlahavas,
L., 2012. An integrated approach to automated semantic web service compo-
sition through planning. IEEE Trans. Serv. Comput. 5 (3), 319–332.

Issarny, V., Georgantas, N., Hachem, S., Zarras, A., Vassiliadist, P., Autili, M., Hamida,
A.B., 2011. Service-oriented middleware for the Future Internet: state of the art
and research directions. J. Internet Serv. Appl. 2 (1), 23–45.

Jiang, H., Yang, X., Yin, K., Zhang, S., Cristoforo, J.A., 2011. Multi-path QoS-aware web
service composition using variable length chromosome genetic algorithm. Inf.
Technol. J. 10 (1), 113–119.

Küster, U., Stern, M., König-Ries, B., 2005. A classification of issues and approaches
in automatic service composition. In Proc. 1st Intl. Workshop on Engineering
Service Compositions (WESC’05), pp. 25–33.

Kawamura, T., Hasegawa, T., Ohsuga, A., Paolucci, M., Sycara, K., 2005. Web services
lookup: a matchmaker experiment. IT Prof. 7 (2), 36–41.

Kitchenham, B.A., Charters, S., 2007 Guidelines for performing Systematic Litera-
ture Reviews in Software Engineering. In Technical report, Ver. 2.3 EBSE Tech-
nical Report. EBSE.

Klusch, M., 2012. Overview of the S3 Contest: Performance Evaluation of Semantic Ser-
vice Matchmakers. Semantic Web Services. Springer, Berlin Heidelberg, pp. 17–34.

Klusch, M., Gerber, A., Schmidt, M., 2005. Semantic web service composition
planning with owls-xplan. In: Proceedings of the AAAI Fall Symposium on
Semantic Web and Agents, USA, AAAI Press.

Klush, M., 2008. Semantic Web service Coordination. CASCOM: Intelligent Service
Coordination in the Semantic Web. Springer, Germany, pp. 59–104.

Kokash, N., Birukou, A., D’Andrea, V., 2007. Web service discovery based on past
user experience. In Business Information Systems, Springer Berlin Heidelberg,
pp. 95–107.

Korfhage, R.R., 1997. Information Retrieval and Storage. John Wiley &Sons, New
York.

Kuck, J., Gnasa, M., 2007. Context-sensitive service discovery meets information
retrieval. In: Proceedings of The Fifth Annual IEEE International Conference on
Pervasive Computing and Communications Workshops, PerCom Workshops’
07, White Plains, New York, pp. 601–605.

Kun, C., Xu, J., Reiff-Marganiec, S., 2009. Markov-htn planning approach to enhance
flexibility of automatic web service composition. In: Proceedings of the 2009
IEEE International Conference on Web services, Los Angeles, pp. 9–16.
Kuzu, M., Cicekli, N.K., 2012. Dynamic planning approach to automated web service

composition. Appl. Intell. 36 (1), 1–28.
Lécué, F., Léger, A., Delteil, A., 2008 DL reasoning and AI planning for Web service

composition. In: Proceedings of the 2008 IEEE/WIC/ACM International Con-
ference on Web Intelligence and Intelligent Agent Technology 1, Sydney, pp.
445–453.

Lee, J., Lee S-j, Chen, H.-M., Wu, C.-L., 2012. Composing web services enacted by
autonomous agents through agent-centric contract net protocol. Inf. Softw.
Technol. 54 (9), 951–967.

Li, K., Verma, K., Mulye, R., Rabbani, R., Miller, J.A., Sheth, A.P., 2006. Designing
semantic web processes: The WSDL-s approach. In Semantic Web services,
Processes and Applications, Springer US, pp. 161–193.

Li, X., Tang, X., Song, Z., Yuan, X., Chen, D., 2010. AFlow: An AutomatedWeb services
composition system based on the AI planning and workflow. In: Proceedings of
the 2010 IEEE International Conference on Progress in Informatics and Com-
puting (PIC), Shanghai, vol. 2, pp. 1067–1071.

Liang, Q.A., Chung, J.Y., Miller, S., Ouyang, Y., 2006. Service pattern discovery of web
service mining in web service registry-repository. In: Proceedings of the 2006
IEEE International Conference on e-Business Engineering, Shanghai, pp. 286–
293.

Liu, H., Zhong, F., Ouyang, B., Wu, J., 2010. An approach for QoS-aware web service
composition based on improved genetic algorithm. In: Proceedings of the 2010
International Conference on Web Information Systems and Mining, Sanya, vol.
1, pp. 123–128.

Liu, J., Li, J., Liu, K., Wei, W., 2007. A hybrid genetic and particle swarm algorithm for
service composition. In: Proceedings of the Sixth International Conference on
Advanced Language Processing and Web Information Technology, Luoyang,
Henan, pp. 564–567.

Lo, W., Yin, J., Li, Y., Wu, Z., 2015. Efficient web service QoS prediction using local
neighborhood matrix factorization. Eng. Appl. Artif. Intell. 38, 14–23.

Loutas, N., Peristeras, V., Zeginis, D., Tarabanis, K., 2012. The semantic service search
engine (S3E). J. Intell. Inf. Syst. 38 (3), 645–668.

Ma, J., Zhang, Y., He, J., 2008. Efficiently finding Web services using a clustering
semantic. In: Proceedings of the 2008 International Workshop on Context
Enabled Source and Service Selection, Integration and Adaptation, Beijing,
China.

Manikrao, U. Prabhakar, 2005. Dynamic Selection of Web services with Re-
commendation System. In: Proceedings of the 2005 International Conference
on Next Generation Web services Practices, Korea, pp. 117–121.

Mannava, V., Ramesh, T., 2012. Composite design pattern for feature-oriented ser-
vice injection and composition of wed services for distributed computing
systems with service oriented architecture. Int. J. Web Semant. Technol. 3 (3),
73–84.

Mansouri, D., Hamdi-Cherif, A., 2011. Ontology-oriented case-based reason-
ing (CBR) approach for trainings adaptive delivery. In: Proceedings of the
15th WSEAS International Conference on Computers, Corfu Island, pp.
328–333.

Martin, D., Burstein, M., McDermott, D., Mcilraith, S., Paolucci, M., Sycara, K., Sri-
nivasan, N., 2007. Bringing semantics to Web services with OWL-S. World Wide
Web 10 (3), 243–277.

McDermott, D.V., 2002. Estimated-Regression Planning for Interactions with Web
services. AIPS, p. 2.

Mecar, I., Devlic, A., Trzec, K., 2005. Agent-oriented semantic discovery and
matchmaking of Web services. In: Proceedings of the 8th International Con-
ference on Telecommunications, ACM Press, Zagreb, pp. 45–50.

Mistry, S.K., Kamal, M.H., Mistry, D., 2012. Semantic discovery of web services
through social learning. Proc. Technol. 3, 167–177.

Mokhtar, S.B., Raverdy, P.G., Urbieta, A.A., Cardoso, R.S., 2010. Interoperable se-
mantic and syntactic service discovery for ambient computing environments.
Innov. Appl. Ambient. Intell.: Adv. Smart Syst., 213.

Narayanan, S., McIlraith, S., 2002. Simulation, verification and automated compo-
sition of Web services. In: Proceedings of the 11th ACM International Con-
ference on World Wide Web, New York, pp. 77–88.

Ngan, L.D., Kanagasabai, R., 2013. Semantic Web service discovery: state-of-the-art
and research challenges. Personal. Ubiquitous Comput. 17 (8), 1741–1752.

Oh, S.C., Lee, D., Kumara, S.R.T., 2008. Effective web service composition in diverse
and large-scale service networks. IEEE Trans. Serv. Comput. 1 (1), 15–32.

Paik, I., Chen, W., Huhns, M., 2012. A scalable architecture for automatic service
composition. IEEE Trans. Serv. Comput. PP 99 1–1.

Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K., 2002. Semantic matching of Web
services capabilities. In: Proceedings of the Semantic Web—ISWC 2002, LNCS
2342, Springer Berlin Heidelberg, pp. 333–347.

Papazoglou, M.P., Heuvel, W., 2006. Service-oriented design and development
methodology. Int. J. Web Eng. Technol. 2, 412–442.

Pathak, J., Koul, N., Caragea, D., Honavar, V., 2005. A Framework for Semantic Web
services Discovery. In: Proceedings of the 7th ACM International Workshop on
Web Information and Data Management, IEEE Xplore, New York, pp. 603–607.

Peer, J., 2005. Web Service Composition as AI Planning: A Survey. University of St.
Gallen, Switzerland.

Platenius, M.C., von Detten, M., Becker, S., Schafer, W., Engels, G., 2013. A survey of
fuzzy service matching approaches in the context of on-the-fly computing.
Proceedings of the 16th International ACM Sigsoft symposium on Component-
based software engineering, ACM, New York, pp. 143–152.

Ponnekanti, S.R., Fox, A., 2002. SWORD: A developer toolkit for Web service com-
position. In: Proceedings of the 11th World Wide Web Conference, Honolulu,

http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref11
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref11
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref11
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref12
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref12
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref12
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref13
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref13
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref14
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref14
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref14
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref14
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref15
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref15
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref15
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref16
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref16
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref16
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref17
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref17
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref17
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref18
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref18
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref18
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref18
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref19
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref20
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref20
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref20
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref20
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref21
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref21
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref21
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref22
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref22
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref22
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref22
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref23
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref23
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref23
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref23
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref24
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref24
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref24
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref24
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref25
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref25
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref25
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref25
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref26
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref26
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref26
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref27
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref27
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref27
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref28
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref28
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref28
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref29
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref29
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref29
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref30
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref30
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref30
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref31
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref31
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref31
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref31
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref32
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref32
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref32
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref33
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref33
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref33
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref34
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref34
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref34
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref34
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref34
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref35
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref35
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref35
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref35
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref36
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref36
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref36
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref37
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref37
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref37
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref38
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref38
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref38
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref39
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref39
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref39
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref40
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref40
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref41
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref41
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref41
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref42
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref42


G. Rodríguez et al. / Engineering Applications of Artificial Intelligence 53 (2016) 86–104104
HI, USA.
Rambold, M., Kasinger, H., Lautenbacher, F., Bauer, B., 2009. Towards autonomic

service discovery a survey and comparison. In IEEE International Conference on
Services Computing, Bangalore, pp. 192–201.

Ramirez, A.J., Cheng, B.H.C., 2010. Design patterns for developing dynamically
adaptive system. In Proceedings of the 2010 ICSE Workshop on Software En-
gineering for Adaptive and Self-Managing Systems, ACM, New York, USA, pp.
49–58.

Rao, J., Su, X., 2005. A survey of automated web service composition methods.
Semant. Web Serv. Web Process. Compos., 43–54, Springer Berlin Heidelberg.

Rodríguez, G.H., Soria, A., Campo, M., 2014. From software architecture descriptions
to object-oriented designs. In XLIII Jornadas Argentinas de Informática e In-
vestigación Operativa (43JAIIO)-Doctoral Consortium (IJCAI), Buenos Aires.

Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Fensel, D., 2005.
Web service modeling ontology. Appl. Ontol. 1 (1), 77–106.

Rong, W, Liu, K., 2010. A survey of context aware web service discovery: from user’s
perspective. In: Proceedings of the Fifth IEEE International Symposium on
Service Oriented System Engineering (SOSE), Nanjing, pp. 15–22.

Sangers, J., Frasincar, F., Hogenboom, F., Chepegin, V., 2013. Semantic Web service
discovery using natural language processing techniques. Expert. Syst. Appl. 40
(11), 4660–4671.

Santofimia, M.J., Moya, F., Villanueva, F.J., Villa, D., Lopez, J.C., 2008. An agent-based
approach towards automatic service composition in ambient intelligence. Artif.
Intell. Rev. 29 (3–4), 265–276.

Shao, L., Zhang, J., Wei, Y., Zhao, J., Xie, B., Mei, H., 2007. Personalized QoS Prediction
for Web services via Collaborative Filtering. In: Proceedings of the 2007 IEEE
International Conference on Web services, USA, pp. 439–446.

Shvaiko, P., Euzenat, J., 2005. A survey of schema-based matching approaches. J.
Data Semant. IV, 146–171, Springer Berlin Heidelberg.

Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D., 2004. HTN planning for web service
composition using SHOP2. Web Semant.: Sci., Serv. Agents World Wide Web 1
(4), 377–396.

Sivashanmugam, K., Verma, K., Sheth, A., Miller, J., 2003. Adding Semantics to Web
service Standards. In: Proceedings of the 1st International Conference on Web
services, Las Vegas, NV, pp. 395–401.

Sreenath, R.M., Singh, M.P., 2004. Agent-based service selection. Web Semant.: Sci.,
Serv. Agents World Wide Web 1 (3), 261–279.

Stavropoulos, T.G., Vrakas, D., Vlahavas, I., 2013. A survey of service composition in
ambient intelligence environments. Artif. Intell. Rev. 40 (3), 247–270.

Stroulia, E., Wang, Y., 2005. Structural and semantic matching for assessing web-
service similarity. Int. J. Coop. Inf. Syst. 14 (4), 407–437.

Strunk, A., 2010. Qos-aware service composition: A survey. In: Proceedings of the
IEEE 8th European Conference on Web Services, Ayia Napa, pp. 67–74.

Suraci, V., Mignanti, S., Aiuto, A., 2007. Context-aware semantic service discovery.
In: Proceedings of the 16th IEEE IST-Mobile and Wireless Communications
Summit, Budapest, pp 1–5.

Syu, Y., Ma, S.P., Kuo, J.Y., FanJiang, Y.Y., 2012. A survey on automated service
composition methods and related techniques. In: Proceedings of the IEEE Ninth
International Conference on Services Computing, Honolulu, pp. 290–297.

Tan, W., Fan, Y., Zhou, M., 2009. A petri net-based method for compatibility analysis
and composition of Web services in business process execution language. IEEE
Trans. Autom. Sci. Eng. 6 (1), 94–106.

Tang, X., Jiang, C., Zhou, M., 2011. Automatic Web service composition based on
Horn clauses and Petri nets. Expert. Syst. Appl. 38 (10), 13024–13031.

Tang, M., Ai, L., 2010. A hybrid genetic algorithm for the optimal constrained web
service selection problem in web service composition. In: Proceedings of the
2010 IEEE Congress on Evolutionary Computation, Barcelona, pp. 1–8.

Tekinerdogan, B., Aksit, M., 2002. Synthesis-based software architecture design. In:
Aksit, M. (ed) Software Architectures and Component Technology. Springer US
volume 648 of The Springer International Series in Engineering and Computer
Science, pp. 143–173.

van der Aaslt, W.M.P., 2005. YAWL: yet another workflow language. Inf. Syst. 30 (4),
245–275.

Wagner, F., Ishikawa, F., Honiden, S., 2011. Qos-aware automatic service composi-
tion by applying functional clustering. In: Proceedings of the 2011 IEEE Inter-
national Conference on Web services (ICWS), Washington, pp. 89–96.

Wang, H., Zhou, X., Zhou, X., Li, W., 2010. Adaptive Service Composition Based on
Reinforcement Learning. Service-Oriented Computing. Springer, Berlin Heidel-
berg, pp. 92–107.

Wang, Y., Stroulia, E., 2003. Flexible interface matching for web-service discovery.
In: Proceedings of the Fourth International Conference on Web Information
Systems Engineering, 2003, pp. 147–156.

Xiao, H., Zou, Y., Ng, J., Nigul, L., 2010. An approach for context-aware service dis-
covery and recommendation. In: Proceedings of the 2010 IEEE International
Conference on Web services (ICWS), Miami, pp. 163–170.

Zhang, W., Chang, C.K., Feng, T., Jiang, H.Y., 2010. QoS-based dynamic web service
composition with ant colony optimization. In: Proceedings of the IEEE 34th
Annual Computer Software and Applications Conference, Seoul, pp. 493–502.

Zhuge, H., Liu, J., 2004. Flexible retrieval of Web services. J. Syst. Softw. 70 (1),
107–116.

Zou, G., Chen, Y., Xu, Y., Huang, R., Xiang, Y., 2012. Towards automated choreo-
graphing of Web services using planning. In: Proceedings of the AAAI Con-
ference on Artificial Intelligence.

Zou G., Chen, Y., Yang, Y., Huang, R., Xu, Y., 2010. AI planning and combinatorial
optimization for web service composition in cloud computing. In: Proceeding
of the 2010 international conference on cloud computing and virtualization,
Singapore, pp. 1–8.

http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref43
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref43
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref43
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref44
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref44
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref44
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref45
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref45
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref45
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref45
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref46
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref46
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref46
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref46
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref47
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref47
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref47
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref48
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref48
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref48
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref48
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref49
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref49
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref49
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref50
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref50
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref50
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref51
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref51
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref51
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref52
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref52
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref52
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref52
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref53
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref53
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref53
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref1
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref1
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref1
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref54
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref54
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref54
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref54
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref55
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref55
http://refhub.elsevier.com/S0952-1976(16)30067-7/sbref55

	Artificial intelligence in service-oriented software design
	Introduction
	Research methodology
	Classification schema
	Specific criteria for discovering services
	Specific criteria for composing services
	Specific criteria for service development assistance
	Comparison

	Approaches to discover services
	Web service discovery
	IR-based approaches
	Semantic-aware approaches
	Context-aware approaches
	Discussion

	Approaches to compose services
	Web service composition
	AI planning approaches
	Evolutionary approaches
	Other AI approaches
	Discussion

	Approaches to service development assistance
	Pattern-driven approaches
	Case-based reasoning approaches
	Discussion

	Future trends and open issues
	Service discovery
	Service composition
	Service development

	Conclusions
	Acknowledgments
	References




