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Abstract

It is well known that independent sources can be blindly detected gquadated, one by one, from
linear mixtures by identifying local extrema of certaihjective functiongcontrasts, like
negentropynon-GaussianityNG) measuresurtosis etc. It was also suggested by Donoho in 19
and verified in practice by Caiafa et al., that some of these measures resahihfar particular
cases with dependent sources, but not much work has been donergsfigst and a rigorous
theoretical ground still lacks. In this article, it is shown that, if a specific tfgeairwise dependeng
among sources exists, callligear conditional expectation (LCHaw, then a family of objective
functions are valid for their separation. Interestingly, this particular tygkependence arises in
modeling material abundances in the spectral unmixing problem of remotedsiemsges. In this
study, a theoretical novel approach is used to anaBfmanon entrop{SE), NG measure and
absolute smoments of arbitrarily ordéri.e. generic absolute momerits the separation of source
allowing them to be dependent. We provide theoretical results that showrth@ions under which
sources are isolated by searching for a maximum or a minimum. Also, simplefaneinf
algorithms based on Parzen windows estimations of probability density fusetiah

set of simulation results on synthetic data and an application to the blind speutnading problem
are provided in order to validate our theoretical results and comparedlygséhms against
FastICA and a very recently proposed algorithm for dependent eputtte bounded component
analysis algorithm. It is shown that, for dependent sources verifying@telaw, theNG measure
provides the best separation results.

Keywords

Dependent component analysis (DCA), Independent componelysan@CA), Blind source
separation (BSS), Generic absolute (GA) moments, Entropy measume$ dlssianity (NG)

1 Introduction

In signal processing, a generic problem is how to separate signals¢Hatemrly combined in the

Newton—Raphson iterations are proposed for the separation of dagendndependent sources. A

measurements. Blind source separation (BSS) consists on the task of ggolstinrces from a set of



m linear mixtures:
Xt = ASU (1)

wherex; € R™is a column vector containing theixtures(observed measurements)s R" is a

column vector containing the unknown source signsdaifcey andA € R™" is the unknowmmixing
matrix containing the mixing coefficients. The parametesran index that can be related to the position
in time or space (pixel index) depending on the application. The model dadttéaqu(1) is commonly
referred as theoiseless instantaneous mixing model

When sources are statistically independentrarne n (overdetermined case), the problem is well posed
in the sense that sources can be identified up to some unimportant indetées[AhcT his result
allowed the development of a sort of independent component anal@g#i$ élgorithms which were
successfully and widely used in engineering problems [2—4]. Many ieritewe been proposed in the
context of ICA, for example, it is known that sources can be detectéddyifying the local minima

of the SE, in the space of the mixing parameters, keeping the variancertdretause of a classic
result from information theory: the entropy of a sum of independeriabhas is larger than the entropy
of individual variables [1, 3,5-7]. More generally, Comon [1] hasddtrced the definition afontrasts
for ICA, i.e. objective functions such that their global maxima correspaodhe separation of all
sources. Besidagegentropynegative SE), otherontrastshave been proposed for ICA as it is the case
of higher order cumulants for which fourth order cumulant is a particudae ¢3, 8—10], the convex
perimeter for bounded sources [11Lf-distancenon-GaussianityNG) measure [12], least absolute
end-point (LAE) [13], and others. For an up to date review of existiggrdghms for ICA, the reader
may refer to [2].

Unlike in the ICA case, the separation of dependent sources or depeca@imponent analysis (DCA),
has not been fully studied in the past and showed more difficulties. Hyra&rHoyer [14] have
proposed independent subspace analysis (ISA) as an extens{oA oflere components in different
subspaces are assumed independent whereas components in thelsgraeesshave dependencies.
When the sources and the mixing matrix are restricted to be non-negatiygptiilem can be seen as a
non-negative matrix factorization (NMF) problem for which many algorithmagetbeen

developed [15]. However, NMF suffers from non-uniquenesseftilutions and the separation is not
granted if not additional constraints are assumed, for example, by impssangity of sources [16,17].
Bedini et al. [18] have developed algorithms for the separation of ledeck sources found in
astrophysical applications based on multiple-lag data covariance matricéxsy, @eploiting the time
structure of sources. In [12,19], an algorithm called MaxNG basddi@maximization of a NG
measure was proposed and tested on dependent sources ext@tteehfiote sensed images.

In [20, 21], some DCA methods were tested on astrophysical sourcese<]11] proposed bounded
component analysis (BCA) as an alternative method for BSS which relidsedrounded support of
sources. In BCA, the separation is granted when the convex hull obtlreess domain can be written
as the cartesian product of the convex hulls of the individual soumeosts which is a very restrictive
assumption. Recently, Eldogar [22] showed that a particular type ohdepésources generated
according with a copuladistribution are perfectly separated by BCA for a wide range of the
correlation coefficient.

In all the previously mentioned DCA methods, when the independence aisarsgrelaxed, the
success of the separation relies on alternative, and usually very tiestcignditions on sources.
Moreover, it was suggested in [23], and verified in practice in [124p that some measures used in
ICA, such asnegentropyNG andkurtosis remain useful for particular cases with dependent sources,
but not much work has been done in this respect and a rigorous thabgetand still lacks.



In this work, we propose a unified theoretical framework to study thelibtyaof any objective
function to detect each of the sources as a local maximum (or minimum) in the spegefficients.
From our analysis, it turns out that many new objective functions camdpgoped owing this property
if a particular type of dependence is verified among sources. In paricedaanalyzeyeneric absolute
(GA) momentsSE and NG measure as valid objective functions. We introduce simple fcidref
algorithms for the separation of sources using Parzen windows estimatipds@nd
Newton—Raphson (N-R) iteration. We analyze the performance of thessunes and compare them
against FastICA and BCA algorithm.

This article is organized as follows: in Section 2, the theoretical aspecistavduced followed by
detailed analysis of the independent sources case (Section 3) anghemeldet sources case (Section
4); in Section 5, using this theory, a set of particular cases are riggranalyzed and illustrated by
simulations; in Section 6, algorithms for source separation with2 sources are derived by using
Parzen windows estimation of pdfs and N-R iterative method; in Sectionéraeimulation
experiments are presented showing the performance of the proposeithahg and comparing them
against FastICA and BCA,; finally, in Section 8, the main conclusions of thik aed a discussion
about our results is included.

Notation and assumptions

We use capital letters to denote random variables, for exar8plg;,. .., S, are the random variables
associated to the sources which hayeiat probability density functioiipdf) denoted by
fgs..5(S1,%,...,5). Obviously, when sources are independent, the joint pdf factorizes, i.e

fss.5(5L,%, ..., %) =f5 (S5, (S) . . . fs,(s0), (2

wherefg () is called themarginal pdfof variableS. In this work, we are also interested in the case of
having dependent sources where such a factorization of the joinpedfrbt exist.

We also define theonditional pdfof a random variabl&, given thatS, = x as follows:

fss, (51, X) = fs, 5,(S1, X) /s, (X). Accordingly, we define thérst and second order conditional
expectationss follows:E[ $,|S; = X] = [ sifg;s,(S1, X)ds; andE[ $|S, = X] = [ g, (51, X)dsy. In
the case of having only two sources, we can simplify the notation by giBgx] = E[ $|S = X] and
E[ S|x] = E[ $|S = X]. Since conditioned expectations are functiong,afie use the following
simplified notationE'[ S|x] = L E[ S;|x] andE'[ SIX] = LE[ SIX.

In several parts of this article, when we apply the differentiation opetatder the integral sign, i.e.

4 [gx,)dx= [ Lg(x, v)dxwe will assume that the functiay(, 7) is sufficiently nicely behaved in
order to allow this operation. Basically, we assume {iatr) and %g(x, T) are continuous fox in the
range of integration and there are upper bougds )| < A(X) andld%g(x, 7)| < B(X) independent of
7 such that the integralf A(x)dx, [ B(x)dx do exist.

A motivation for this work: the blind spectral unmixing problem

Blind spectral unmixing is a specific application of BSS to the analysis of hyjpectral remote sensed
images. In this case, it is known that, at any fixed pixel, the linear mixing mddeguation (1) is

valid. The vector of mixtures represents the sensor measurements at different wavelengths, Aatrix
contains in its columns the spectral signatures of the endmembers (mateiigtiggdr the covered
area and vecta contains the endmember fractional abundances at the given pixeVj2&n the



spectral signatures are unknown this is a blind problem and the objectivestimate both, matriA
and the endmember fractional abundarses

Most of the existing spectral unmixing algorithms exploit geometrical condspissing the fact that,
due to the linear mixing equation, the mixed pixels have to lie inside the convexfliné o
endmembers. This convex hull forms a simplex in the spectral space, withdheeenbers as spanning
vertices. Some algorithms then try to look for the largest volume embedded si(egiesimplex
growing algorithm (SGA) [26], simplex-projection unmixing (SPU) [27])tor to identify extreme
points in the data cloud (e.g. vertex component analysis (VCA) [28]). r@#rently proposed methods
are based on the NMF with sparsity assumptions (e.g. S-measure cormshidirealgorithm
(NMF-SMC) [29]).

As a BSS problem, sources in the blind spectral unmixing problem are cleztrigdependent since
they are related to fractional abundances, in fact, they are consttaisadh up to one, i.e.

> .S = 1. Additionally, in order to avoid scale indeterminacy and remove constargsave have
to work with normalized sources, i.e.§ < (§ — [,Li)/o’iz whereu; ando; are the mean and standard
deviation associated to sourcdJnder these conditions, the blind spectral unmixing task can be
approached by solving a BSS problem with the additional constraint [19]:

Y s=0, (3)
i=1
wWith E[S]=0,E[F] = 1( = 1,2,...n).

The dependence between any pair of normalized sources can betehaeal, for example, by the
conditional expectation8[ §|§] andE[ §|S] (i # j). Clearly, when sources are independent, we have
E[SIS] = E[ S] = 0. On the other hand, when sources are dependent the conditioeatatiqpn

E[SIS] (i #]) is a function ofS. We can try, to determine these functions in order to satisfy Equation
(3). By applying the conditional expectation to this equation with respegt(io= 1, 2,...,n) we

obtain a system af equations witm? — n unknown (the conditional expectatioB§S|S] Vi # j).

Thus, forn > 2 there is not a unigue choice of the conditional expectations. Then, weetdabtain

this information from the observation of real data. In [19], it was shova llyper-spectral data can be
well modeled as having linear conditional expectations (LCES)E[&|S] = a§ + b (see [19]). The
following theorem provides us the values of the constarasdb.

Theorem 1. (19], Theorem 3): Given a pair of dependent normalized sourcgsSSif the conditional
expectation ES|S] is linear in §, thatis  §|S§] = a§ + b, then a= E[ SS] and b= 0.

In other words, in the blind spectral unmixing problem, the normalized sewa® be modeled as

verifying the following condition:

E[SIS]= piS, with pj = E[SS], 4)

which is called the LCE law.



As we demonstrate in this article, when this particular type of dependencediesources is valid,
their separation from linear mixtures can be obtained by maximizing (or minimizifigeht types of
objective functions.

Relationship with previous works and new contributions

In [12], we have proposed the Parzen based NG measure and davéhepMaxNG algorithm, a DCA
method which showed to be useful to separate dependent sourcesezkfram images and also
astrophysical dependent sources [20], outperforming classiéahlgbrithms. However, in those
articles theNG measuravas not rigorously justified. Later, in [19], tidG measuravas proposed as a
solution for the blind spectral unmixing problem and a partial theoretical jcatifin was given in
terms of the LCE condition (guarantee of local extremum). In [24], wenteddhe results obtained by
extending our method to other measures of NG such as Negentropy, andhhizased measures, and
applying them to synthetic and real datasets in the blind spectral unmixingepraontext. However,
a complete theoretical foundation was still lacking and several questioss fiom those experimental
results, for example: (1) why kurtosis based measure failed to sepamspecific type of dependent
sources? or (2) given a particular measure, how to determine if it casdutfar the separation of
sources by local maximization or minimization?, and (3) on which conditions wrtes the separation
can be granted? In the present manuscript, we present a unifiedtiteddramework for the study of
different measures for separation of independent and deperalenes verifying the LCE condition.
The main contribution of this manuscript is to fill the gaps existing among prewouss and give
rigorous theoretical answers to the above open questions. In partitisashown that the kurtosis
based measure (i.&A momenwith 8 = 4) has zero second order derivative for the constrained
dependent sources, which makes it useless for the separation asmtical results showed in [24].
We also provide a precise condition (see Equation (33)) that establistetbav independent sources
are separated by maximizing or minimizing the correspon@Agnomeni.z(6). On the other side,
for dependent sources, it is necessary to know the second omftitional expectations, i.&€[ F|S].
Another contribution of the present article is a new algorithm based on asdafth for local extrema
which has quadratic convergence, i.e. being much faster than the algopitbpwsed in [12, 19, 20]
which used a steepest ascend method with fixed update step. Additionally,greent manuscript we
compare our algorithms against a recently proposed DCA algorithm, nameBQA [22], one
state-of-the-art algorithm for DCA.

2 Detection of sources by maximizing or minimizing objectie functions

In this article, we focus only on sequential methods, also knowde#ationmethods, that extract
normalized sources one after another by searching for local extreenpretiefined objective function.
This simple idea was already used in the ICA context [2, 3] and can be utteddas follows. When the
matrix A in Equation (1) is full-column rank, the sources can be expressed asadombination of
the mixtures by premultiplying Equation (1) with a pseudo inverse matrix sucteaste of the
Moore—Penrose pseudoinvemé i.e.

s, = A'x,. (5)

Since matrixA is unknown, a reasonable strategy could be to search in the spacdfmieonts, for
those points which correspond to each one of the sources. In othés vifoive denote by the
random variable associated to the sowggcten we need to analyze the behavior of figture
random variable Xdefined as:

X = 1S + 0 + - - + onSh. (6)



We say that variabl§ is separated from the mixture when all coefficients are zero exgeipe.

ai = 1 ande; = O for everyj # i. Here we arrive at the main question we want to answer in this
article: how can we discriminate between a single source compared to anmydamehination of two or
more sources?

We introduce some important objective functions that allow us to answer tegiqn. Any valid
candidate for an objective function should involve the pdf of the mixtwpe® which depends on the
mixture coefficientsy;. In particular we consider the SE:

Ose = — f fx () log(fx (x))dx, ()
the NG measure defined as follows [12,19]:
e = [ [0 — 0017 dx ®
whereg (x) = ﬂ]éﬂ) exp(—%xz), and theGA momenbf orderg which is defined as follows:
na = LI = [ o ©)

The SE is a well known measure already used in ICA, on the other sidéAlraomentvas not used
before for BSS except in the particular case wiges 4 which is closely related with the

kurtosis[3, 9]. In fact,kurtosisis defined a& = w4/u3. In this sense, our analysis generalizes existing
ICA methods providing insightful interpretations of the results. Note thafs fer2 we obtain the
second order moment of the variable which, in our case is fixgeg te 1. But we can choose any

order of momeng provided that the integral in Equation (9) exists. In the following section nwee
that these objective functions are valid for ICA.

3 Independent sources case

Let us focus on Equation (6) and analyze wether it is possible to isolaterees® from the rest by

only looking at the statistical behavior of the mixture variakje.e. by studying how the pd§(x; o)
varies according to the mixing parameters in the veeter (a1, a2, . .., an). For the ease of the
presentation we start with the analysis of the two independent souraesSiase we have to generate
all possible mixtures of two independent sources maintaining the varianstaod, we use the
following parameterizationX = «1(0)S; + a2(6)S with a1(0) = cog0) anda,(6) = sin(@) which
means that the separation is obtained at kw/2 (k = 0,4+1,42,...) (ignoring scaling ambiguity).

We first introduce a new result characterizing the pdf of a mixture of iadéent random variables as a
function of the mixing parameter, i.e. fx(X; 0).

Lemma 1. (Two independent sources case): Given two zero-mean and unifearindependent
source variables Sand $, the pdf f(x; 0) of the mixture variable %= «1(0)S;, + a2(6)S; with
a1(0) = cog0) anda () = sin(0), has zero-derivative with respectédor every x ab = krr/2
(k=0,£1,£2,...),i.e.

ofx(x; )

a0 0=k /2

—0. (10)

Proof. Let us prove first the zero-derivative condition (maximum or minimund) &t /2



(g = (a1, @2) = (0, D) which corresponds to the separation of sou8cdn the neighborhood at,
i.e.a = ag + &, we can write the pdf of the mixture as the convolution:

1 X— 18
fx(G o) = — / fsl(sl)f32< ! )dsl. (11)
(% a2
By using the chain rule of derivatives we obtain
fx(a) Ifx(Xa) , afx (X; &)
= 0 5(0). 12
90 dar 1O T g, ® (12)

We compute the partial derivatives in the last equation evaluaiegd-at0 andw, = 1 and, by inserting
the derivative operator inside the integral, we obtain:

Ifx (X @) _ / Y —

dar |y —fs,(X) / sifs, (sp)dsy = —f5, WE[ S] = 0, (13)
ofx(X; ) _ , L ,

daz |, —fs, (%) — xfg,(X) = —(xfs, (%), (14)

Now, taking into account that; (7 /2) = 1 anda5(r/2) = 0, and using Equations (13) and (14) into
Equation (12), we arrive at

ofx(X; o)
06

=0x1— (xfs,(X) x 0=0, (15)
0=m/2

for everyx. Using a similar procedure but working in a neighbouhooa©f (a1, a2) = (1,0), i.e. by
consideringx(X; o) = % [ s (s2)fs, (%) ds, instead of Equation (11), we can prove the
zero-derivative condition & = 0, which corresponds to the separation of so@cd-inally, it is easy
to see that the zero-derivative condition also holds for any integer mulfipi¢2y because the resulting
mixture becomesS, or +S, and the same reasoning used before applies. Thus, the zero-gerivati
condition is valid for everyx até = kr/2 (k= 0,£1,42,...) as claimed by this lemma. O

In Figure 1, a graphical interpretation of this lemma is shown in terms of theesffape pdf for a
mixture of two independent sub-Gaussian variableg at /2 andf = 6y £ §6.

Figure 1 pdf for the mixture variable X = «1(0)S, + a2(6)S, with sub-Gaussian sources at

6o = /2 (left) and at 6 = 6y + 56 (right). Note that, wher = /2 the pdf corresponds to the source
S, on the other side, when a perturbation on the mixing parariageconsidered, i.e8 = 6y £+ §6, a

pdf with a shape closer to the Gaussian one is obtained. It is also noted thatmervals

X € {(—00,—b) U (—a,a) U (b, +00)} (X € {(—b, —a) U (a,b)}) the pdffyx(x; 6) attains its minimum
(maximum) a¥ = /2

In the following, using this fundamental property of independent varsatlemma 1), we can easily
prove thaigse(6) andug (0) have local extrema at the desirable separation points, i.e.
Ose(kr/2) = pj(kr/2) = 0, fork € Z.

Theorem 2. Local extrema of SE (independent sources case): Given two zero-mean and unit-norm
source variables;Si = 1, 2), the SE (ge(6)) of the mixture variable X= co96)S, + sin(0)S, has
local extrema ab = kn/2 (k € Z).



Proof. As in the proof of Lemma 1, here it suffices to prove that the derivatitheSE, with respect
to the parametet, vanishes @ = /2. From the definition of SE in Equation (7), if we take its
derivative with respect t6 we have:

dix(x; 0
Gse(6) = — / K50 og(hetx ) + 1) dx (16)

Now, using Lemma 1 we see that the derivative of the pdf is zefo=atr /2 for everyx
(W = 0VX> and therefore we conclude thgii=(7/2) = 0. O

Theorem 3. Local extrema of the GA moment measure (independent sources case): Given two
zero-mean and unit-norm source variablegiS= 1, 2), the GA moment of orde#, g (@) of the
mixture variable X= co90)S, + sin(0)S,, has local extrema &t = krr /2 (K € Z).

Proof. We need to prove that the derivative of Equation (9), with respect todrenpetep, is zero at
0 = /2. If we take the derivative of this equation we obtain:

, dfx(x; 0)
@) = [ 1P D @

where, by using the Lemma 1, we see thatr/2) = 0. O

It is interesting to note that, our Theorem 3 shows that local extrema amd #iuhe desirable
locations for any chosen value of parameier

In [19], it was shown that the NG measure defined in Equation (8) hasaalabextrema at the
separation points. Moreover, it is clear that, by using the same line ofmegsee can prove the
existence of local extrema in many other objective functionals as, for deafopthe case of Renyi
entropy which was already proposed and studied for ICA [6, 7].

It is important to note that, a local extremum(at, o2) = (0, 1) is a necessary condition to separate
sourceS; but it is not a sufficient condition. The existence of local extrema whichat@orrespond to
a separation of sources, also known as mixing local extrema or spuritalekirema, was a topic of
research in the ICA setting. Moreover, some theoretical results areladeaslaowing the existence of
spurious local minima for the Entropy measure when sources has multimouidudiens [30, 31].
Vrins and Verleysen [32] have shown that the kurtosis-based cofiragions are more robust than
the information theoretic ones when the source distributions are multimodal.

4 Relaxing independence: DCA

In the previous section, we have shown that Lemma 1 suffices to guathatealidity of the SE, the
GA momenand the NG measure as objective functions for ICA. We are interestedmioak at the
problem of separation of potentially dependent sources. Then, ahgtugstion raises here: what kind
of dependence should have the sources in order to guarantee theedzammbof the pdf as in the ICA
scenario? The following result provides a necessary and sufficelitoon.

Lemma 2. (n dependent sources case) Given a set of zero-mean and unit-variance source variahles S
(i=1,2,...,n) the pdf £(x; ) of the mixture variable %= a1S, + a2S + - - - + anS,, constrained to

the case of having unit-variancq E?] = 1, has local extrema for every x at the separation points

(e = 1andg; = Ofor alli # k) iff the LCE law defined in Equatio@) holds.



Proof. Here it is only necessary to prove the local extrema condition (maximum or minirficurohly
one point so we arbitrarily choose the cage= 1 anda; = 0 for alli # n. In this case, in the
neighborhood ok = (0,0,...,1), i.e.a = ag + §, we can write the pdf of the mixture as follows:

1 _ oV — 1S
fx(X;a) = —//fslSn <S]_,...y,x 15 Y~ 1 1) ds;...ds_1. (18)

Un On

Following the Lagrangean method, the condition for the existence of a Ieitahea point ate = ag
under the unit-variance constraint is as follows:

VL(ag) = O, (19)
with ]
L) = fx(X; o) + A (Z a? + ZZ Pikti 0t — 1) , (20)
i—1 i<k

wherea is the Lagrange multiplier angy = E[ SS(] is the correlation coefficient between sources
andk.

Now, we take the derivatives of the pdf in Equation (18) with respect tadedicientsy; with
i=1,2,...,n—1which, evaluated at = « give:

Afx (X ) Ifs5.(s,%) '
— [ b LSy =—(E =X|f . 21
| = T s = SIS = 1s00) 1)
Similarly, the derivative of the pdf in Equation (18) with respect to the cdefit«, is:
ofx (X; o) /
—_— = — (xf, : 22
i (Xfs, (%) (22)

Using Equations (20), (21) and (22) in Equation (19) we obtain the follgwat of conditions:

oL / ,
o = — (E[SIS = Afsw) +2on = 0 fori=1,2,...,n—1 (23)
I a=ag
L /
oL = —(xfs,®) +21 = 0. (24)
0n |y

The last equation determines the Lagrange multiplierjie. (1/2) (ngn (x))’ and, by inserting it into
(23) we arrive to the desired condition:

E[SIS: = si] = pinSh- (25)

O]

It is important to note that the LCE condition is also valid for the particular chselependent
sources, i.eE[ §|S = ] = E[ S1] = 0 andp = 0. In Figure 2, some examples of sources are given
indicating whether they follow or not the LCE law.



Figure 2 Scatter plots for three examples of sources with estimatits of the conditional
expectationE[ S;|S;] and the linear regression given bypS;: (a) corresponds to a pair of
independent sources (sub-Gaussiém)corresponds to a pair of dependent sources with negative
correlation following the model of abundances in spectral unmixing proldemstrained case); and
(c) shows a pair of dependent sources generated using a Copula-tudistrityith correlationo = 0.8.
In (a) and(b) the LCE condition holds while ifc) it is only approximately verified

Before proceeding with our additional results, we have to solve a tedhmadalem because, as our
sources are now dependent they are allowed to be correlated, thueg dimegperization

X = c0960)S + sin(#)S, does not longer preserve the variance of the mixture variablest us

consider the general linear mixtuke= o1S, + a»S, if we are constrained to the unit-variance case
E[ X?] = 1, thena? + a2 + 2pasa, = 1, where we used = E[ ] to denote the correlation
coefficient between sources. Then, the following parameterizatioressthe variance and uses only

one parameten’:
a1(t) = T anday(t) = —tp +/12(p%2 — 1) + 1. (26)

The following results can be considered as generalizations of Theorant2to the case of two
dependent sources.

Theorem 4. Local Extrema of SE (general case): Given two zero-mean and unit-norm source
variables $(i = 1, 2) following the LCE law with respect tg,he SE of the mixture variable

X = 1S, + S constrained to the unit-variance cas¢¥?] = 1, has a local extremum at
(o,02) = (0, D).

Proof. The proof can be obtained identically to the proof of Theorem 2, taking ttount the
parameterization (26) and using the fact that the LCE condition implies the mogstéd local extrema
of the pdf as stated by Lemma 2. O

Theorem 5. Local extrema of the GA moment (general case): Given two zero-mean and unit-norm
source variables;Si = 1, 2) following the LCE law with respect tg, he GA moment of orde# of
the mixture variable X= 1S, + a»S,, constrained to the unit-variance casgX] = 1, has a local
extremum atai, @) = (0, 1).

Proof. The proof can be obtained identically to the proof of Theorem 3, taking ctount the
parameterization (26) and using the fact that the LCE condition implies the éistiee local extrema
of the pdf as stated by Lemma 2 O

4.1 Detailed analysis of SE andA moments

In previous sections, we proved that some objective functions appliednit-gariance mixture of
sources verifying the LCE law, have local extrema when only one of te#ficients is non-zero, which
means that we can separate those sources by searching for localaxievertheless, a more detailed
analysis is required in order to determine if each local extremum corrdspora maximum or a
minimum.

Here, we compute the second order derivative of the objective funeiibrrespect ta for the special
cases of the SE ardA momentsf orderB. As we will show, the condition of a maximum or



minimum depends on the second order conditional expectation of sourdesmaheir marginal pdfs.
First we need to compute the second order derivative of the pdf witecetpthe parameterwhich
is as follows (its derivation is included in Appendix 1):

3%y (X; 1(7), 2(7))
912 =0

(fs WE[SEN)” + (1 — 30%)fs,(X) + X(L — 5p?)fE () — p>X2FL (X).

= (27)

We note that the second order derivative explicitly depends on thedecdar conditional expectation
E[ £|S = X] and the marginal pdf, (X).

Using this result, we are able to obtain the second order derivatives objéetive function as follows:

(1) SE measure: to obtain the second order derivative of SE we taketiative of Equation (16)
with respect to the parametemarriving at:

d2fy (x;
Ose(r) = — / %ﬂ (log(fs,(¥) + 1)) dx, (28)

and, by using Equation (27) in the last equation and taking into accounhthhCE law holds, i.e.
E[ Si|X] = pX, we obtain (see its derivation in Appendix 2):

f! 2
fs,(X)

GLe(0) = f (ELSIX] —p20)

(2) GA momentTo compute the second order derivative of @& momentve need to take the
derivative of Equation (17) with respect to the parametezaching to:

2
o = [ S D (30)

Again, by using Equation (27) into the last equation and using the LCE lavbiagno(see its
derivation in Appendix 3):

0 = B~ [ X 2o OEL SN dx— i (L+ 026 - 2). (31)

which is valid only when the integrgl |x|#~%fs, (X E[ S|x] dx exists.

5 Some particular cases

In this section, we analyze selected examples to illustrate our theoreticks iggolied to different
types of independent and dependent sources.

(1) Independent sourceket us consider the simplest case of having two independent sdbreesl
S. We see that the LCE law (Equation (4)) holds sipce 0 andE[ §|S; = ] = E[ S]] =
which means that SE5A momenandNG measurdiave a local extrema at= 0 using the
parameterization of Equation (26). Additionally, we note that the secoret omhditional
expectation i€[ $|S, = ] = E[ $] = 1 and then the second order derivative of SE using



(2)

®3)

Equation (29) becomes:

007
ggm—/& 1, (32)

which is always greater than zero except for the Gaussian distributiavhiioh is equal to zero
(f 52((:)) dx is the Fisher information (see for example [33], p. 23). This confirms the fact that,

at the separation point, we have a local minimum of the SE.
Now, using Equation (31) we evaluate the second order derivative@Amomentvhich is

150 = B[(B— Dup_2— pg] . (33)

Let us now analyze different cases corresponding to differenesadfs. For example, if we
consider the fourth order moment cage=£ 4), we obtairu,(0) = 4[3 — 4] which means that,

for sources with3, > 3 (super-Gaussian) the fourth order moment of the mixture has a minimum
att = 0. On the other hand, for sources wjih < 3 (sub-Gaussian), a maximum of the fourth
order moment of the mixture is found. More interestingly, we can evaluatarnityarily orderg

and Equation (33) will tell us if we need to search for a maximum or a minimum to aftain
separation.

Uncorrelated but dependent sourc&¥e consider here two sourc8sandS, generated as follows:
S = N;N; andS; = Ny, whereN; andN, are independent non-Gaussian random variables with
E[ N1] = E[ No] = 0 andE[ N?] = E[ N3] = 1. We see tha®; and$; are highly dependent but are
uncorrelated becauge= E[ $;S] = E[ N;N2] = E[ N;] E[ N3] = 0. The first order conditional
expectation is zero, i.&[ §|S = $] = E[ N1] 5, = 0. We also compute the second order
conditional expectation which B[ $|S, = s;] = E[ N2N3|N,] = SSE[ N?] = s3. Then, by using
Equation (29), the second order derivative of SE at 0 becomes:

2
9se(0) = / 2! fs;(( ))) dx— 3. (34)

It is interesting to note that SE could have a maximum &t 0 if the integral in the last equation is
smaller than three as in the case of our example in Figure 3d.

Regarding th&sA momentfor these sources, Equation (31) becomes:

1£4(0) = B(B — 2. (35)
and we conclude that we have a minimum at the separation pdj®) > 0) for everyg > 2.

A simplified model for material abundances in spectral unmixing (dep@rsburces)A simple
model to generate a special type of sources which are dependentatastrand constrained to have
their sum constant is as follows [19]. First, we geneRte 2 independent, nonnegative random
variablesNs, Ny, . .., Np; then, we define the following random variablék:= N;/ Z;F;zl N,, for

i =1,2,...,P. We note that these signals meet the constrgifit, U; = 1 as in the spectral
unmixing application. Now, we define our sources by normalizing two of thesstrained

sources, i.e.§ = (U; — Ui)/UUi, i =1,2. Itis not hard to prove that these sources meet the LCE
law sinceE[ §S] = p = —1/(P — 1) andE[ $|S = s5] = pS, = —1/(P — 1)s,. Additionally, It

is not difficult to prove that, for this particular type of sources we havestamtGA momenof

orderpB = 4 which makes it not suitable as an objective function for this case. Thavimtwas
already observed in [24] but not theoretical explanation was availabillenow. In Section 7.3, we
generate data and test ICA/DCA algorithms using a more realistic model foriahatenndances

in hyperspectral images by computing directly the material percentagespkinm real image.



Figure 3 Computation of SE, NG measure and GA moments for differehtypes of independent

and dependent source$§, and S,. After a de-correlation step (whitening) the measures are computed
using the polar parameterizatig®) = cog6)X; + sin(@)X, whereX; andX; are the whitened

variables. The corresponding scatter plots are shown in the 1st renpdgition of theoretical

positions (in polar coordinates) are shown as red arrows. The measere normalized in order to

cover the range [0, 1]. We used signals with a total number of sariipted0® but we used only a
subset of 10,000 samples to compute SE M@dmeasurdo avoid the extremely high computational
demand. For the generation of sub-Gaussian and super-Gausgie@ssea used the transformation
sinh™! (x) and sinh(x) applied to a Gaussian variabterespectively

In order to illustrate these theoretical results, in Figure 3, plots for SE, Giendasure, anGA
momentsvith several values g8, are shown for the following types of datasets using a sample size of
T = 10° (except for SE and NG for which we us&d= 10%): (a) Independent sub-Gaussian sources,
generated by applying the function s{oh* to zero-mean Gaussian independent signals; (b)
Independent super-Gaussian sources, generated by applyingtten sinkju) to zero-mean

Gaussian independent signals; (c) Independent bimodal sourcees wach of the independent sources
were generated by mixing two Gaussians wjth, o1) = (0.5,0.3 and(u», 02) = (—0.5,0.3,
respectively; (d) Dependent uncorrelated sources, generatesinmyys,; = Ny hy; andsy; = Ny where

Ny, Ny Were generated as independent zero-mean uniform distributionse apbBégendent constrained

sources, generated by usig(f) = —*— withi = 1, 2, where signals,, (p=1,2,...y,4) were
71 Mpy

generated using independent unlform distributions in [0, 1].

We see that for the cases (a), (b), (c) and (e), the separationtoearce is attained at the minima of
the SE and the maxima of tidG measurelnterestingly, sources in case (d) (dependent and
correlated) shows that one of the sources is detected at one maximunSi tred one minimum of
the NG measure. It is important to note that the SE have also spurious local niamitha case of
bimodal distributions (case (c)). This behavior in information theoretic nreasuas already analyzed
in [30-32] for the independent sources case. On the other hand; resaults, we see that the NG
measure anA momentsre more robust having no spurious local extrema. We also note that, for
Sub-Gaussian independent sources (a)@Aanomentneasure have local minima at source locations,
on the other side, for super-Gaussian sources, they are locatedlanimxima. Nevertheless, it is
important to note that for large orde# & 4 andg = 7) one local maxima is less evident because
moments of a large order are affected by outliers (see scatter plot in Bgurn the case (e), we
observeGA momentgrovide a local maximum fof = 3 and local minima fog = 7, 10, and, for

B = 4 the second order derivative is in theory zero and for that reasdadhkextrema are not clear.

6 Parzen windows based algorithms for source separation

Parzen windows method is a hon-parametric technique used to estimate agdibibea set of
samples [34]. Using Parzen windows we can obtain the following estimatoB&@6] and the NG
measure [12]:

) ! 1 (Y (®) — Y, (0)
Ose(0) = — ;Iog ﬁ;¢ (f) , (36)

. Vi, (0) Y, (0) — Y1, (0) 1
(2] , 37
uel®) = TW—Z (2)* 7 ZZ¢( )



whereT is the number of samples,
Yi(0) = cos0)Xyt + SIN(O)Xet, (38)

is the projected variabtessampled at timé (x; andx, are assumed uncorrelated, i.e. whitened)) is

the kernel function (typically a Gaussian kernel) drid a parameter which determines the size of the
windows (we adoph = 1.06 x T-5 as determined by the minimum mean integrated square error
(MISE) [34]). From Equations (36) and (37) we see that their computaticomplexity is quadratic in
terms of the number of available sampléxT?)).

On the other hand, for the estimation@®A momentsve can use the ergodic average formula:

1 T
? S B
mp®) = < ?:1 e (0)]”. (39)

Clearly, a big advantage @A momentsver the other measures is its lower computational cost since it
is linear in the number of samples, i@(T).

As usual, in order to simplify the search of the maximum (or minimum), we first applliitening
filter, i.e. x; < Tx, after which we obtaifE[ xx"] = |. The filter matrix is given byl = A=2UT with
A andU being the diagonal matrix of singular values and the matrix of singular vectong
covariance matrixC,, = E[ xx'], respectively [3,12].

The search for a local extremia can be done by iteratively evaluating the objective function and/or its
derivatives at a current estimaté’ and by generating a sequer@®,0®@, ...y, 6% that converges to

6*. Note that the derivatives of the measures can be easily computed framtidits (36), (37) and

(39). The simplest way to generate this sequence could be to use a stempesi/descend method, i.e.
ok+D = g0 + g (W), In this case the step sizanust be chosen in order to guarantee the
convergence in few steps which is not a simple task. To avoid this problemprgider here a simple
and efficient algorithm based in the N—R iteration which, in the one dimensiasal is equivalent to

the steepest ascend/descend method with an adaptive step size deféned‘lg),(;w, ie.:

/ g(k))
plrd _ gy 9O (40)
19"(6%)]

whereg(#) could be any 0fise(0), Gna(P) or f15(6), and the sign4” or “ —" must be chosen for the
case of a maximum or minimum, respectivaiyy) andg”’(9) are the first and second order
derivatives, respectively, whose formulae can be derived frooatmns (36), (37) or (39), providing
similar computation complexity. A great advantage of the N—R algorithm is thatiibigep to

converge quickly in general (quadratic convergence). A potentiVidack of the N—-R method is that a
close to zero second order derivative can make the method diverge:afnour simulations showed
always very fast convergence suggesting that the zero secoeddmdvative condition is not likely to
occur in general.



Algorithm 1: DCA algorithm (two-sources case)

Require: mixturesx; (t =1, 2,...,T) (centered), tolerandel, max. # of lteration&may attemptdNay.
Ensure: estimated sources; ands,;.

Cxx = %ZtT:lxtxtT; Covari ance matri x.

UAVT = C,; Si ngul ar Val ue Deconposition SVD.
Xt = A"Y2UTx, (t=1,2,.y,T); Wi t eni ng.

Search for first extremum

0@ =2ru;lnitialization: uis a random nunber uniformy
di stributed in[O,1].

6: §p = +00,k=0;
7: while §5 > tol and k < Kihaxdo
8: okth =pg® 4 lé’,,((ge—((kk))))l N-R iterationC.
9:  § = [|0*D —9Wy;
10: k=k+1;
11: endwhile

12: 6, =0%D:First |local extremum found

13: Search for second extremum

14: 6@ =6, +7/2; 1 nitialization

15: RepeatSTEPs 6-11;

16: n= 14

17: while]e®D — g;| < tol and n < Ny do

18: 99 =2zu;Initialization: uis a random nunber uniformy
distributed in[O0,1].

19: RepeatSTEPs 6-11;

200 n=n+1;

21: endwhile

22: 6, = 0&D: Second | ocal extrenmum found

23: return §; = cog0;)Xy; + Sin(@)Xy; (i = 1, 2);

In Algorithm 1, the algorithm for the case= m = 2 (two mixtures and two sources) is shown. In this
case, after the first local extremum is found, the algorithm searchésef@econd local extrema

starting from an initial gues$® = 6, + /2 which, in the case of having independent sources, would
correspond exactly to the location of the second source (orthogose)l. dais noted that, in the general
dependent sources case, it is possible that this procedure resultimg fihe same local extremum
again. In order to avoid this situation, the algorithm re-start the local extsesr@h by using different
random initial guesses until the proper local extremum is found. The maxinwmiber of attempts

Natt is a parameter which was setNlg: = 20 in our simulations.

It is important to highlight that, if we generalize Algorithm 1 to the case of amyitnamber of sources
andm = n > 2, we may apply a deflation step by eliminating every local extrema after they are
detected preventing from multiple detections. However, this deflation step isvial in the

dependent case since the sources are not orthogonal and theatldeBation technique used in ICA is
not longer valid. For the particular case of tH& measurgin [12] a special deflation step was
developed by transforming the data in order to make it Gaussian at the loohtaog detected source.



We highlight that computing the derivatives of the SE based on Parzemwingroduces numerically
unstable results becaugelog(f (x,6)) = f(ie) d1x9  thus, the errors in the estimation of the pdf are
amplified in the derivative. On the other hand, the estimation of the derigdtivé&A momentand
NG measurelo not suffer this problem and showed to be numerically stable in our simugation

7 Source separation experiments
7.1 Separation performance evaluation on different datasets

In this section, we show the results of applying our N-R algorithm basé&alfomomentgorder

B =0.5,1,1.5,25,..,10) andNG measuréMaxNG) compared with FastiCAwith g(x) = x3 and

g(X) = tanhx) nonlinearities) and the BCA algorithm recently proposed in [22]. FastlGAdsssic,
very fast algorithm developed for ICA, on the other side, BCA algorithempswerful geometric

method for ICA/DCA based on the idea that the mixture of bounded source=ages the volume of

the support of random variables. BCA obtains the separation by minimizingpthee of the support

of estimated sources by assuming that the support of the sources id@theatartesian product of the
individual supports [11]. The last condition is valid for independentses and can be seen as a strong
condition for dependent sources, for instance, sources found hiititespectral unmixing do not meet
this condition as Figure 2 illustrates.

In Figure 4, we present the performance results in terms of the obtainel sgnterference ratio
(SIR) which is defined as S|R= —101log,, (% Zthl(ét — st)2>. We used the following datasets: (a)

Independent Sub-Gaussian sources, generated by applying thiefusiniu) ! to zero-mean

Gaussian independent signals; (b) Independent Super-Gaussiaes generated by applying the

function sinl{u) to zero-mean Gaussian independent signals; (c) Independent bistadeds, where

each of the independent sources were generated by mixing two Gausdtiay.,,01) = (0.5,0.2

and(u2,02) = (—0.5,0.3, respectively; (d) Independent and uniformly distributed zero-mearcss;
H Nit

(e) Dependent constrained sources, generated by qswgy—n with i = 1,2, where signalsy,
=1"'p

(p=1,2,...,4) were generated as independent uniform dpistrif)utions in [0, 1IPgpendent sources
with Copula-t distributions, wherg,; ands,; were generated from a Copula-t with 4 degrees of
freedom and with linear correlatign= 0.8 which makes them highly dependéhite observe that, for
the case of Sub-Gaussian independent source€fainomentsvith 8 = 3,4,..., 10 give a similar
performance as FastICA and MaxNG. For the case (b) (Super-@ausdependent sources), the
performance oA momentss slighter less than FastiICA and MaxNG. For bimodal independent
sources (c) and uniformly distributed independent sources (d), tiepence ofGA moments

similar to FastICA and MaxNG for valugs= 1.0, 1.5, 2.5, . ., 6.5. For constrained dependent
sources (e), the best performance is obtaine@fer6.0, 6.5, .., 10 and MaxNG with a SIR of
approximately 40 dB. It is noted that the LCE condition holds exactly, thusgaration is almost
perfect by usingNG measureOn the other hand, in case (f) sources modelled with Copula-t
distribution with correlationrp = 0.8 where the LCE condition holds only approximately as the Figure
2c illustrated, for this reason, the quality of separation by usindNtBemeasurés degraded (SIR of
approximately 20 dB) and BCA outperforms all the other methods becauseesdulfil the BCA
conditions. It is important to mention that dataset (e) does not fulfil thergssons for FastiCA
(independence) neither for BCA (support of sources is not equbktoartesian product of individual
supports). It is also interesting to note that foe= 4, the performance drops because the second order
derivative is zero (not a maximum neither a minimum). It is clear that, thse logrésrmance of BCA
for cases (a), (b), (e) and (d) can be attributed to the fact that tbesees do not fulfil the conditions
for BCA, i.e. or they have not bounded support or the support afcesucan not be written as the
cartesian product of individual supports.



Figure 4 Results of applyingGA moment (order g = 0.5,1,1.5,2.5,..,10) and NG measure
(MaxNG) compared with FastICA (with g(x) = x3 and g(x) = tanh(x) nonlinearities) and the

BCA algorithm proposed in [22] for the case ofnh = 2 sources andm = 2 mixtures. The mixing
matrix A € R>*? was generated using independent Gaussian random numbers. Afeneerf total
number of 50 Monte Carlo simulations and we use a total numbe&r-e, 000 samples in each case.
On each box, the central mark is the median, the edges of the box are tten@5tbth percentiles, the
whiskers extend to the most extreme data points not considered outlieim,tieds are plotted
individually with circles

7.2 Robustness to the sample sizZe

We have theoretically proved that several objective functions are vadidgarate sources verifying the
LCE condition. Nevertheless, in practice, B& momentand theNG measurare estimated from
available samples which implies that the measures are sensible to the size aa#degTddn Figure 5,
the robustness of the measures is shown by evaluating the mean SIR qddhatiss versus the sample
sizeT. In the small dataset size case, the errors on the estimation of the momenteiadérikiatives
can be significant, on the other side, thi& measurshowed to be significantly more robust.

Figure 5 Robustness to sample siZ€: Mean SIR values versusT was computed for the case of
constrained sources. ThéNG measure showed to be the most robust measure

7.3 Blind spectral unmixing example

In order to have a realistic set of sources for testing our method in thextarftie blind spectral
unmixing problem, we used a set of material abundances generated asfd@ased on a real
ground-truth (see Figure 6 (left)) of a selected area of Rome city, vigneasource to each one of the
classes. For the estimation of each source (abundance) we divide thie &a8 pixel subareas and
we calculated the material abundances as the percentages of the clilsisesagh subarea. As a
result we obtained nine sources with a totallof 2814 (67x 42) samples each (in Figure 7a scatter
plots for some examples of pair of sources are shown). In Figure 7petfi@mance results are shown
for MaxNG, FastICA and BCA algorithms applied to different combinationsvaf sources and using
randomly selected mixing matrices over a total of 50 simulations. We note thasthliesraithGA
momentsre not included because their performance was poor (similar to FastW@?Athink this is
because the sample size is too smal 2814) and the distributions are very irregular. On the other
hand MaxNG showed the best performance. BCA and FastICA has tbeveMaxNG because
sources does not fulfill the conditions required by the algorithms i.e. tleegarindependent and their
support can not be written as the cartesian product of individualostgp

Figure 6 Real radiometrically corrected hyper spectral image of a Rme city area as provided by
the Airborne Laboratory for Environmental Research at IIA-CN R in Rome, Italy [19]. This

540 x 337 pixels image was obtained with an airborne imaging spectrometer conta@f@raipannels.
The RGB version (left-upper), the classification map or ground-trutBidening pure pixels
(left-bottom) and the nine material abundances X642 pixels) computed by using a-88 window
(right) are shown



Figure 7 Results for blind spectral unmixing based on DCAMaterial abundances computed based
on a real world map (Rome city image in Figure 6) were artificially and randomlydraxel separated

by MaxNG, FastICA and BCA. Iffa) selected examples of normalized sources pairs are shov) In

the performance results are shown in terms of the obtained SIR

8 Conclusions and discussion

This article contributes to shed light on the theoretical aspects of the fiepaygindependent and
dependent sources based on the maximization (or minimization) of objeatiggdus by filling the
gaps existing among previous works and giving rigorous theoreticaleaango important questions.
Furthermore, this new theoretical framework opens the possibility to anaguebjective functions
for BSS problems. We have shown that, under the LCE assumption, kebjetive functions such as
GA momentdNG measurend SE are valid for the separation of dependent sources. Hoaeveng
these measures, we showed tB# momentare less robust to the sample sizéhan theNG measure
but has much lower computational complexity. We have also shown that singkffagient
algorithms can be developed based on these measures by using Pad@nssgchnique combined
with a N-R iterative search of local extrema. Nevertheless, it was noteddtiaations of derivatives
of the SE, based on Parzen windows, becomes numerically unstable.

Another disadvantage of tH&A momentss that additional information about the sources is needed in
order to determine if the separation is obtained at a maximum or a minimum. Wheesaue
independent, we can determine the sign of the second order derivaijustlevaluating Equation (33)
which can be done quickly and easily from data. On the other side, fendiemt sources, it is
necessary to know the second order conditional expectationg[ i15]. Additionally, it is needed to
chose the proper ordgrwhich could be not simple and it is out of scope of this article. On the other
hand, theNG measureloes not require any extra parameter, it is very robust to the sampl€ aize:
usually the separation is obtained at local maxima (except in pathologies aashown in our
example in Figure 3d).

As a main conclusion, we have found that the separation of dependenesas possible but additional
constraints, or assumptions, on the type of dependence among soustdxertaken into account. For
example, if we know that the support of sources can be written as thsiearfgoduct of the

individual supports, then an elegant and very efficient method is to applBCA algorithm, or if
sources have LCE, as in the case of abundances in the blind spectiaingapplication, then the
methods presented in this article are the most appropriate.

Endnotes

aFor ease of the presentation, we consider here only the case of tveesavtich correspond to have
only one parametet. For the case afl > 2 a hyper-spheric coordinate system can be used as shown
in[12].

bIn order to solve the problem of possible zero second order deegtimore sophisticated methods
well known in the literature can be implemented as, for example, by using thHedgated Gradient
method.

€g'(.) and g”(.) are the first and second order derivatives of a selected measucambé computed by
taking derivatives on Equations (36), (37) or (39) for the case oN&Eor GA moment, respectively.
Sign '+ and sign ‘-’ correspond to maximum or minimum search, respdgtive

dif the same local extremum is found then a new search starts (Ng tattempts).
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Appendix 1

Applying the differentiator operator under the integral sign in Equatiohfdi@he case oh = 2
sources, we to obtain the partial derivatives of the pdf evaluatéd at,) = (0, 1) as follows:

ofx(X)

001 [y_g, B _(fSZ(X)E[Sl|X])’ (41)
9%fy (X) _ "

T |, = (=MELSN) (42)
3k (X) /

axa ol - — (xfs,(%), (43)
3%fx (X) /

g |, = Hs00+ B0+ P, (44)
2

9%fx (%) = 2(fsE[SIN) + X (fs, WE[SIM) ", (45)
30!10[2 a=ag

Using the chain rule of derivatives we have that

d’fx(x;t)  94f > 9%f 9%f > of of
— / 2 / / - / . " . //. 46
dr? aaf (ozl(r)) + Balaagal(f)az(” + aoz% (az(r)) + Balal + 80{20[2 (46)

And, using the fact that
@1(0) = 1, & (0) = 0, a5(0) = —p, a5(0) = p* — 1; (47)

we obtain the desired result of Equation (27).



Appendix 2

The second order derivative of the SErat 0O is:

d?fy (x; 0
GLe(0) = / % (log(fx( 7)) + 1) dx (48)

In the following, in order to simplify the notation we replaioe) = fs(x) and
gse= — [ f(x) log(f (x))dx.

Now, by using Equation (27) into (48) and, taking into account the followasgilts:

, F/(X) _ (f/(x))z 1
f(f(x)E[sﬁx]) de = —/E[§|x] o0 dx+/E [S1X] f (x)dx,

/ xf' () (log(f¥) + D dx = gsg

2 (f'(x))?

f(x) o

[ 00 togt0) + D = 20 [
we finally arrive at the desire result of Equation (29).

Appendix 3

By using Equation (27) into (30) and, taking into account the followingltesu

[ (ooErsiN) ixox
[xxroodx = <8+ Dup

BB - 1) f FOOEL SN X/7~2dlx

fx2|x|ﬁf//(x)dx = (B+2(B+ Dug,

we finally arrive at the desire result of Equation (31).
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Super—Gaussian Independent Sources

Sub-Gaussian Independent Sources
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Bimodal Independent Sources
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(f) Dependent Sources modeled with Copula-t distributions

Constrained Dependent Sources
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Mean SIR vs sample size (T)
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