
Pattern Recognition 62 (2017) 73–86
Contents lists available at ScienceDirect
Pattern Recognition
http://d
0031-32

n Corr
E-m

alvaro.s
alfredo.
guillerm
marcelo

1 ht
2 ht
3 ht
4 ht
5 ht
6 ht
journal homepage: www.elsevier.com/locate/pr
Approximate string matching: A lightweight approach to recognize
gestures with Kinect

Rodrigo Ibañez, Álvaro Soria n, Alfredo Teyseyre, Guillermo Rodríguez, Marcelo Campo
Department of Software Engineer, ISISTAN Research Institute (CONICET-UNCPBA), Campus Universitario, Paraje Arroyo Seco, Tandil, Buenos Aires, Argentina
a r t i c l e i n f o

Article history:
Received 4 June 2015
Received in revised form
14 July 2016
Accepted 20 August 2016
Available online 23 August 2016

Keywords:
Natural user interfaces
Gesture recognition
Machine learning
Kinect
Approximate string matching
x.doi.org/10.1016/j.patcog.2016.08.022
03/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: rodrigo.ibanez@isistan.unicen.ed
oria@isistan.unicen.edu.ar (Á. Soria),
teyseyre@isistan.unicen.edu.ar (A. Teyseyre),
o.rodriguez@isistan.unicen.edu.ar (G. Rodrígu
.campo@isistan.unicen.edu.ar (M. Campo).
tp://www.microsoft.com/en-us/kinectforwind
tp://www.asus.com/Multimedia/Xtion_PRO/
tp://www.softkinetic.com/
tp://structure.io/
tps://www.leapmotion.com/
tps://www.spaceglasses.com/
a b s t r a c t

Innovative technologies, such as 3D depth cameras, promote the development of natural interaction
applications in many domains among large audiences. In this context, supervised machine learning
techniques have been proved to be a flexible and robust approach to perform high level gesture re-
cognition from 3D joints provided by these depth cameras. This paper proposes a lightweight approach
to recognize gestures with Kinect by utilizing approximate string matching. The proposed approach
encodes the movements of the joints as sequences of characters in order to simplify the gesture re-
cognition as a widely studied string matching problem. We evaluated our approach by applying other
widespread used techniques in the research field. The experimental evaluations show that the proposed
approach can obtain relatively high performance in comparison with the state-of-the-art machine
learning techniques. These findings provide further evidence that our approach could be a viable strategy
for recognizing gestures, even in devices with medium and low processing capability (e.g., smartphones,
tablets, etc.).

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, depth sensors have become increasingly pop-
ular, thus reducing not only their cost but also their size. Among
the most popular devices that allow for creating a virtual re-
presentation of the objects captured in the scene are Kinect,1 ASUS
Xtion,2 SoftKinetic,3 Structure Sensor,4 Leap5 and Meta.6 These
devices can be purchased at an average cost of 150 USD, in com-
parison with similar previous devices, which cost between 35,000
and 500,000 USD [1].

Particularly, Kinect identifies people and obtains the position of
20 human body parts in the 3D space in real time. Developers of
Natural User Interface (NUI) applications can exploit this feature by
generating a 3D representation of the human skeleton that mimics
the movements of a person and even recognizes his/her gestures.
u.ar (R. Ibañez),

ez),

ows/
In this sense, several full-body gesture recognition approaches
have emerged to facilitate the human–computer interaction. In-
itially, rule-based approaches relied on a set of parameters and
thresholds on body part locations to recognize static postures and
simple movements of the body parts [2–4]. For example, rule-
based approaches allowed for determining whether the right hand
was above the head or whether the left hand moved to the right in
a certain timespan. The weakness of these approaches is that each
gesture must be defined manually, thus requiring a considerable
effort to both define the rules for gestures that involve complex
movements of the body parts, and then, test the correctness of the
defined rules. Furthermore, manual definition of gestures is a
daunting and error-prone process that requires users with vast
domain knowledge and experience.

To address these issues, other approaches have explored su-
pervised machine learning techniques for gesture recognition
[5,6]. These techniques require a set of labeled training gestures to
learn and subsequently identify a new given gesture as one of the
learned gestures. For example, Bhattacharya et al. used Support
Vector Machines (SVM) and Decision Trees (DT) for gesture re-
cognition in a military application [7]. Another successful ap-
proach for gesture recognition is based on the Dynamic Time
Warping algorithm (DTW) [8]. However, these studies have scar-
cely presented any comparative performance analysis of utilized
algorithms.

In this context, the novelty of this paper stems from the com-
bination of well-known approximate string matching algorithms

www.sciencedirect.com/science/journal/00313203
www.elsevier.com/locate/pr
http://dx.doi.org/10.1016/j.patcog.2016.08.022
http://dx.doi.org/10.1016/j.patcog.2016.08.022
http://dx.doi.org/10.1016/j.patcog.2016.08.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2016.08.022&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2016.08.022&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2016.08.022&domain=pdf
mailto:rodrigo.ibanez@isistan.unicen.edu.ar
mailto:alvaro.soria@isistan.unicen.edu.ar
mailto:alfredo.teyseyre@isistan.unicen.edu.ar
mailto:guillermo.rodriguez@isistan.unicen.edu.ar
mailto:marcelo.campo@isistan.unicen.edu.ar
http://www.microsoft.com/en-us/kinectforwindows/
http://www.asus.com/Multimedia/Xtion_PRO/
http://www.softkinetic.com/
http://structure.io/
https://www.leapmotion.com/
https://www.spaceglasses.com/
http://dx.doi.org/10.1016/j.patcog.2016.08.022

Table 1
Characterization of gesture recognition research works.

Approach Machine learning
technique

Assessment Recognition method

Hong et al. (2000) K-Means Homemade dataset and skin color tracker Statistical
Stiefmeier et al. (2007) HMM, DTW Homemade dataset, Pentium 4 (3 GHz, 1 GByte RAM) and Matlab Statistical
Fothergill et al. (2012) DT MSRC-12 Kinect gesture dataset Learning
Waithayanon et al. (2011) DTW Homemade dataset, MS Kinect, Kinect for Windows SDK Beta Learning
Bhattacharya et al. (2012) SVM, DT Military air force dataset and LIBSVM library Learning
Ibañez et al. (2014) DTW, HMM Homemade dataset and Kinect SDK Learning
Jiang et al. (2015) WDTW, SPW ChaLearn Gesture dataset, Matlab 7.12.0, Dell PC with Duo CPU E8400 Statistical (PCA), one-shot learning
Hachaj et al. (2015) HMM, Homemade dataset, C# with HMM libraries from Accord Framework Statistical (PCA)
Slama et al. (2015) KM, TSVM, TWG,

LTBSVM
MSR-action 3D, UT-Kinect and UCF-Kinect datasets. PC Intel Core i5-3350P
(3.1 GHz) CPU, 4 GB RAM a PrimeSense camera

Learning, Statistical (Grasmann
manifold)

Gu at al. (2012) HMM Homemade dataset, MS Kinect, OpenNI and NITE Statistical
Celebi et al. (2012) DTW Homemade dataset and Kinect SDK Learning

R. Ibañez et al. / Pattern Recognition 62 (2017) 73–8674
[9] with gesture recognition with Kinect, as a lightweight ap-
proach that allow devices with different processing capabilities to
recognize gestures. The proposed approach encodes the move-
ments of the joints as sequences of characters in order to simplify
the gesture recognition as a string matching problem. We com-
pared the accuracy and performance of our gesture recognition
approach with other well-known techniques used in NUI appli-
cations, such as Dynamic Time Warping (DTW) [10,11], Procrustes
Analysis [12], Markov Chains [13], and Hidden Markov Models
[14,15]. Moreover, we analyzed our approach by exchanging ap-
proximate string matching for a string matching algorithm [16]. To
conduct the experiments, we used the public Microsoft Research
Cambridge (MSRC-12) Kinect gesture dataset which involves 30
people performing 12 different gestures. These gestures come
from a first person shooter game and a music player [17] and are
detailed in Section 4. The experimental evaluations show that the
proposed approach achieves higher performance rates (in terms of
time of processing and CPU) than the state-of-the-art algorithms,
even than the one based on string matching. These promising
results, in terms of accuracy and performance, indicate that de-
vices with low or medium processing capability would recognize
gestures.

The remainder of this paper is organized as follows: Section 2
reports an overview of related works. Section 3 presents an in-
depth description of the proposed approach. Section 4 discusses
the experiments and results along with the lessons learned. Fi-
nally, Section 5 presents the conclusions and identifies future lines
of work.
2. Related work

The literature includes several approaches for human gesture
recognition by capturing body movement on by video – for a re-
view of the state of the art in human movement recognition see
[18–22,7,23,8,24]. Despite these meaningful research efforts, ac-
curate recognition of human body movements was found to be
significantly difficult and challenging [25].

The emergence of new cost-effective depth cameras, such as
Kinect, has promoted the development of natural interaction ap-
plications in many domains, and particularly, opened up new op-
portunities to improve human activity and gesture recognition
[26]. By using Kinect, data for computing recognition can be ob-
tained directly from the Red–Green–Blue (RGB) camera coupled
with a depth sensor or from the Kinect SDK's skeleton tracking
API. On the one hand, several research works have utilized raw
data from the RGB camera and depth sensor to track human sil-
houettes by considering temporal continuity constraints of human
motion information and computing centroids for each activity,
based on contour generation [27–30]. On the other hand, other
attempts successfully adapted machine learning techniques to
gesture recognition using Kinect's skeleton data [7,17,8]. The Mi-
crosoft Kinect SDK's skeleton-tracking API allows efficient and
real-time body tracking, which is instrumental in the development
of recognition tools [31]. Although Kinect is able to estimate the
position of various body parts, it still demands considerable effort
from developers to add hoc recognize gestures.

To cope with this issue, our research addresses gesture re-
cognition using the skeleton-tracking API by exploring supervised
machine learning, which provides a flexible and robust alternative
by considering gesture recognition as a classification problem [19].
In this context, a classification problem consists in labeling a
gesture consistently. For example, some of the machine learning
techniques that have been also widely applied in gesture re-
cognition are Support Vector Machine (SVM), Decision Tree (DT),
Dynamic Time Warping (DTW) and Hidden Markov Models
(HMM), among others. Table 1 shows the criteria to characterize
reviewed research works that explore skeleton-tracking API for
gesture recognition. We have classified the reviewed works into
the following categories: machine learning technique, assessment,
development environment and recognition method. Machine
learning technique describes algorithms used in the approaches,
such HMM, DTW, and SVM, among others. Assessment lists da-
tasets used in the experimentation, along with programming
languages, libraries, operating systems, external devices or char-
acteristics of the computers used in the experiments. Recognition
method presents methods used to recognize gestures, such as
statistical, graphical or learning.

In line with our research, Gu et al. described the implementa-
tion of a non-intrusive, real-time gesture recognition system using
a depth sensor. The authors explained how to obtain body-joint
features from the skeleton model generated by the Kinect sensor,
and supported the modeling of gestures by utilizing HMMs [32].
Another approach successfully applied an algorithm based on
Dynamic Time Warping (DTW) [8]. Although this method was
successfully instantiated for certain applications with high classi-
fication accuracy, developers had to implement complex algo-
rithms and also perform the training process ad hoc. In particular,
Fothergill et al. addressed the problem of collecting gesture da-
tasets to improve the accuracy and performance of the system
based on machine learning algorithms [17]. Celebi et al. proposed a
weighted DTW method that weights joints by optimizing a dis-
criminant ratio. They also demonstrated that the recognition of the
weighted DTW outperfomed the conventional DTW [33]. Along
this line, Jiang et al. recommended a novel multi-layered gesture
recognition method with Kinect; this approach implements a re-
construction-based gesture recognition method based on principal
component analysis (PCA), and utilizes Weighted Dynamic Time

Step 1

Step 2

Step 3

Fig. 1. Approximate string-matching approach based on a supervised machine-
learning process.

R. Ibañez et al. / Pattern Recognition 62 (2017) 73–86 75
Warping (WDTW) for the location of classified components [34].
Hachaj and Ogiela proposed human-actions recognition schema
using angle-based and state-of-the-art coordinates-based features
and multivariate continuous HMM classifier with Gaussian dis-
tribution based on PCA. The problem addressed in this research
has been the classification of gym warm-up and fitness exercises
[35]. In a previous work, EasyGR (Easy Gesture Recognition), a tool
based on DTW and HMM, which helps to reduce the effort in-
volved in gesture recognition development, was presented [36].
EasyGR user interface allows non-specialists to record, edit, and
store gestures, enabling them to easily create a new training set.
The main difference between the studies described above and
EasyGR is that we have addressed the experimental evaluation of
the approach, not only in terms of accuracy of the recognition
techniques, but also in terms of the development effort in practice.

SVM has also been successfully applied in several works.
Bhattacharya et al. applied SVM and DT to recognize aircraft ges-
tures used in the military Air Force [7]. Slama et al. introduced a
representation of a skeleton-joint motion in a compact and effi-
cient way that leads to an accurate action recognition. The ap-
proach was evaluated on public datasets by using simple Karcher
Mean (KM), one Tangent SVM (TSVM), Truncated Wrapped Gaus-
sian (TWG) and Local Tangent Bundle SVM (LTBSVM). The ap-
proach combines linear dynamic modeling with statistical analysis
on a manifold (Grassmann manifold), avoiding the boundary and
the monotonicity constraints presented by the classical DTW al-
gorithm [37]. Unlike contemporary research on this topic, our
approach aims to provide developers with a development frame-
work to recognize gestures regardless of the domain.

String matching algorithms have already been used for gesture
recognition. For example, Hong et al. recognized 2D gestures by
modeling each gesture as a Finite State Machine and applying a
variant of Knuth–Morris–Pratt algorithm [38]; however, this al-
gorithm was reported much lower than DTW and HMM. Stief-
meier et al. reported on the use of a set of sensors mounted on the
lower limbs, the upper limbs, and the torso of the body to calculate
the relative positions of the hands in the 3D space [39]. For each
two consecutive positions of the hand, they compute a vector
whose direction belongs to one of the eight quadrants of the
Cartesian space. As each quadrant is labeled with a letter from a to
h, after a period of time the 3D positions are encoded as a se-
quence of characters, which enables applying string matching.
Although the authors apply approximate string matching to re-
cognize gestures, their work differs from ours in that they use a set
of intrusive sensors instead of Kinect. In particular, action re-
cognition methods designed for motion capture with sensors
might not be suitable for depth cameras because of the difference
in the motion data quality resulting from noise and occlusions
[40]. In this context, we claim that the application of string
matching algorithms to gesture recognition from Kinect's body-
joints requires further research.
3. Our approximate string matching approach to recognize
gestures

The Kinect SDK identifies the position of 20 body joints in a 3D
space ()x y z, , , thus generating a virtual representation of the hu-
man body called “stick model”. These positions are updated 30
times per second, so when we observe the stick model for a period
of time, we obtain the movements of the joints that represent
gestures.

In this work we propose to encode the movements of the joints
as sequences of characters in order to simplify the gesture re-
cognition as a string-matching problem [41]. String matching
problems are widely studied in computer science, and basically
consist in searching a sequence of characters called “string” in a
text, i.e., another sequence of character. In this sense, when en-
coding gestures as sequences of characters, recognizing a gesture
means finding a sequence in the text.

In order to encode gestures as sequences of characters and use
string matching as a gesture recognition approach, we follow the
classical machine learning process, which consists of two phases:
training phase and recognition phase. Fig. 1 shows a conceptual
view of our string matching approach for recognizing gestures
with Kinect. The figure also depicts the training and the recogni-
tion phases along with their steps.

The training phase involves building a gesture training set, and
generating a template string for each type of gesture. The training
set is a list of sample gestures for each type of gesture, i.e., it
contains not only instances of different gestures but also different
instances of the same gesture. To build this set, a trainer stands in
front of Kinect and performs the movements corresponding to the
first training gesture. As the trainer moves, Kinect tracks the 3D
positions of his/her body joints and generates a stick model 30
times per second. Tracking the trainer's body joints for a period of
time results in a collection of stick models, which represents the
intended gesture. Finally, the collection of stick models is stored
persistently in the gesture training set. This process of performing
a gesture and storing the corresponding collection of stick models
is repeated several times with each of the different gestures to be
trained.

Once the gesture training set is populated, the approach is
ready to perform the second part of the training phase: generation
of the template strings. A template string is a particular sequence
of characters that identifies the correct way to perform each ges-
ture. To obtain these template strings, the approach is fed with the
stored collections of stick models, and a number of steps take

Fig. 2. Sequence of seven stick models performing the Circle gesture.

R. Ibañez et al. / Pattern Recognition 62 (2017) 73–8676
place: overlapping the trajectories, encoding the trajectories as
sequences of characters, and computing the matching distance.

The first step refines the gesture training set in order to im-
prove the recognition accuracy, which may be reduced when
people have different body builds and/or perform gestures in
different locations within the Kinect detection field. Hence, to
execute the overlapping step and make trajectories invariant to
these issues, the approach considers the collection of stick
models as a collection of trajectories, each of which corresponds
to the movement of one body joint. Then, the step consists in
overlapping the trajectories that correspond to the same body
joint in different performances of the same type of gesture. This
process involves aligning trajectories, normalizing distances, and
fixing or removing any inaccurate 3D joint positions generated by
Kinect.

After the trajectories have been overlapped, the second step
consists in encoding all of them as sequences of characters to
provide a suitable input for applying string matching. To encode
the trajectories, the approach firstly applies the k-means algorithm
[42], which groups all the 3D points of the trajectories that belong
to the same 3D region in k clusters and generates a list of k
numbered centroids. Then, we encode each point of the trajectory
with the number of the centroid that is nearest it, thus turning the
trajectories into sequences of characters.

Finally, the third step consists in computing the matching dis-
tances among all the sequences of characters that represent the
same gesture. To measure the matching distance between each
pair of sequences, approximate string matching is utilized. Ap-
proximate string matching computes these differences or dis-
tances among the sequences in terms of the minimum number of
operations needed to match the sequences [9,43]. These opera-
tions, also known as edit operations, involve the insertion of a
character in the first sequence, the deletion of a character from the
first sequence, and the replacement of a character of the first se-
quence with the corresponding character of the second sequence.
Once we quantify the differences among sequences, we are able to
assess whether two sequences are more similar to each other than
a third sequence. Thus, after applying approximate string match-
ing between each pair of sequences, we select as template string
the sequence that is the most similar to the remaining sequences.
Furthermore, the longest distance as acceptance threshold for the
gesture is selected. This threshold allows for determining if a new
sequence of characters corresponding to a gesture and a template
string are similar enough for the gesture to be recognized.

As a result of the training phase, we have the template string
and the acceptance threshold for each of the trained gestures, thus
enabling the approach to start with the second phase. The re-
cognition phase involves feeding our approach with an unknown
gesture so that the approach be able to identify the type of the
gesture. This phase starts when a user stands in front of Kinect and
performs a gesture. Then, as in the training phase, the steps of
overlapping the trajectories and encoding them as sequences of
characters are performed. In the step of encoding the trajectories
as sequences of characters, the recognition phase differs from the
training phase in that, instead of applying the k-means algorithm,
we assign one character to each of the 3D positions by using the
generated list of centroids in the training phase. Furthermore, both
phases also presents a difference in the step of computing the
matching distance. This difference is that, rather than using the
sequences of characters to train the string matching technique, the
recognition phase involves comparing the sequences with the
template strings, i.e., the technique measures the distance be-
tween the new sequences and each of the template strings. Then,
if the distance is lower than one of the acceptance thresholds, the
gesture is recognized and the evaluation result is presented to the
user. On the other hand, if the distance is higher than all the ac-
ceptance thresholds, we select the nearest threshold as the in-
tended gesture, thus leaving the user the decision of accepting the
gesture as valid.

In order to understand how to recognize gestures by applying
string matching, we present the following example. It consists in
developing a hand gesture recognizer whose main goal is to re-
cognize the figures that the user draws in the air. For simplicity, we
will focus on recognizing a Circle performed with the right hand.
Fig. 2 shows a sequence of seven stick models of a person per-
forming the Circle gesture.

The black and white dots represent the body joints contained in
each stick model. The white dot indicates the position of the right
hand in each stick model, and the orange line indicates the pro-
gression of this position in the performance of the gesture. At the
end of the sequence, we can observe the whole progression of the
right hand position, called trajectory. We denote the trajectory of
the right hand as = ()…()T x y z x y z, , , ,r 1 1 1 7 7 7hand

, where xi represents
the horizontal coordinate, yi represents the vertical coordinate,
and zi represents the depth coordinate, all of them with regard to
the Kinect position, which represents the coordinates of the origin
()0, 0, 0 . Note that each of the body joints of the stick model
generates a trajectory in the same way as shown in Fig. 2.

To recognize the Circle gesture, our approach requires the
trainer to generate several samples of the gesture. Each sample is a
collection of stick models, which is represented by the trajectories
of the joints; the approach considers each collection of stick
models as a collection of trajectories, one for each joint, and
constitutes the training set for the Circle gesture. To facilitate the
understanding of the approach, let us assume that the trajectory
corresponding to the right hand is enough for the technique to
recognize the Circle gesture. It is worth noting that it may be ne-
cessary to compare the trajectories corresponding to several joints
to recognize some gestures.

Once the training set has been built, the approach is ready to
learn the particularities of the movements that represents the
Circle gesture. This is the starting point for the training phase.
Here, the idea is to encode all trajectories in the training set as
sequences of characters, and select one of these sequences as a
template string. The template string represents all the sequences

R. Ibañez et al. / Pattern Recognition 62 (2017) 73–86 77
that describe the intended gestures, and is used as a model to
recognize new gesture during the recognition phase.

The following sub-sections present an in-depth description of
the steps of our approach to obtain the template string by differ-
entiating the training and recognition phase. Section 3.1 describes
the overlapping of trajectories during the training phase, where
the trajectories are made suitable for comparison; Section 3.2
presents the encoding of the trajectories as sequences of char-
acters along the training phase; Section 3.3 introduces the com-
putation of the matching distance also in the training phase; fi-
nally, Section 3.4 describes the same steps during the recognition
phase.

3.1. Step 1: Overlapping the trajectories

The process of overlapping the trajectories involves three tasks:
(i) making the trajectories suitable for comparison, (ii) subtracting
the Centroid from each point of the trajectory, and (iii) dividing all
the points of each trajectory by a scale factor. As for the first task,
the 3D position of the gesture trajectories can drastically vary
since the trainers and the users may be in different locations
within the Kinect detection field and may also have different body
builds. Hence, we need to transform the trajectories to make them
invariant to different positions of the trainer and body builds.
Fig. 3. Process of centering and
The transformation starts by moving each trajectory to one
common point, naturally the origin ()0, 0, 0 . Fig. 3a shows three
trajectories of the right hand in different performances of the
Circle and illustrates how they are moved to the origin. Then, the
Centroid of each trajectory using Eq. (1) is calculated. The Centroid
is a 3D point that represents the geometric center of the trajectory,
and it is calculated by adding all the points of the trajectory and
dividing the result by the number of points n:

= (¯ ¯ ¯) =
∑ ()

()
=Centroid x y z

x y z

n
, ,

, ,
1

i
n

i i i1

()′ = (− ¯ − ¯ − ¯) ()x y z x x y y z z, , , , 2i i i i i i

The second task consists in subtracting the Centroid from each
point of the trajectory using Eq. (2), so that the new Centroid of the
trajectory becomes the origin. As a result, the trajectories are
centered and invariant to the trainer's position (Fig. 3b).

At this point, the centered trajectories need to be normalized to
make them invariant to the trainer's body build. Furthermore, not
only the size of the trajectories produced by people with different
body builds but also the trajectories produced by the same person
in different performances of the Circlemight be different. Thus, the
transformation process continues by calculating a scale s factor of
normalizing trajectories.

Fig. 4. Trajectories encoded as sequences of characters by using the identification
number of the nearest centroid.

R. Ibañez et al. / Pattern Recognition 62 (2017) 73–8678
each trajectory, which is a statistical measure of the size of the
trajectory, by using the following equation:

=
∑ ()′

()
=s

x y z

n

, ,
3

i
n

i i i1
2

The third task consists in dividing all the points of each tra-
jectory by the scale factor using Eq. (4), so that the new scale factor
of each trajectory becomes 1. Consequently, all the joint positions
have magnitudes ranging from 0 to 1, and all the trajectories
perfectly fit in a cube of size 2, from (− − −)1, 1, 1 to ()1, 1, 1 ,
centered in the origin (Fig. 3c).

()″ =
()

⎜ ⎟⎛
⎝

⎞
⎠x y z

x
s

y

s
z
s

, , , ,
4i i i

i i i

At this point, the trajectories have been centered and normal-
ized, so that the trajectories corresponding to the same gestures
can be visually aligned, i.e., the points of the trajectories are
proximal. However, to make a suitable string matching compar-
ison, the continuous values of the trajectories need to be encoded
as a sequence of characters. This means that applying string
matching over the continuous value of the trajectories could cause
a mismatch because the 3D points of each trajectory are not the
same as those in Fig. 3, i.e., the points are proximal but are not
exactly the same. Therefore, all the points of the trajectories are
transformed into discrete values before applying string matching.

3.2. Step 2: Encoding the trajectories as sequences of characters

To encode the 3D point of the trajectories from continuous into
discrete values, our approach groups the 3D points that are
proximal and assigns one character to them. Encoding each point
as a character forces the trajectories to contain finite types of
characters, thus enabling trajectories to be compared using string
matching. Firstly, our approach applies the k-means algorithm to
group the points of the trajectories that belong to the same region
in k clusters. To group these points, k-means randomly assigns all
the points of the trajectories to one of the k clusters and calculates
the Centroid of each cluster by using Eq. (1). Then, k-means eval-
uates all the points and reassigns each point to the cluster that
contains the nearest Centroid according to the proximity criterion
(Eq. (5)). This criterion is the Euclidean distance between the point
(Pi in the equation) and the cluster Centroid (Cj in the equation).
After moving all the points to the corresponding cluster, the al-
gorithm recalculates the Centroid of each cluster. This process is
repeated until the convergence of the algorithm is reached, i.e.,
until all the points are in the correct group and no point move-
ment is required. Eq. (5) calculates the Euclidean distance between
the point Pi and the Centroid Cj:

() = (−) + (−) + (−) ()D P C x x y y z z, 5i j j i j i j i
2 2 2

Secondly, our approach assigns one character to each point of
the trajectories, thus turning the trajectories into sequences of
characters. As each cluster has a numbered Centroid, each point of
the trajectories is conveniently encoded as the identification
number of the nearest Centroid. That is to say, each point is en-
coded as the number of the cluster to which the point belongs. In
this way, the trajectory is turned into a numeric sequence
equivalent to the original. Fig. 4 shows the Centroids of the clusters
obtained with its identification number after applying k-means
with five clusters over the three trajectories of the Circle. Fur-
thermore, Fig. 4 shows the result of encoding the trajectories as
sequences of characters.

As trajectories may contain different numbers of points, when
the number of points of one trajectory is higher than the number
of clusters, two or more points of the trajectory are encoded with
the same character. In this context, applying string matching
among sequences of different lengths could cause a mismatch.
Hence, we remove the contiguous repeated characters from each
sequence before computing the matching distance between them.
Thus, after removing the contiguous repeated characters from the
sequences in Fig. 4, two of the three different trajectories generate
exactly the same sequence [1, 2, 3, 4, 5].

3.3. Step 3: Computing the matching distance

Once all the trajectories of the training set have been encoded as
sequences of characters, the approach selects a template string and
defines the corresponding acceptance threshold. The template
string is the sequence of characters in the training set that most
closely resembles the remaining sequences; moreover, this tem-
plate string is used as a model to recognize subsequent sequences,
i.e., the subsequent sequences will be compared with the template
string. The acceptance threshold represents the matching distance
between the sequences in the training set that differ the most. That
is, a new sequence of characters is recognized as an intended ges-
ture if the distance between this sequence and the template string
is shorter than the acceptance threshold. Therefore, the acceptance
threshold is a value between 0 and the longest distance between all
the sequences of characters in the training set that represents the
same gesture. It is important to note that there is one template
string and one acceptance threshold for each type of gesture.

To obtain the template string, our approach calculates the
matching distance between each pair of sequences. The matching
distance between two sequences of characters is computed with
approximate string matching [43]. The goal of this technique is to
transform one sequence into the other sequence by applying three
types of operations: insertion, deletion, and replacement of char-
acters. Then, the distance between the sequences can be measured
as the smallest number of operations required for matching the
sequences. The simplest way to implement approximate string
matching is to penalize each applied operation with distance 1,
and when no operation is required with distance 0. Another way is
to penalize with different distances by applying a function of the
involved character. Particularly, our approach penalizes each

R. Ibañez et al. / Pattern Recognition 62 (2017) 73–86 79
operation by using the Euclidean distances between the centroids
that represent each of the characters concerned.

Algorithm 1 shows the pseudocode for computing the distance
between two sequences of characters by applying approximate
string matching. The inputs of the algorithm are two sequences of
characters and the list of Centroids, whereas the output of the al-
gorithm is the distance between the sequences. To compute the
distance between the sequences, the algorithm uses a local matrix to
iteratively accumulate the minimum distance to transform each i
character of the sequence S into each j character of the sequence T
(lines 5–10). This distance is computed by adding the result of the
DistanceBetweenCharacters function and the minimum distance
among three previously computed distances, each of which corres-
ponds to an insertion −Di j1, , a deletion −Di j, 1, and a match/replace-
ment − −Di j1, 1 (line 8). The DistanceBetweenCharacters function com-
putes the distance between two single characters as the Euclidean
distance between the Centroids that identify these characters.

Algorithm 1. Approximate string matching using dynamic
programming.
Ta
M

Fig. 5. Trajectories encoded as sequences of characters by using the identification
Inputs
1: Input S, sequence of character of size n.
2: Input T, sequence of character of size m.
3: Input C, list of centroids of size k.

Outputs
1: Output distance between the sequences.

Local
1: Local D, matrix of size n n m.

Steps
1: function STRINGMATCHINGDISTANCE (S T K, ,)
2: ← ∞D ,i 0

3: ← ∞D , j0

4: ←D , 00 0

5: for = → | |i S1 do
6: for = → | |j T1 do
7: d ’ DISTANCEBETWEENCHARACTERS (S T C, ,i j)

8:

← +

←

←

←

−

−

− −

⎧

⎨
⎪⎪

⎩
⎪⎪

D d

D Insertion

D Deletion

D
Match

Replacement

, min

,

,

,
/

i j

i j

i j

i j

1

1

1 1

9: end for
10: end for
11: return | |− | |−D ,S T1 1

12: end function

1: function DISTANCEBETWEENCHARACTERS (s t C, ,)
2: ←u Cs

3: ←v Ct

4: Δ ← (−) + (−) + (−)v u v u v vx x y y z z
2 2 2

5: return Δ
6: end function
ble 2
atching distance between each pair of sequences.

Distances S1 S2 S3 Total distance

S1 0 0 1.113 1.113
S2 0 0 1.113 1.113
S3 1.113 1.113 0 2.226
Following the example of the Circle gesture, Table 2 shows the
matching distance between each pair of sequences, and the ad-
dition of the distances from each sequence to the others, i.e., the
total distance. As explained above, S1 and S2 are exactly the same
sequence; thus the distances between them is 0. Furthermore, the
distance between each of these sequences and S3 is also the same
distance 1.113. As the sequence S ,1 corresponding to Trajectory 1,
obtained the lowest total distance, this sequence is selected as the
template string for the Circle gesture. Finally, the longest distance
between the sequences that differ the most is selected to define
the upper limit of the acceptance threshold (1.113 as shown in
Table 2).

3.4. Recognition phase

So far, by considering our motivating example, we have ob-
tained the template string and the acceptance threshold for the
Circle, thus enabling the approach to start the recognition phase
and recognize new Circle gestures. During the recognition phase,
when a new gesture is performed by a user, the sequence of
characters that corresponds to the right hand is compared with
the template string of the Circle gesture, thus generating a distance
value. If this value falls inside the acceptance threshold, from 0 to
1.113, then the gesture is recognized.

Let us suppose that the user performs two movements re-
presenting a Circle gesture and a letter U gesture, with his/her
right hand, and the approach has to recognize the valid one, i.e.,
the Circle gesture. Fig. 5 shows the Circle trajectory (solid line) and
the U trajectory (dashed line) after being centered and normalized.
The black points represents the Centroids of each cluster and the
above numbers identifies each Centroid (step 1: Overlapping the
trajectories). Furthermore, Fig. 5 shows how the trajectories are
encoded as sequence of characters, by using the number of the
Centroid to which each point is nearest (step 2: Encoding the
trajectories as sequences of characters). The Centroid numbers are
the same as those generated in the training phase (Section 3.2). To
recognize the gestures, we compute the matching distance be-
tween each sequence and the template string of the Circle by using
approximate string matching (step 3: Computing the matching

number of the nearest Centroid.

Table 3
Gestures used in the experiment from MSRC-12 dataset.

Gesture group Gesture ID Gesture name Gesture description

Music player G1 Start music/raise volume Raise outstretched arms
Music player G5 Wind up the music Make circular movements clockwise with right hand and counter-

clockwise with left hand
Music player G7 Take a bow to end the session Bend forward at the waist, once and again
Music player G9 Protest the music Pause and rest your hands on your head
Music player G10 Navigate to next menu Slide right hand, palm down in front of you, from left to right
Music player G11 Lay down the tempo of a song Beat the air with both your hands
First person shooter game G2 Crouch or hide Squat down or crouch
First person shooter game G3 Change weapon reach over your left shoulder with your

right hand and then
Reach over your left shoulder with the right hand and bring both
hands in front of you

First person shooter game G4 Put on night vision goggles to change the game mode Bring your hands up to your eyes
First person shooter game G6 Shoot with a pistol Stretching your arms out in front of you to form a pistol and make a

recoil
First person shooter game G8 Throw an object such as a grenade With the right arm, make an overarm throwing movement
First person shooter game G12 Kick to attack an enemy Karate kick forwards with your right leg

R. Ibañez et al. / Pattern Recognition 62 (2017) 73–8680
distance). Then, as is expected, S4 is recognized as a Circle with
distance 1.113, which is shorter than to the acceptance threshold,
and the S5 is not recognized with distance 4.771, which is longer
than the acceptance threshold.

Overall, we have proposed the use of approximate string
matching as a viable gesture recognition technique. Although we
exemplify the approach with a one-joint example for simplicity,
gestures that involve movements of more than one body joint can
be recognized following the same steps as those explained above.
Furthermore, we have applied k-means with five clusters but other
numbers of clusters could be better in different situations. Varying
the number of clusters k increases or decreases the number of
points of the template string, thus directly influencing the accu-
racy of the gesture recognition. A lower k value makes the re-
cognition technique more tolerant, whereas a higher k value
makes it less tolerant, i.e., the sequence of characters that
corresponds to the imitated trajectory must be closer to the tem-
plate string to be recognized. These and other variations are
evaluated in the next section.
4. Experimental results

This section describes the experiments to assess the accuracy
and performance of different gesture recognition techniques in
comparison with our approach. To test the gesture recognition
techniques, we utilized the MSRC-12 dataset [17], which involves
30 people performing 12 different gestures (a total of 6244 gesture
instances), which are depicted in Table 3. The table shows the
gesture ID, the gesture group (i.e., music player or first person
shooter game), the gesture name and the gesture description. The
demographics of the participants were 5′0″–6′6″ tall with an
average of 5′8″, and aged 22–65 with an average of 31 years of age.
In particular, this dataset is a list of files, each of which containing
the track of 20 body joints of a person during a period of time; that
is to say, each file is a collection of stick models generated by Ki-
nect. As each file contains more than one instance of each gesture,
we had to split the file to carry out the experiment. To perform the
splitting, we used the EasyGR tool [36] that easily allowed us to
individualize each gesture instance and check its correctness.

Once the dataset was split and its correctness was checked, we
applied a 30-fold cross-validation strategy [44] to estimate the
accuracy of the different techniques. In order to build a more
realistic experiment, we tested the cross-subject accuracy of the
techniques by partitioning the samples into 30 groups, each of
which contained the gestures performed by each person. We used
29 groups for training and one group for testing the technique. We
repeated the process 30 times with each of the 30 groups used
exactly once as the validation data for testing. For each iteration,
we not only counted the number of correctly classified gestures,
but also built a confusion matrix that helped us to detect possible
mislabeled classification of gestures and performed a more de-
tailed analysis than mere proportion of correct guesses. Finally, all
the results from the folds were averaged to produce a single
estimation.

To evaluate accuracy, we measured the percentage of gesture
correctly recognized by each technique; whereas to evaluate per-
formance, we measured the spent time and consumed memory by
the different techniques during the previous experiment. The
following sub-sections describe the gesture recognition techni-
ques, and the metrics and results after running the aforemen-
tioned techniques. Section 4.1 introduces the gesture recognition
techniques used in the experiments along with a variant of our
approach that applies string matching instead of approximate
string matching. Section 4.2 describes a method to address the k
initialization problem in k-means. Section 4.3 reports on the re-
sults from the viewpoint of accuracy, whereas Section 4.4 reports
on the results from the performance viewpoint. Finally, lessons
learned are stated in Section 4.5.

4.1. Gesture recognition techniques

Particularly, we compared our approach against Dynamic Time
Warping (DTW) [10], Procrustes Analysis [12], Markov Chains [13],
Hidden Markov Models [14], and a variant of our approach that
uses simply string matching [16]. The selection of these techniques
stems from the fact that are ones of the most used machine
learning techniques in the contemporary research works reviewed
in Section 2. DTW algorithm is originally used to find the similarity
between two time series, i.e., sequences of values measured over a
time interval. The algorithm optimally aligns the series by itera-
tively stretching and shrinking the time axis so as to minimize the
distance between the series. These series represent the trajectories
of the right hand in our example, and as a result of applying DTW,
we obtain a distance value that measures the similarity between
the trajectories. Thus, when training DTW with a set of trajectories
of the right hand, we obtain an acceptance threshold just as when
training approximate string matching.

Procrustes Analysis finds the optimum alignment between two
shapes, modeled as a finite number of points, by applying a series
of mathematical transformations that modify the shapes. In our
context, these shapes represent the Circle trajectories, i.e., we see
the whole trajectory as a static shape. The Procrustes Analysis
involves three specific transformations: centering, normalizing,

R. Ibañez et al. / Pattern Recognition 62 (2017) 73–86 81
and rotating the trajectory. The first two transformations are the
same as those applied in the step 1 (i.e., overlapping the trajec-
tories), whereas the last transformation entails rotating the tra-
jectories until the minimum distance among them is obtained. The
minimum distance criterion is the addition of the Euclidean dis-
tances between each pair of points of the trajectory. The result of
applying Procrustes Analysis is a distance value likewise DTW.

The two variants of Markov Models require the trajectories to be
encoded as finite state sequences, thus we encode the trajectories
as described in Section 3.2. Once the trajectories are expressed as
sequences of states, they are used to feed each of the variants. One
of the variants is Markov Chains, and it is used to represent certain
stochastic processes characterized by being stateless. These pro-
cesses are used to model the behavior of one or more variables as a
function of the time, with the particularity that the values of the
variables are independent of their previous values. Visually a
Markov Chain is a finite state machine with probabilistic state
transitions. In our context, these probabilities are computed by
using the training sequences of the Circle. Then, when a new
gesture is performed, the goal is to determine if the sequence
corresponding to the right hand trajectory is a valid state transi-
tion. The other variant is the Hidden Markov Models, and similar to
Markov Chains, it is used to represent stateless stochastic pro-
cesses, but with unknown parameters, i.e., hidden states. Visually,
a Hidden Markov Model is a probabilistic finite state machine,
Fig. 6. Accuracy, evaluation time and weighted su
which is applied to solve three canonical problems: (1) given a
trained model, i.e., the states and the probabilities among them,
find the probability of generating a specific sequence; (2) given a
trained model, find the sequence of hidden states that generated
an specific sequence; (3) given a set of sequences, find the tran-
sition probabilities among states. In our example, solution (3) is
used to train the models, and when a new gesture is performed,
the sequence corresponding to the right hand trajectory is eval-
uated with solution (1).

Finally, we have implemented a variant of our approach that
just uses simply string matching instead of approximate string
matching. This variant encodes the trajectories as sequences of
characters and uses a set of accepted sequences for each gesture.
Then, when a new gesture is performed, the corresponding se-
quence of characters is searched in all the sets by using exact
matching.

4.2. Initialization of k

Most of the aforementioned machine learning techniques re-
quires the initialization of k to perform the k-means algorithm. To
tackle the initialization problem of k-means, we propose to utilize
the weighted sum model (WSM) [45]. WSM is the simplest and
most widely used multi-criteria decision making method for
evaluating a number of alternatives simultaneously in terms of
m to determine number of clusters of ASM.

R. Ibañez et al. / Pattern Recognition 62 (2017) 73–8682
some decision criteria (e.g., accuracy, training time, evaluation
time, training memory, and evaluation memory). In particular, the
variables are: accuracy, =tt training time, =tm trining memory,

=et evaluation time, and =em evaluation memory. Since the range
of values of the variables has widely varied, a normalization was
applied to re-scale values to ⎡⎣ ⎤⎦0, 1 , where 0 means the lowest
performance and 1 the highest performance. Note that all vari-
ables, except for accuracy, were re-scaled using the following
equation:

′ = − − ()
() − () ()

x
x x

x x
1

min
max min 6

The method assumes that for each criterion Cj there is a weight
wj, which denotes the importance of the criterion j, and there is a
value aij, which denotes the performance of the alternative i when it
is evaluated in terms of the criterion j. The method also assumes that
all the values are normalized; therefore, the best alternative is the
one with the largest cumulative value Eq. (7). Note that the sum of
the weights of all criteria for each synthetic indicator must be 1,
which represent 100% of the importance of the synthetic indicator:

∑= ⁎ = …
()

−

=

A w a i m, for 1, 2, 3, ,
7

i
WSM score

j

n

j ij
1

In this way, we created 4 different synthetic indicators by es-
tablishing different weights in order to meet specific needs.

� α β= ⁎ + ⁎A accuracy evaluation time1 1 1� α β γ

δ ω

= ⁎ + ⁎ + ⁎

+ ⁎ + ⁎

A accuracy evaluation time

evaluation memory training time training memory

2 2 2 2

2 2
� α β γ= ⁎ + ⁎ + ⁎A accuracy training time training memory3 3 3 3� α β γ= ⁎ + ⁎ + ⁎A accuracy evaluation time evaluation memory4 4 4 4

We performed an experiment varying the number of clusters and
selected the best for each technique, i.e., the number of clusters
that allow each technique to obtain the best performance based on
WSM. By taking into account the indicator A1, we aimed to find a
balance between accuracy (α =1 0.6) and evaluation time (β =1 0.4).
For example, Fig. 6 shows the accuracy, evaluation time and their
weighted sum for approximate string matching (Y-axis respec-
tively) while varying the number of clusters from 2 to 12 (X-axis).
Particularly, we selected 3 clusters for approximate string match-
ing (ASM-3), 6 for string matching (String-6), 3 for Markov Chains
(Markov-3), and 5 for Hidden Markov Models (HMM-5). Fig. 6c
shows the selection of k for ASM, and the selected value was
3 because it is the best balance between accuracy and evaluation
time. Moreover, remaining indicators (A2, A3 and A4) are used in
Section 4.5 to compare the techniques used in the experiments.
Fig. 7. Graphic that compares the number of gesture instances correctly classified
for each technique depending on the number of different types of gestures used for
training.
4.3. Accuracy of the approximate string matching technique

To determine to what extent the number of different types of
gestures used for training impacted on the accuracy of the tech-
niques, we varied the number of concurrently recognized gestures
among 4 gestures (G1, G2, G3, G4), 8 gestures (G1, G2, G3, G4, G5,
G6, G6, G7, G8), and 12 gestures (G1, G2, G3, G4, G5, G6, G6, G7, G8,
G9, G10, G11, G12). By utilizing the proposed method mentioned
above, we have obtained the k values required by most of the used
machine learning techniques.

Fig. 7 illustrates the experimental results for ASM-3, String-6,
Markov-3, DTW, Procrustes, and HMM-5. The techniques are listed
along the horizontal axis, whereas the accuracy obtained by each
technique is listed along the vertical axis. Each of the techniques
has 3 bars that represents the accuracy obtained when the number
of concurrently recognized gestures changes (first bar represents
the technique accuracy for 4 concurrently recognized gestures,
second bar represents the technique accuracy for 8 concurrently
recognized gestures, and third bar represents the technique ac-
curacy for 12 concurrently recognized gestures). HMM-5 lacks of
an accuracy value for recognizing 12 gestures concurrently due to
the unacceptable time spent in the cross-validation experiment
(we stopped the experiment after several weeks running without
obtaining any result). From the chart, we can observe that as the
number of concurrently recognized gestures increases, the tech-
niques' accuracy for almost all techniques decreases. ASM-3 and
DTW are the most resistant to this change; for example, ASM-3
decreases the accuracy from 1 to 0.98 when the number of ges-
tures increases from 8 to 12, whereas DTW decreases the accuracy
from 1 to 0.99 when the number of gestures increases from 4 to
8 and also preserves this accuracy when the number of gestures
increases from 8 to 12. On the other hand, Procrustes is the least
resistant, decreasing the accuracy from 0.99 to 0.63 when the
number of gestures concurrently recognized increases from 4 to
12.

To visualize a more detailed analysis of our approach, we built a
confusion matrix (Table 4) of ASM-3 when recognizing 12 different
gestures concurrently. The confusion matrix shows how the pre-
dictions are made by the technique. In particular, the rows indicate
the known type of gesture and the columns indicate the predic-
tions made by the classifier. The value of each element in the
matrix is the number of predictions made divided by the total
number of tested gestures for each type, thus, the sum of all the
cells of each row must be 100%. All correct predictions are located
along the diagonal of the table, and the off-diagonal elements
show the errors made by the techniques. Note that the average of
the values of the diagonal represents the accuracy of the techni-
que; for most of the gestures, ASM-3 works satisfactorily. The
classification errors occur if two gestures are considerably similar
to each other. For example, the technique confuses G4 with G6
since both movements involve the arms; G4 involves covering the
face with the arms, and G6 involves performing a shooting
movement, in which the user raises the arms until cover his face.
Another example of confusing similar gestures is G7 with G2; G7
involves performing a reverence flexing the legs, and G2 involves
performing a squat. The techniques also confuse G1 with G9; G1
involves raising the arms above the head, and G9 involves raising
the arms and touching the head. Despite this confusion, ASM-3
still shows an acceptable accuracy, achieving 98% correct re-
cognition rates.

4.4. Performance of the approximate string matching technique

To evaluate the performance, we measured training time,
evaluation time, training memory, and evaluation memory by the
different techniques during the previous experiment in the

Table 4
Confusion matrix of approximate string matching for MSRC-12 dataset (accuracy: 0.976).

Fig. 8. Training performance.
Fig. 9. Evaluation performance.

R. Ibañez et al. / Pattern Recognition 62 (2017) 73–86 83
training phase and recognition phase. To measure the performance
we used the native API of C#. Specifically, to measure the times we
used the stopwatch class7 that allows us to accurately measure
elapsed time. To measure the consumed memory we used a
method8 of the process class that allows us to obtain the number of
7 https://msdn.microsoft.com/library/system.diagnostics.stopwatch
8 https://msdn.microsoft.com/en-us/library/system.diagnostics.process
bytes currently allocated in memory by the associated process,
also known as memory footprint. The experiment was run on a
computer with an Intel(R) Core(TM) i7-3632QM CPU @ 2.20 GHz
with 6 GB of RAM in a single thread. Note that we have measured
the performance of each technique 30 times (one per fold).

Figs. 8a and b show the average time needed to train the
techniques, and the average max number of bytes allocated in
memory by the train process, respectively. Horizontal axis lists the
different techniques, each of which having 3 different bars

https://msdn.microsoft.com/library/system.diagnostics.stopwatch
https://msdn.microsoft.com/en-us/library/system.diagnostics.process

Fig. 10. Radar charts for 4, 8 and 12 gestures being concurrently recognized.

R. Ibañez et al. / Pattern Recognition 62 (2017) 73–8684
corresponding to the number of gestures used for training (first
bars correspond to 4 gestures, second bars correspond to 8 ges-
tures, and third bars correspond to 12 gestures). From the charts,
we can observe that both graphs present a similar tendency; when
the number of trained gestures increases, the performance for all
techniques decreases. That is to say, the low performance is related
with the increment in the time needed to train the techniques and
the memory footprint allocated by the training process. String-6
and Markov-3 were clearly the best techniques regarding time
consumption, followed by ASM-3, Procrustes, DTW, and finally
HMM-5. On the other hand, all techniques except for HMM-5 and
DTW required a similar amount of memory to be trained.

Likewise, Figs. 9a and b show to the average time needed to
evaluate one sample and the average max number of bytes allo-
cated in memory by the recognition process while evaluating all
the samples belonging to one fold, respectively. These two figures
are broadly similar to the previous one by preserving the same
ranking. From Fig. 9a it is also noticeable that all the techniques,
except for HMM-5, recognize a sample in less than 4.4 ms. This is
relevant, since we must ensure a smooth interaction for natural
user interfaces, i.e., a real-time gesture recognition. Fig. 9b shows
that ASM-3, String-6, and Procrustes required a similar amount of
memory. ASM-3 was the best technique requiring 25% less mem-
ory than the remaining techniques. Particularly, ASM-3 required
5% of the total memory required by DTW, which was the most
accurate technique. On the other hand, HMM-5 was the worst
technique requiring at least 22% more memory than the remaining
techniques. Note that memory usage may became a critical factor
in limited resource devices (e.g., smartphones).

4.5. Lessons learned and threats to validity

We have compared the proposed approach with other widely
used machine learning techniques for gesture recognition. The
results indicates that approximate string matching is able to re-
cognize gestures with highly acceptable accuracy and high per-
formance. We have summarized the results in a radar
chart (Fig. 10) to visually evaluate and compare the different
techniques, when 12 different gestures are concurrently re-
cognized. This kind of chart is useful to display observations si-
multaneously with an arbitrary number of variables. Based on the
WSM previously explained in Section 4.2, we can clearly observe
that String-6 outperforms the rest of the techniques by consider-
ing the evaluation time; however, the accuracy obtained by this
technique was lower than the other techniques, specially when the
number of gestures increases (Fig. 10). Therefore, taking into ac-
count a balance between these metrics (A1, with α = 0.751 and
β = 0.251) ASM-3 becomes the best option. Furthermore, if we also
take into account the evaluation memory (A2, with α = 0.62 ,
β = 0.22 , γ =2 0.1, δ = 0.05,2 ω =2 0.05) ASM-3 continues still being
the best option. Although consumed memory and spent time
during the training phase are not critical for all applications, some
applications might require to be trained in real time. In those
cases, we could consider the A4 indicator (with α = 0.64 , β = 0.24
and γ = 0.24), which clearly shows that ASM-3 is again the best
option, particularly when considering a high number of gestures.
Another example involves taking into account a balance among all
the indicators (A3, with α = 0.63 , β = 0.23 and γ = 0.23), thus pre-
senting the following rankings where ASM-3 is once more the best
option: for 4 gestures (ASM-3 (0.97), String-6 (0.95), Markov-3
(0.95), Procrustes (0.92), DTW (0.6)), for 8 gestures (ASM-3 (0.94),
Markov-3 (0.85), String-6 (0.83), Procrustes (0.77), DTW (0.59)),
and finally for 12 gestures (ASM-3 (0.95), String-6 (0.80), Markov-
3 (0.78), Procrustes (0.72), and DTW (0.59)).

To sum up, the results obtained by our approach are promising.
However, in order to generalize the results, we need to consider a
number of threats to validity. Regarding accuracy, we need to
consider the correctness of the gestures used for training and re-
cognizing because we have split each gesture instance and dis-
carded those gestures performed incorrectly. Thus, the technique
did not confuse gestures and better recognition rates were

R. Ibañez et al. / Pattern Recognition 62 (2017) 73–86 85
obtained. Despite this issue, we have included in the experiments
gestures performed by people with different skills and different
body builds. Another point to be taken into account is the joints
selected in each case to train the techniques; we have selected the
joints that we considered joints of interest and allowed the tech-
niques to improve their accuracy. The importance of this issue
stems from the fact that selecting different joints might produce
different results. Concerning the performance, we should consider
the hardware and the concurrency used in the experiments. We
have run the experiments in a computer with specific character-
istics, as detailed in Section 4.4, using a single thread in order to
accurately measure the consumed memory and the spent time.
However, using different computers or mobile devices with mul-
tiple threads might obtain different performance results.
5. Conclusions

In this work, we have presented a lightweight approach for
recognizing gestures with Kinect. The main contribution of the
proposed approach is the utilization of string matching for gesture
recognition; in this combination, the gestures are encoded as se-
quences of characters and the recognition is performed by apply-
ing string matching. Specially, we used the approximate string
matching algorithm based on dynamic programming, which pro-
vides support to efficiently recognize gestures. To encode gestures
as sequences of characters, our approach applies the k-means al-
gorithm for discretizing each 3D point in single digits, each of
which corresponds to one cluster. Particularly, we have applied k-
means with three clusters, however, other different numbers of
clusters could improve the recognition accuracy in other gesture
datasets.

To assess the effectiveness of our approach, we have used he
public MSRC-12 Kinect gesture dataset, and compared the ap-
proach with other state-of-the-art gesture recognition techniques,
such as Dynamic Time Warping, Procrustes Analysis, Markov
Chains, and Hidden Markov Models. The results have shown that
our approach was able to obtain better balance between accuracy
and performance, in terms of consumed memory and spent time,
than the compared techniques. Particularly, ASM-3 reached 98%
accuracy on average when recognizing 12 gestures concurrently,
and reduced the recognition consumed memory by 99.5% and the
recognition spent time by 15.68% regarding DTW, which was the
most accurate technique (99% of accuracy). Moreover, we have
created a variant of our approach, which uses exact matching in-
stead of approximate string matching. This variant was able to
obtain 92% of accuracy when recognizing 4 gestures concurrently,
outperforming the remaining techniques in term of consumed
memory and spent time.

Nonetheless, our approach still needs some improvements,
which we expect to address in future works. Firstly, we will work
on providing an automatic selection of joints of interest, since the
user must select the best body joints for recognizing an intended
gesture. Secondly, we will focus on including alternative encoding
algorithms and other clustering algorithms such as Partitioning
Around Medoids (PAM) [46,47], in order to find a solution to the
mislabeling of gestures that are considerably similar, thus im-
proving the recognition accuracy. Thirdly, we propose to deal with
the k-means initialization problem by using the MinMax k-means
algorithm, which assigns weights to clusters relative to their var-
iance and optimizes a weighted version of the k-means objective.
Experiments have assessed the effectiveness of the approach and
its robustness over wrong and weakly supported initializations;
for this reason, we consider this approach viable and suitable to be
applied in an enriched version of our approach [42].

Overall, we believe that our approach will enable efficient body
gesture recognition not only in classical natural user interfaces, but
also in new mobile devices that include a depth sensor, wherein
cpu, memory, and energy consumption are critical factors in such
limited resource devices.
Acknowledgment

We acknowledge the financial support provided by ANPCyT
through grant PICT 2011-0080.
References

[1] J. Boehm, Natural user interface sensors for human body measurement, in:
ISPRS – International Archives of the Photogrammetry Remote Sensing and
Spatial Information Sciences XXXIX-B3, 2012, pp. 531–536.

[2] E. Suma, B. Lange, A. Rizzo, D. Krum, M. Bolas, Faast: The flexible action and
articulated skeleton toolkit, in: 2011 IEEE Virtual Reality Conference (VR),
2011, pp. 247–248.

[3] F. Kistler, B. Endrass, I. Damian, C. Dang, E. André, Natural interaction with
culturally adaptive virtual characters, J. Multimodal User Interfaces 6 (1–2)
(2012) 39–47.

[4] V. Thiruvarudchelvan, T. Bossomaier, Towards realtime stance classification by
spiking neural network, in: The 2012 International Joint Conference on Neural
Networks (IJCNN), 2012, pp. 1–8.

[5] A. Bleiweiss, D. Eshar, G. Kutliroff, A. Lerner, Y. Oshrat, Y. Yanai, Enhanced in-
teractive gaming by blending full-body tracking and gesture animation, in:
ACM SIGGRAPH ASIA 2010 Sketches, ACM, New York, 2010, p. 34.

[6] X. Yang, Y. Tian, Eigenjoints-based action recognition using naïve-Bayes-
nearest-neighbor, in: CVPRWorkshops, IEEE, Providence, USA, 2012, pp. 14–19.

[7] S. Bhattacharya, B. Czejdo, N. Perez, Gesture classification with machine
learning using Kinect sensor data, in: 2012 Third International Conference on
Emerging Applications of Information Technology (EAIT), 2012, pp. 348–351.

[8] C. Waithayanon, C. Aporntewan, A motion classifier for Microsoft Kinect, in:
2011 6th International Conference on Computer Sciences and Convergence
Information Technology (ICCIT), 2011, pp. 727–731.

[9] M. Parizeau, N. Ghazzali, J.-F. Hébert, Optimizing the cost matrix for approx-
imate string matching using genetic algorithms, Pattern Recognit. 31 (4)
(1998) 431–440.

[10] S. Salvador, P. Chan, Toward accurate dynamic time warping in linear time and
space, Intell. Data Anal. 11 (5) (2007) 561–580.

[11] F. Petitjean, A. Ketterlin, P. Gançarski, A global averaging method for dynamic
time warping, with applications to clustering, Pattern Recognit. 44 (3) (2011)
678–693.

[12] A. Ross, Procrustes Analysis, Course Report, Department of Computer Science
and Engineering, University of South Carolina, 2004.

[13] K. Lange, Finite-state Markov chains, in: Numerical Analysis for Statisticians,
Statistics and Computing, Springer, New York, 2010, pp. 503–526.

[14] L. Rabiner, A tutorial on hidden Markov models and selected applications in
speech recognition, Proc. IEEE 77 (2) (1989) 257–286.

[15] P.R. Cavalin, R. Sabourin, C.Y. Suen, A.S.B., Jr., Evaluation of incremental
learning algorithms for {HMM} in the recognition of alphanumeric characters,
Pattern Recognit. 42 (12) (2009) 3241–3253 (New Frontiers in Handwriting
Recognition).

[16] D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer Science
and Computational Biology, Cambridge University Press, New York, 1997.

[17] S. Fothergill, H. Mentis, P. Kohli, S. Nowozin, Instructing people for training
gestural interactive systems, in: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI'12), ACM, New York, NY, USA,
2012, pp. 1737–1746.

[18] M. Ziaeefard, R. Bergevin, Semantic human activity recognition: a literature
review, Pattern Recognit. 48 (8) (2015) 2329–2345.

[19] D. Weinland, R. Ronfard, E. Boyer, A survey of vision-based methods for action
representation, segmentation and recognition, Comput. Vis. Image Underst.
115 (2) (2011) 224–241.

[20] P. Turaga, R. Chellappa, V.S. Subrahmanian, O. Udrea, Machine recognition of
human activities: a survey, IEEE Trans. Circuits Syst. Video Technol. 18 (11)
(2008) 1473–1488.

[21] C.H. Lim, E. Vats, C.S. Chan, Fuzzy human motion analysis: a review, Pattern
Recognit. 48 (5) (2015) 1773–1796.

[22] M. Barnachon, S. Bouakaz, B. Boufama, E. Guillou, Ongoing human action re-
cognition with motion capture, Pattern Recognit. 47 (1) (2014) 238–247.

[23] S. Althloothi, M.H. Mahoor, X. Zhang, R.M. Voyles, Human activity recognition
using multi-features and multiple kernel learning, Pattern Recognit. 47 (5)
(2014) 1800–1812.

[24] J. Wang, Z. Liu, Y. Wu, J. Yuan, Learning actionlet ensemble for 3d human
action recognition, IEEE Trans. Pattern Anal. Mach. Intell. 36 (5) (2014)
914–927.

[25] Z. Zhang, Microsoft Kinect sensor and its effect, IEEE Multimed. 19 (2) (2012)
4–10.

http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref3
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref3
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref3
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref3
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref9
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref9
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref9
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref9
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref10
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref10
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref10
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref11
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref11
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref11
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref11
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref14
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref14
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref14
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref16
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref16
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref18
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref18
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref18
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref19
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref19
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref19
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref19
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref20
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref20
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref20
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref20
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref21
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref21
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref21
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref22
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref22
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref22
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref23
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref23
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref23
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref23
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref24
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref24
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref24
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref24
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref25
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref25
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref25

R. Ibañez et al. / Pattern Recognition 62 (2017) 73–8686
[26] J. Han, L. Shao, D. Xu, J. Shotton, Enhanced computer vision with Microsoft
Kinect sensor: a review, IEEE Trans. Cybern. 43 (5) (2013) 1318–1334.

[27] J. Suarez, R.R. Murphy, Hand gesture recognition with depth images: a review,
in: 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and
Human Interactive Communication, IEEE, Paris, 2012, pp. 411–417.

[28] M. Tang, Recognizing Hand Gestures with Microsoft Kinect, Department of
Electrical Engineering of Stanford University, Palo Alto, 2011.

[29] Z. Ren, J. Meng, J. Yuan, Z. Zhang, Robust hand gesture recognition with Kinect
sensor, in: Proceedings of the 19th ACM International Conference on Multi-
media (MM'11), ACM, New York, NY, USA, 2011, pp. 759–760. http://dx.doi.org/
10.1145/2072298.2072443.

[30] K.K. Biswas, S.K. Basu, Gesture recognition using Microsoft Kinect ®, in: 2011
5th International Conference on Automation, Robotics and Applications
(ICARA), IEEE, Wellington, 2011, pp. 100–103.

[31] K. Ponto, J. Kohlmann, R. Tredinnick, Dscvr: designing a commodity hybrid
virtual reality system, Virtual Real. 19 (1) (2015) 57–70.

[32] Y. Gu, H. Do, Y. Ou, W. Sheng, Human gesture recognition through a Kinect
sensor, in: 2012 IEEE International Conference on Robotics and Biomimetics
(ROBIO), IEEE, Guangzhou (China), 2012, pp. 1379–1384.

[33] S. Celebi, A.S. Aydin, T.T. Temiz, T. Arici, Gesture recognition using skeleton
data with weighted dynamic time warping, in: VISAPP (1), 2013, pp. 620–625.

[34] F. Jiang, S. Zhang, S. Wu, Y. Gao, D. Zhao, Multi-layered gesture recognition
with Kinect, J. Mach. Learn. Res. 16 (1) (2015) 227–254.

[35] T. Hachaj, M.R. Ogiela, Human actions recognition on multimedia hardware
using angle-based and coordinate-based features and multivariate continuous
hidden Markov model classifier, Multimed. Tools Appl. (2015) 1–21.

[36] R. Ibañez, A. Soria, A. Teyseyre, M. Campo, Easy gesture recognition for Kinect,
Adv. Eng. Softw. 76 (0) (2014) 171–180.

[37] R. Slama, H. Wannous, M. Daoudi, A. Srivastava, Accurate 3d action recognition
using learning on the Grassmann manifold, Pattern Recognit. 48 (2) (2015)
556–567.

[38] P. Hong, M. Turk, T.S. Huang, Constructing finite state machines for fast gesture
recognition, in: Proceedings of the 15th ICPR, 2000, pp. 691–694.

[39] T. Stiefmeier, D. Roggen, G. Tröster, Gestures are strings: efficient online ges-
ture spotting and classification using string matching, in: Proceedings of the
ICST 2nd International Conference on Body Area Networks (BodyNets'07), ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering), Brussels, Belgium, Belgium, 2007, pp. 16:1–16:8.

[40] J. Wang, Z. Liu, Y. Wu, J. Yuan, Learning actionlet ensemble for 3d human
action recognition, IEEE Trans. Pattern Anal. Mach. Intell. 36 (5) (2014)
914–927.

[41] G. Navarro, M. Raffinot, Flexible Pattern Matching in Strings: Practical On-line
Search Algorithms for Texts and Biological Sequences, Cambridge University
Press, New York, NY, USA, 2002.

[42] G. Tzortzis, A. Likas, The minmax k-means clustering algorithm, Pattern Re-
cognit. 47 (7) (2014) 2505–2516.

[43] P.A.V. Hall, G.R. Dowling, Approximate string matching, ACM Comput. Surv. 12
(4) (1980) 381–402.

[44] D. Michie, D.J. Spiegelhalter, C.C. Taylor, J. Campbell (Eds.), Machine Learning,
Neural and Statistical Classification, Ellis Horwood, Upper Saddle River, NJ,
USA, 1994.

[45] E. Triantaphyllou, K. Baig, The impact of aggregating benefit and cost criteria
in four MCDA methods, IEEE Trans. Eng. Manag. 52 (2) (2005) 213–226.

[46] S. Theodoridis, K. Koutroumbas, Pattern Recognition, 3rd ed., Academic Press,
Inc., Orlando, FL, USA, 2006.

[47] J.-P. Mei, L. Chen, Fuzzy clustering with weighted medoids for relational data,
Pattern Recognit. 43 (5) (2010) 1964–1974.
Rodrigo Ibañez received the Computer Engineer degree from Universidad Nacional del Centro de la Provincia de Buenos Aires (UNICEN), Tandil, Argentina, in 2012, and is
currently pursuing the Ph.D. degree in Computer Science at the same University. Since 2013, he has been part of ISISTAN Research Institute, UNICEN. His research interests
include machine learning algorithms, human activity recognition, and automated web services composition. Mr. Ibañez has obtained a scholarship from FONCyT to complete
his doctoral studies.
Álvaro Soria received the Computer Engineer degree from Universidad Nacional del Centro de la Provincia de Buenos Aires (UNICEN), Tandil, Argentina, in 2001, and the Ph.D
degree in Computer Science at the same university in 2009. Since 2001, he has been part of ISISTAN Research Institute (CONICET – UNICEN). His research interests include
software architectures, quality-driven design, object-oriented frameworks and fault localization.
Alfredo Teyseyre received a Ph.D. degree in Computer Science, a Master degree in Systems Engineering, and a Computer Engineer degree from Universidad Nacional del
Centro de la Provincia de Buenos Aires (UNICEN), Tandil, Argentina, in 2010, 2001, and 1997, respectively. Since 1997, he has been part of ISISTAN Research Institute, UNICEN.
Currently he is an Adjunct Professor at Computer Science Department of the UNICEN University at Tandil, Argentina. His research interests include software visualization,
information visualization, software architecture and frameworks, and natural user interfaces.
Guillermo Rodriguez received the Ph.D degree in Computer Science at the Universidad Nacional del Centro de la Provincia de Buenos Aires (UNICEN), Tandil, Argentina, in
2014. Since 2008, he has been part of ISISTAN Research Institute (CONICET – UNICEN). Currently he is a Teaching Assistant at Computer Science Department of the UNICEN
University at Tandil, Argentina. His research interests include software engineering, virtual reality and games for education.
Marcelo Campo received the Computer Engineer degree from Universidad Nacional del Centro de la Provincia de Buenos Aires (UNICEN), Tandil, Argentina, in 1988 and the
Ph.D degree in Computer Science from Instituto de Informática de la Universidad Federal de Rio Grande do Sul (UFRGS), Brazil, in 1997. He is currently an Associate Professor
at Computer Science Department and Director of the ISISTAN Research Institute (CONICET – UNICEN). His research interests include intelligent aided software engineering,
software architecture and frameworks, agent technology and software visualization.

http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref26
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref26
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref26
dx.doi.org/10.1145/2072298.2072443
dx.doi.org/10.1145/2072298.2072443
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref31
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref31
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref31
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref34
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref34
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref34
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref35
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref35
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref35
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref35
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref36
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref36
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref36
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref37
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref37
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref37
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref37
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref40
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref40
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref40
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref40
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref42
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref42
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref42
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref43
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref43
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref43
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref45
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref45
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref45
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref47
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref47
http://refhub.elsevier.com/S0031-3203(16)30235-7/sbref47

	Approximate string matching: A lightweight approach to recognize gestures with Kinect
	Introduction
	Related work
	Our approximate string matching approach to recognize gestures
	Step 1: Overlapping the trajectories
	Step 2: Encoding the trajectories as sequences of characters
	Step 3: Computing the matching distance
	Recognition phase

	Experimental results
	Gesture recognition techniques
	Initialization of k
	Accuracy of the approximate string matching technique
	Performance of the approximate string matching technique
	Lessons learned and threats to validity

	Conclusions
	Acknowledgment
	References

