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Abstract

It is well known that independent sources can be blindly detected and separated, one by one, from
linear mixtures by identifying local extrema of certainobjective functions(contrasts), like
negentropy, non-Gaussianity(NG) measures,kurtosis, etc. It was also suggested by Donoho in 1981,
and verified in practice by Caiafa et al., that some of these measures remain useful for particular
cases with dependent sources, but not much work has been done in thisrespect and a rigorous
theoretical ground still lacks. In this article, it is shown that, if a specific typeof pairwise dependence
among sources exists, calledlinear conditional expectation (LCE)law, then a family of objective
functions are valid for their separation. Interestingly, this particular type of dependence arises in
modeling material abundances in the spectral unmixing problem of remote sensed images. In this
study, a theoretical novel approach is used to analyzeShannon entropy(SE), NG measure and
absolute smoments of arbitrarily orderβ, i.e. generic absolute momentsfor the separation of sources
allowing them to be dependent. We provide theoretical results that show the conditions under which
sources are isolated by searching for a maximum or a minimum. Also, simple and efficient
algorithms based on Parzen windows estimations of probability density functions and
Newton–Raphson iterations are proposed for the separation of dependent or independent sources. A
set of simulation results on synthetic data and an application to the blind spectralunmixing problem
are provided in order to validate our theoretical results and compare thesealgorithms against
FastICA and a very recently proposed algorithm for dependent sources, the bounded component
analysis algorithm. It is shown that, for dependent sources verifying theLCE law, theNG measure
provides the best separation results.

Keywords

Dependent component analysis (DCA), Independent component analysis (ICA), Blind source
separation (BSS), Generic absolute (GA) moments, Entropy measures, Non-Gaussianity (NG)

1 Introduction

In signal processing, a generic problem is how to separate signals that are linearly combined in the
measurements. Blind source separation (BSS) consists on the task of isolating n sources from a set of



m linear mixtures:
xt = Ast, (1)

wherext ∈ R
m is a column vector containing themixtures(observed measurements),st ∈ R

n is a
column vector containing the unknown source signals (sources) andA ∈ R

m×n is the unknownmixing
matrixcontaining the mixing coefficients. The parametert is an index that can be related to the position
in time or space (pixel index) depending on the application. The model of Equation (1) is commonly
referred as thenoiseless instantaneous mixing model.

When sources are statistically independent andm≥ n (overdetermined case), the problem is well posed
in the sense that sources can be identified up to some unimportant indeterminacies [1]. This result
allowed the development of a sort of independent component analysis (ICA) algorithms which were
successfully and widely used in engineering problems [2–4]. Many criteria have been proposed in the
context of ICA, for example, it is known that sources can be detected byidentifying the local minima
of the SE, in the space of the mixing parameters, keeping the variance constant because of a classic
result from information theory: the entropy of a sum of independent variables is larger than the entropy
of individual variables [1,3,5–7]. More generally, Comon [1] has introduced the definition ofcontrasts
for ICA, i.e. objective functions such that their global maxima corresponds to the separation of all
sources. Besidesnegentropy(negative SE), othercontrastshave been proposed for ICA as it is the case
of higher order cumulants for which fourth order cumulant is a particular case [3,8–10], the convex
perimeter for bounded sources [11],L2-distancenon-Gaussianity(NG) measure [12], least absolute
end-point (LAE) [13], and others. For an up to date review of existing algorithms for ICA, the reader
may refer to [2].

Unlike in the ICA case, the separation of dependent sources or dependent component analysis (DCA),
has not been fully studied in the past and showed more difficulties. Hyvärinen & Hoyer [14] have
proposed independent subspace analysis (ISA) as an extension of ICA where components in different
subspaces are assumed independent whereas components in the same subspace have dependencies.
When the sources and the mixing matrix are restricted to be non-negative, theproblem can be seen as a
non-negative matrix factorization (NMF) problem for which many algorithms have been
developed [15]. However, NMF suffers from non-uniqueness of the solutions and the separation is not
granted if not additional constraints are assumed, for example, by imposingsparsity of sources [16,17].
Bedini et al. [18] have developed algorithms for the separation of correlated sources found in
astrophysical applications based on multiple-lag data covariance matrices, i.e. by exploiting the time
structure of sources. In [12,19], an algorithm called MaxNG based onthe maximization of a NG
measure was proposed and tested on dependent sources extracted from remote sensed images.
In [20,21], some DCA methods were tested on astrophysical sources. Cruces [11] proposed bounded
component analysis (BCA) as an alternative method for BSS which relies onthe bounded support of
sources. In BCA, the separation is granted when the convex hull of the sources domain can be written
as the cartesian product of the convex hulls of the individual source supports which is a very restrictive
assumption. Recently, Eldogar [22] showed that a particular type of dependent sources generated
according with a copula-t distribution are perfectly separated by BCA for a wide range of the
correlation coefficient.

In all the previously mentioned DCA methods, when the independence assumption is relaxed, the
success of the separation relies on alternative, and usually very restrictive conditions on sources.
Moreover, it was suggested in [23], and verified in practice in [12,19,24], that some measures used in
ICA, such asnegentropy, NG andkurtosis, remain useful for particular cases with dependent sources,
but not much work has been done in this respect and a rigorous theoretical ground still lacks.



In this work, we propose a unified theoretical framework to study the capability of any objective
function to detect each of the sources as a local maximum (or minimum) in the space of coefficients.
From our analysis, it turns out that many new objective functions can be proposed owing this property
if a particular type of dependence is verified among sources. In particular, we analyzegeneric absolute
(GA) moments, SE and NG measure as valid objective functions. We introduce simple and efficient
algorithms for the separation of sources using Parzen windows estimations of pdfs and
Newton–Raphson (N–R) iteration. We analyze the performance of these measures and compare them
against FastICA and BCA algorithm.

This article is organized as follows: in Section 2, the theoretical aspects areintroduced followed by
detailed analysis of the independent sources case (Section 3) and the dependent sources case (Section
4); in Section 5, using this theory, a set of particular cases are rigorously analyzed and illustrated by
simulations; in Section 6, algorithms for source separation withn= 2 sources are derived by using
Parzen windows estimation of pdfs and N–R iterative method; in Section 7, several simulation
experiments are presented showing the performance of the proposed algorithms and comparing them
against FastICA and BCA; finally, in Section 8, the main conclusions of this work and a discussion
about our results is included.

Notation and assumptions

We use capital letters to denote random variables, for example,S1, S2,. . . ,Sn are the random variables
associated to the sources which have ajoint probability density function(pdf) denoted by
fS1S2...Sn(s1,s2, . . . ,sn). Obviously, when sources are independent, the joint pdf factorizes, i.e.

fS1S2...Sn(s1,s2, . . . ,sn) = fS1(s1)fS2(s2) . . . fSn(sn), (2)

wherefSi (si) is called themarginal pdfof variableSi . In this work, we are also interested in the case of
having dependent sources where such a factorization of the joint pdf does not exist.

We also define theconditional pdfof a random variableS1 given thatS2 = x as follows:
fS1|S2(s1,x) = fS1,S2(S1,x)/fS2(x). Accordingly, we define thefirst and second order conditional
expectationsas follows:E[ S1|S2 = x]=

∫

s1fS1|S2(s1,x)ds1 andE[ S2
1|S2 = x]=

∫

s2
1fS1|S2(s1,x)ds1. In

the case of having only two sources, we can simplify the notation by usingE[ S1|x]≡ E[ S1|S2 = x] and
E[ S2

1|x]≡ E[ S2
1|S2 = x]. Since conditioned expectations are functions ofx, we use the following

simplified notation:E′[ S1|x]≡ d
dxE[ S1|x] andE′[ S2

1|x]≡ d
dxE[ S2

1|x].

In several parts of this article, when we apply the differentiation operatorunder the integral sign, i.e.
d
dτ

∫

g(x, τ)dx=
∫

d
dτ

g(x, τ)dx we will assume that the functiong(x, τ) is sufficiently nicely behaved in
order to allow this operation. Basically, we assume thatg(x, τ) and d

dτ
g(x, τ) are continuous forx in the

range of integration and there are upper bounds|g(x, τ)| ≤ A(x) and| d
dτ

g(x, τ)| ≤ B(x) independent of
τ such that the integrals

∫

A(x)dx,
∫

B(x)dx do exist.

A motivation for this work: the blind spectral unmixing problem

Blind spectral unmixing is a specific application of BSS to the analysis of hyper-spectral remote sensed
images. In this case, it is known that, at any fixed pixel, the linear mixing model of Equation (1) is
valid. The vector of mixturesx represents the sensor measurements at different wavelengths, matrixA
contains in its columns the spectral signatures of the endmembers (materials) existing in the covered
area and vectors contains the endmember fractional abundances at the given pixel [25].When the



spectral signatures are unknown this is a blind problem and the objective isto estimate both, matrixA
and the endmember fractional abundancess.

Most of the existing spectral unmixing algorithms exploit geometrical conceptsby using the fact that,
due to the linear mixing equation, the mixed pixels have to lie inside the convex hull of the
endmembers. This convex hull forms a simplex in the spectral space, with the endmembers as spanning
vertices. Some algorithms then try to look for the largest volume embedded simplex(e.g. simplex
growing algorithm (SGA) [26], simplex-projection unmixing (SPU) [27]) ortry to identify extreme
points in the data cloud (e.g. vertex component analysis (VCA) [28]). Other recently proposed methods
are based on the NMF with sparsity assumptions (e.g. S-measure constrained NMF algorithm
(NMF-SMC) [29]).

As a BSS problem, sources in the blind spectral unmixing problem are clearlynot independent since
they are related to fractional abundances, in fact, they are constrainedto sum up to one, i.e.
∑n

i=1 Si = 1. Additionally, in order to avoid scale indeterminacy and remove constant values, we have
to work with normalized sourcesSi , i.e. Si ← (Si − µi)/σ

2
i whereµi andσi are the mean and standard

deviation associated to sourcei. Under these conditions, the blind spectral unmixing task can be
approached by solving a BSS problem with the additional constraint [19]:

n
∑

i=1

Si = 0, (3)

with E[ Si ]= 0,E[ S2
i ]= 1(i = 1, 2,. . . n).

The dependence between any pair of normalized sources can be characterized, for example, by the
conditional expectationsE[ Si|Sj ] andE[ Sj|Si ] (i 6= j). Clearly, when sources are independent, we have
E[ Si|Sj ]= E[ Si ]= 0. On the other hand, when sources are dependent the conditional expectation
E[ Si|Sj ] (i 6= j) is a function ofSj . We can try, to determine these functions in order to satisfy Equation
(3). By applying the conditional expectation to this equation with respect toSi (i = 1, 2,. . . ,n) we
obtain a system ofn equations withn2− n unknown (the conditional expectationsE[ Si|Sj ] ∀i 6= j).
Thus, forn≥ 2 there is not a unique choice of the conditional expectations. Then, we have to obtain
this information from the observation of real data. In [19], it was shown that hyper-spectral data can be
well modeled as having linear conditional expectations (LCEs), i.e.E[ Si|Sj ]= aSj + b (see [19]). The
following theorem provides us the values of the constantsa andb.

Theorem 1. ([19], Theorem 3): Given a pair of dependent normalized sources Si , Sj , if the conditional
expectation E[ Si|Sj ] is linear in Sj , that is E[ Si|Sj ]= aSj + b, then a= E[ SiSj ] and b= 0.

In other words, in the blind spectral unmixing problem, the normalized sources can be modeled as
verifying the following condition:

E[ Si|Sj ]= ρij Sj , with ρij = E[ SiSj ] , (4)

which is called the LCE law.



As we demonstrate in this article, when this particular type of dependence between sources is valid,
their separation from linear mixtures can be obtained by maximizing (or minimizing) different types of
objective functions.

Relationship with previous works and new contributions

In [12], we have proposed the Parzen based NG measure and developed the MaxNG algorithm, a DCA
method which showed to be useful to separate dependent sources extracted from images and also
astrophysical dependent sources [20], outperforming classical ICA algorithms. However, in those
articles theNG measurewas not rigorously justified. Later, in [19], theNG measurewas proposed as a
solution for the blind spectral unmixing problem and a partial theoretical justification was given in
terms of the LCE condition (guarantee of local extremum). In [24], we reported the results obtained by
extending our method to other measures of NG such as Negentropy, and moment based measures, and
applying them to synthetic and real datasets in the blind spectral unmixing problem context. However,
a complete theoretical foundation was still lacking and several questions arose from those experimental
results, for example: (1) why kurtosis based measure failed to separate one specific type of dependent
sources? or (2) given a particular measure, how to determine if it can be used for the separation of
sources by local maximization or minimization?, and (3) on which conditions on sources the separation
can be granted? In the present manuscript, we present a unified theoretical framework for the study of
different measures for separation of independent and dependent sources verifying the LCE condition.
The main contribution of this manuscript is to fill the gaps existing among previousworks and give
rigorous theoretical answers to the above open questions. In particular, it is shown that the kurtosis
based measure (i.e.GA momentwith β = 4) has zero second order derivative for the constrained
dependent sources, which makes it useless for the separation as our empirical results showed in [24].
We also provide a precise condition (see Equation (33)) that establishes whether independent sources
are separated by maximizing or minimizing the correspondingGA momentµβ(θ). On the other side,
for dependent sources, it is necessary to know the second order conditional expectations, i.e.E[ S2

i |Sj ].
Another contribution of the present article is a new algorithm based on a N–Rsearch for local extrema
which has quadratic convergence, i.e. being much faster than the algorithmsproposed in [12,19,20]
which used a steepest ascend method with fixed update step. Additionally, in the present manuscript we
compare our algorithms against a recently proposed DCA algorithm, namely, the BCA [22], one
state-of-the-art algorithm for DCA.

2 Detection of sources by maximizing or minimizing objective functions

In this article, we focus only on sequential methods, also known asdeflationmethods, that extract
normalized sources one after another by searching for local extrema ofa predefined objective function.
This simple idea was already used in the ICA context [2,3] and can be introduced as follows. When the
matrixA in Equation (1) is full-column rank, the sources can be expressed as a linear combination of
the mixtures by premultiplying Equation (1) with a pseudo inverse matrix such as the case of the
Moore–Penrose pseudoinverseA†, i.e.

sτ = A†xτ . (5)

Since matrixA is unknown, a reasonable strategy could be to search in the space of coefficients, for
those points which correspond to each one of the sources. In other words, if we denote bySi the
random variable associated to the sourcesi t then we need to analyze the behavior of themixture
random variable Xdefined as:

X = α1S1+ α2S2+ · · · + αnSn. (6)



We say that variableSi is separated from the mixture when all coefficients are zero exceptαi , i.e.
αi = 1 andαj = 0 for everyj 6= i. Here we arrive at the main question we want to answer in this
article: how can we discriminate between a single source compared to any linear combination of two or
more sources?

We introduce some important objective functions that allow us to answer this question. Any valid
candidate for an objective function should involve the pdf of the mixturefX(x) which depends on the
mixture coefficientsαi . In particular we consider the SE:

gSE= −
∫

fX(x) log(fX(x))dx, (7)

the NG measure defined as follows [12,19]:

gNG =
∫

[fX(x)− φ(x)]2 dx, (8)

whereφ(x) = 1√
(2π)

exp
(

−1
2x2
)

, and theGA momentof orderβ which is defined as follows:

µβ = E[ |X|β ]=
∫

|x|β fX(x)dx. (9)

The SE is a well known measure already used in ICA, on the other side theGA momentwas not used
before for BSS except in the particular case whenβ = 4 which is closely related with the
kurtosis[3,9]. In fact,kurtosisis defined asκ = µ4/µ

2
2. In this sense, our analysis generalizes existing

ICA methods providing insightful interpretations of the results. Note that, forβ = 2 we obtain the
second order moment of the variable which, in our case is fixed toµ2 = 1. But we can choose any
order of momentβ provided that the integral in Equation (9) exists. In the following section we prove
that these objective functions are valid for ICA.

3 Independent sources case

Let us focus on Equation (6) and analyze wether it is possible to isolate a sourceSi from the rest by
only looking at the statistical behavior of the mixture variableX, i.e. by studying how the pdffX(x; α)

varies according to the mixing parameters in the vectorα = (α1,α2, . . . ,αn). For the ease of the
presentation we start with the analysis of the two independent sources case. Since we have to generate
all possible mixtures of two independent sources maintaining the variance constant, we use the
following parameterization:X = α1(θ)S1+ α2(θ)S2 with α1(θ) = cos(θ) andα2(θ) = sin(θ) which
means that the separation is obtained atθ = kπ/2 (k = 0,±1,±2, . . . ) (ignoring scaling ambiguity).
We first introduce a new result characterizing the pdf of a mixture of independent random variables as a
function of the mixing parameterθ , i.e. fX(x; θ).

Lemma 1. (Two independent sources case): Given two zero-mean and unit-variance independent
source variables S1 and S2, the pdf fX(x; θ) of the mixture variable X= α1(θ)S1+ α2(θ)S2 with
α1(θ) = cos(θ) andα(θ) = sin(θ), has zero-derivative with respect toθ for every x atθ = kπ/2
(k = 0,±1,±2, . . . ), i.e.

∂fX(x; θ)

∂θ

∣

∣

∣

∣

θ=kπ/2

= 0. (10)

Proof. Let us prove first the zero-derivative condition (maximum or minimum) atθ = π/2



(α0 = (α1,α2) = (0, 1)) which corresponds to the separation of sourceS2. In the neighborhood ofα0,
i.e. α = α0+ δ, we can write the pdf of the mixture as the convolution:

fX(x; α) = 1

α2

∫

fS1(s1)fS2

(

x− α1s1

α2

)

ds1. (11)

By using the chain rule of derivatives we obtain

∂fX(x; α)

∂θ
= ∂fX(x; α)

∂α1
α′1(θ)+ ∂fX(x; α)

∂α2
α′2(θ). (12)

We compute the partial derivatives in the last equation evaluated atα1 = 0 andα2 = 1 and, by inserting
the derivative operator inside the integral, we obtain:

∂fX(x; α)

∂α1

∣

∣

∣

∣

α1=0

= −f ′S2
(x)
∫

s1fS1(s1)ds1 = −f ′S2
(x)E[ S1]= 0, (13)

∂fX(x; α)

∂α2

∣

∣

∣

∣

α2=1

= −fS2(x)− xf ′S2
(x) = −(xfS2(x))

′, (14)

Now, taking into account thatα′1(π/2) = 1 andα′2(π/2) = 0, and using Equations (13) and (14) into
Equation (12), we arrive at

∂fX(x; α)

∂θ

∣

∣

∣

∣

θ=π/2

= 0× 1− (xfS2(x))
′ × 0= 0, (15)

for everyx. Using a similar procedure but working in a neighbouhood ofα0 = (α1,α2) = (1, 0), i.e. by

consideringfX(x; α) = 1
α1

∫

fS2(s2)fS1

(

x−α2s2
α1

)

ds2 instead of Equation (11), we can prove the

zero-derivative condition atθ = 0, which corresponds to the separation of sourceS1. Finally, it is easy
to see that the zero-derivative condition also holds for any integer multiple of π/2, because the resulting
mixture becomes±S1 or±S2 and the same reasoning used before applies. Thus, the zero-derivative
condition is valid for everyx at θ = kπ/2 (k = 0,±1,±2, . . . ) as claimed by this lemma.

In Figure 1, a graphical interpretation of this lemma is shown in terms of the shape of the pdf for a
mixture of two independent sub-Gaussian variables atθ0 = π/2 andθ = θ0± δθ .

Figure 1 pdf for the mixture variable X = α1(θ)S1+ α2(θ)S2 with sub-Gaussian sources at
θ0 = π/2 (left) and at θ = θ0± δθ (right). Note that, whenθ = π/2 the pdf corresponds to the source
S2, on the other side, when a perturbation on the mixing parameterθ is considered, i.e.θ = θ0± δθ , a
pdf with a shape closer to the Gaussian one is obtained. It is also noted that inthe intervals
x ∈ {(−∞,−b) ∪ (−a,a) ∪ (b,+∞)} (x ∈ {(−b,−a) ∪ (a,b)}) the pdffX(x; θ) attains its minimum
(maximum) atθ = π/2

In the following, using this fundamental property of independent variables (Lemma 1), we can easily
prove thatgSE(θ) andµβ(θ) have local extrema at the desirable separation points, i.e.
g′SE(kπ/2) = µ′β(kπ/2) = 0, for k ∈ Z.

Theorem 2. Local extrema of SE (independent sources case): Given two zero-mean and unit-norm
source variables Si (i = 1, 2), the SE (gSE(θ)) of the mixture variable X= cos(θ)S1+ sin(θ)S2, has
local extrema atθ = kπ/2 (k ∈ Z).



Proof. As in the proof of Lemma 1, here it suffices to prove that the derivative ofthe SE, with respect
to the parameterθ , vanishes atθ = π/2. From the definition of SE in Equation (7), if we take its
derivative with respect toθ we have:

g′SE(θ) = −
∫

dfX(x; θ)

dθ
(log(fX(x; θ))+ 1) dx. (16)

Now, using Lemma 1 we see that the derivative of the pdf is zero atθ = π/2 for everyx
(

dfX(x;θ)

dθ
= 0∀x

)

and therefore we conclude thatg′SE(π/2) = 0.

Theorem 3. Local extrema of the GA moment measure (independent sources case): Given two
zero-mean and unit-norm source variables Si (i = 1, 2), the GA moment of orderβ, µβ(θ) of the
mixture variable X= cos(θ)S1+ sin(θ)S2, has local extrema atθ = kπ/2 (k ∈ Z).

Proof. We need to prove that the derivative of Equation (9), with respect to the parameterθ , is zero at
θ = π/2. If we take the derivative of this equation we obtain:

µ′β(θ) =
∫

|x|β dfX(x; θ)

dθ
dx, (17)

where, by using the Lemma 1, we see thatµ′β(π/2) = 0.

It is interesting to note that, our Theorem 3 shows that local extrema are found at the desirable
locations for any chosen value of parameterβ.

In [19], it was shown that the NG measure defined in Equation (8) has alsolocal extrema at the
separation points. Moreover, it is clear that, by using the same line of reasoning we can prove the
existence of local extrema in many other objective functionals as, for example, for the case of Renyi
entropy which was already proposed and studied for ICA [6,7].

It is important to note that, a local extremum at(α1,α2) = (0, 1) is a necessary condition to separate
sourceS2 but it is not a sufficient condition. The existence of local extrema which donot correspond to
a separation of sources, also known as mixing local extrema or spurious local extrema, was a topic of
research in the ICA setting. Moreover, some theoretical results are available showing the existence of
spurious local minima for the Entropy measure when sources has multimodal distributions [30,31].
Vrins and Verleysen [32] have shown that the kurtosis-based contrast functions are more robust than
the information theoretic ones when the source distributions are multimodal.

4 Relaxing independence: DCA

In the previous section, we have shown that Lemma 1 suffices to guaranteethe validity of the SE, the
GA momentand the NG measure as objective functions for ICA. We are interested nowto look at the
problem of separation of potentially dependent sources. Then, a natural question raises here: what kind
of dependence should have the sources in order to guarantee the same behavior of the pdf as in the ICA
scenario? The following result provides a necessary and sufficient condition.

Lemma 2. (n dependent sources case) Given a set of zero-mean and unit-variance source variables Si

(i = 1, 2,. . . ,n) the pdf fX(x; α) of the mixture variable X= α1S1+ α2S2+ · · · + αnSn, constrained to
the case of having unit-variance E[ X2]= 1, has local extrema for every x at the separation points
(αk = 1 andαi = 0 for all i 6= k) iff the LCE law defined in Equation(4) holds.



Proof. Here it is only necessary to prove the local extrema condition (maximum or minimum)for only
one point so we arbitrarily choose the caseαn = 1 andαi = 0 for all i 6= n. In this case, in the
neighborhood ofα0 = (0, 0,. . . , 1), i.e. α = α0+ δ, we can write the pdf of the mixture as follows:

fX(x; α) = 1

αn

∫

. . .

∫

fS1...Sn

(

s1, . . . y,
x− α1s1− · · · y− αn−1sn−1

αn

)

ds1 . . . dsn−1. (18)

Following the Lagrangean method, the condition for the existence of a local extrema point atα = α0

under the unit-variance constraint is as follows:

∇L(α0) = 0, (19)

with

L(α) = fX(x; α)+ λ

(

n
∑

i=1

α2
i + 2

∑

i<k

ρikαiαk − 1

)

, (20)

whereλ is the Lagrange multiplier andρik = E[ SiSk] is the correlation coefficient between sourcesi
andk.

Now, we take the derivatives of the pdf in Equation (18) with respect to thecoefficientsαi with
i = 1, 2,. . . ,n− 1 which, evaluated atα = α0 give:

∂fX(x; α)

∂αi

∣

∣

∣

∣

α=α0

= −
∫

∂fSiSn(si ,x)

∂x
sidsi = −

(

E[ Si|Sn = x] fSn(x)

)′
. (21)

Similarly, the derivative of the pdf in Equation (18) with respect to the coefficientαn is:

∂fX(x; α)

∂αn

∣

∣

∣

∣

α=α0

= −
(

xfSn(x)
)′

. (22)

Using Equations (20), (21) and (22) in Equation (19) we obtain the following set of conditions:

∂L

∂αi

∣

∣

∣

∣

α=α0

= −
(

E[ Si|Sn = x] fSn(x)
)′ + 2λρin = 0 for i = 1, 2,. . . ,n− 1 (23)

∂L

∂αn

∣

∣

∣

∣

α=α0

= −
(

xfSn(x)
)′ + 2λ = 0. (24)

The last equation determines the Lagrange multiplier, i.e.λ = (1/2)
(

xfSn(x)
)′

and, by inserting it into
(23) we arrive to the desired condition:

E[ Si|Sn = sn]= ρinsn. (25)

It is important to note that the LCE condition is also valid for the particular case of independent
sources, i.e.E[ S1|S2 = s2]= E[ S1]= 0 andρ = 0. In Figure 2, some examples of sources are given
indicating whether they follow or not the LCE law.



Figure 2 Scatter plots for three examples of sources with estimations of the conditional
expectationE[ S1|S2] and the linear regression given byρS2: (a) corresponds to a pair of
independent sources (sub-Gaussian);(b) corresponds to a pair of dependent sources with negative
correlation following the model of abundances in spectral unmixing problem(constrained case); and
(c) shows a pair of dependent sources generated using a Copula-t distribution with correlationρ = 0.8.
In (a) and(b) the LCE condition holds while in(c) it is only approximately verified

Before proceeding with our additional results, we have to solve a technical problem because, as our
sources are now dependent they are allowed to be correlated, thus the parameterization
X = cos(θ)S1+ sin(θ)S2 does not longer preserve the variance of the mixture variableX. Let us
consider the general linear mixtureX = α1S1+ α2S2, if we are constrained to the unit-variance case
E[ X2]= 1, thenα2

1 + α2
2 + 2ρα1α2 = 1, where we usedρ = E[ S1S2] to denote the correlation

coefficient between sources. Then, the following parameterization preserves the variance and uses only
one parameterτ :

α1(τ ) = τ andα2(τ ) = −τρ +
√

τ 2(ρ2− 1)+ 1. (26)

The following results can be considered as generalizations of Theorems 2and 3 to the case of two
dependent sources.

Theorem 4. Local Extrema of SE (general case): Given two zero-mean and unit-norm source
variables Si (i = 1, 2) following the LCE law with respect to S2, the SE of the mixture variable
X = α1S1+ α2S2 constrained to the unit-variance case E[ X2]= 1, has a local extremum at
(α1,α2) = (0, 1).

Proof. The proof can be obtained identically to the proof of Theorem 2, taking into account the
parameterization (26) and using the fact that the LCE condition implies the existence of local extrema
of the pdf as stated by Lemma 2.

Theorem 5. Local extrema of the GA moment (general case): Given two zero-mean and unit-norm
source variables Si (i = 1, 2) following the LCE law with respect to S2, the GA moment of orderβ of
the mixture variable X= α1S1+ α2S2, constrained to the unit-variance case E[ X2]= 1, has a local
extremum at(α1,α2) = (0, 1).

Proof. The proof can be obtained identically to the proof of Theorem 3, taking into account the
parameterization (26) and using the fact that the LCE condition implies the existed of the local extrema
of the pdf as stated by Lemma 2

4.1 Detailed analysis of SE andGA moments

In previous sections, we proved that some objective functions applied to aunit-variance mixture of
sources verifying the LCE law, have local extrema when only one of the coefficients is non-zero, which
means that we can separate those sources by searching for local extrema. Nevertheless, a more detailed
analysis is required in order to determine if each local extremum corresponds to a maximum or a
minimum.

Here, we compute the second order derivative of the objective functionwith respect toτ for the special
cases of the SE andGA momentsof orderβ. As we will show, the condition of a maximum or



minimum depends on the second order conditional expectation of sources and on their marginal pdfs.
First we need to compute the second order derivative of the pdf with respect to the parameterτ which
is as follows (its derivation is included in Appendix 1):

∂2fX(x; α1(τ ),α2(τ ))

∂τ 2

∣

∣

∣

∣

τ=0

= (27)

(

fS2(x)E[ S2
1|x]

)′′ + (1− 3ρ2)fS2(x)+ x(1− 5ρ2)f ′S2
(x)− ρ2x2f ′′S2

(x).

We note that the second order derivative explicitly depends on the second order conditional expectation
E[ S2

1|S2 = x] and the marginal pdffS2(x).

Using this result, we are able to obtain the second order derivatives of theobjective function as follows:

(1) SE measure: to obtain the second order derivative of SE we take the derivative of Equation (16)
with respect to the parameterτ arriving at:

g′′SE(τ ) = −
∫

d2fX(x; τ)

dτ 2

(

log(fS2(x)+ 1)
)

dx, (28)

and, by using Equation (27) in the last equation and taking into account thatthe LCE law holds, i.e.
E[ S1|x]= ρx, we obtain (see its derivation in Appendix 2):

g′′SE(0) =
∫

(

E[ S2
1|x]−ρ2x2

) (f ′S2
(x))2

fS2(x)
dx−

∫

E′′[ S2
1|x] fS2(x)dx+ (3ρ2− 1). (29)

(2) GA moment: To compute the second order derivative of theGA momentwe need to take the
derivative of Equation (17) with respect to the parameterτ reaching to:

µ′′β(τ ) =
∫

|x|β d2fX(x; τ)

dτ 2
dx. (30)

Again, by using Equation (27) into the last equation and using the LCE law we obtain (see its
derivation in Appendix 3):

µ′′β(0) = β(β − 1)

∫

|x|β−2fS1(x)E[ S2
1|x] dx− βµβ

(

1+ ρ2(β − 2)
)

, (31)

which is valid only when the integral
∫

|x|β−2fS1(x)E[ S2
1|x] dx exists.

5 Some particular cases

In this section, we analyze selected examples to illustrate our theoretical results applied to different
types of independent and dependent sources.

(1) Independent sources: Let us consider the simplest case of having two independent sourcesS1 and
S2. We see that the LCE law (Equation (4)) holds sinceρ = 0 andE[ S1|S2 = s2]= E[ S1]= 0
which means that SE,GA momentandNG measurehave a local extrema atτ = 0 using the
parameterization of Equation (26). Additionally, we note that the second order conditional
expectation isE[ S2

1|S2 = s2]= E[ S2
1]= 1 and then the second order derivative of SE using



Equation (29) becomes:

g′′SE(0) =
∫

(f ′S2
(x))2

fS2(x)
dx− 1, (32)

which is always greater than zero except for the Gaussian distribution for which is equal to zero
(

∫ (f ′S2
(x))2

fS2(x) dx is the Fisher information

)

(see for example [33], p. 23). This confirms the fact that,

at the separation point, we have a local minimum of the SE.

Now, using Equation (31) we evaluate the second order derivative of theGA momentwhich is

µ′′β(0) = β
[

(β − 1)µβ−2− µβ

]

. (33)

Let us now analyze different cases corresponding to different values ofβ. For example, if we
consider the fourth order moment case (β = 4), we obtainµ′′4(0) = 4[3− µ4] which means that,
for sources withβ4 > 3 (super-Gaussian) the fourth order moment of the mixture has a minimum
at τ = 0. On the other hand, for sources withµ4 < 3 (sub-Gaussian), a maximum of the fourth
order moment of the mixture is found. More interestingly, we can evaluate anyarbitrarily orderβ
and Equation (33) will tell us if we need to search for a maximum or a minimum to attainthe
separation.

(2) Uncorrelated but dependent sources: We consider here two sourcesS1 andS2 generated as follows:
S1 = N1N2 andS2 = N2, whereN1 andN2 are independent non-Gaussian random variables with
E[ N1]= E[ N2]= 0 andE[ N2

1]= E[ N2
2]= 1. We see thatS1 andS2 are highly dependent but are

uncorrelated becauseρ = E[ S1S2]= E[ N1N2
2]= E[ N1] E[ N2

2]= 0. The first order conditional
expectation is zero, i.e.E[ S1|S2 = s2]= E[ N1] s2 = 0. We also compute the second order
conditional expectation which isE[ S2

1|S2 = s2]= E[ N2
1N2

2|N2]= s2
2E[ N2

1]= s2
2. Then, by using

Equation (29), the second order derivative of SE atτ = 0 becomes:

g′′SE(0) =
∫

x2
(f ′S2

(x))2

fS2(x)
dx− 3. (34)

It is interesting to note that SE could have a maximum atτ = 0 if the integral in the last equation is
smaller than three as in the case of our example in Figure 3d.

Regarding theGA moment, for these sources, Equation (31) becomes:

µ′′β(0) = β(β − 2)µβ , (35)

and we conclude that we have a minimum at the separation point (µ′′β(0) > 0) for everyβ > 2.

(3) A simplified model for material abundances in spectral unmixing (dependent sources): A simple
model to generate a special type of sources which are dependent, correlated and constrained to have
their sum constant is as follows [19]. First, we generateP > 2 independent, nonnegative random
variablesN1,N2, . . . ,NP; then, we define the following random variables:Ui = Ni/

∑P
p=1 Np, for

i = 1, 2,. . . ,P. We note that these signals meet the constraint
∑P

i=1 Ui = 1 as in the spectral
unmixing application. Now, we define our sources by normalizing two of theseconstrained
sources, i.e.:Si = (Ui − Ūi)/σUi , i = 1, 2. It is not hard to prove that these sources meet the LCE
law sinceE[ S1S2]= ρ = −1/(P− 1) andE[ S1|S2 = s2]= ρs2 = −1/(P− 1)s2. Additionally, It
is not difficult to prove that, for this particular type of sources we have constantGA momentof
orderβ = 4 which makes it not suitable as an objective function for this case. This behavior was
already observed in [24] but not theoretical explanation was available until now. In Section 7.3, we
generate data and test ICA/DCA algorithms using a more realistic model for material abundances
in hyperspectral images by computing directly the material percentages per pixel in a real image.



Figure 3 Computation of SE, NG measure and GA moments for different types of independent
and dependent sourcesS1 and S2. After a de-correlation step (whitening) the measures are computed
using the polar parameterizationy(θ) = cos(θ)X1+ sin(θ)X2 whereX1 andX2 are the whitened
variables. The corresponding scatter plots are shown in the 1st row. The position of theoretical
positions (in polar coordinates) are shown as red arrows. The measures were normalized in order to
cover the range [ 0, 1]. We used signals with a total number of samplesT = 106 but we used only a
subset of 10,000 samples to compute SE andNG measureto avoid the extremely high computational
demand. For the generation of sub-Gaussian and super-Gaussian sources we used the transformation
sinh−1 (x) and sinh(x) applied to a Gaussian variablex, respectively

In order to illustrate these theoretical results, in Figure 3, plots for SE, the NG measure, andGA
momentswith several values ofβ, are shown for the following types of datasets using a sample size of
T = 106 (except for SE and NG for which we usedT = 104): (a) Independent sub-Gaussian sources,
generated by applying the function sinh(u)−1 to zero-mean Gaussian independent signals; (b)
Independent super-Gaussian sources, generated by applying the function sinh(u) to zero-mean
Gaussian independent signals; (c) Independent bimodal sources, where each of the independent sources
were generated by mixing two Gaussians with(µ1,σ1) = (0.5, 0.2) and(µ2,σ2) = (−0.5, 0.2),
respectively; (d) Dependent uncorrelated sources, generated byusings1t = n1tn2t ands2t = n2t where
n1t,n2t were generated as independent zero-mean uniform distributions; and (e) Dependent constrained
sources, generated by usingsi(t) = ni t

∑4
p=1 npt

with i = 1, 2, where signalsnpt (p= 1, 2,. . . y, 4) were

generated using independent uniform distributions in [ 0, 1].

We see that for the cases (a), (b), (c) and (e), the separation of each source is attained at the minima of
the SE and the maxima of theNG measure. Interestingly, sources in case (d) (dependent and
correlated) shows that one of the sources is detected at one maximum of theSE and one minimum of
the NG measure. It is important to note that the SE have also spurious local minimafor the case of
bimodal distributions (case (c)). This behavior in information theoretic measures was already analyzed
in [30–32] for the independent sources case. On the other hand, in our results, we see that the NG
measure andGA momentsare more robust having no spurious local extrema. We also note that, for
Sub-Gaussian independent sources (a), theGA momentmeasure have local minima at source locations,
on the other side, for super-Gaussian sources, they are located at local maxima. Nevertheless, it is
important to note that for large order (β = 4 andβ = 7) one local maxima is less evident because
moments of a large order are affected by outliers (see scatter plot in Figure3b). In the case (e), we
observeGA momentsprovide a local maximum forβ = 3 and local minima forβ = 7, 10, and, for
β = 4 the second order derivative is in theory zero and for that reason thelocal extrema are not clear.

6 Parzen windows based algorithms for source separation

Parzen windows method is a non-parametric technique used to estimate a pdf based on a set of
samples [34]. Using Parzen windows we can obtain the following estimators for SE [6] and the NG
measure [12]:

ĝSE(θ) = −
T
∑

t1=1

log





1

Th

T
∑

t2=1

φ

(

yt1(θ)− yt2(θ)

h

)



, (36)

ĝNG(θ) = − 2

T
√

h2+ 1

T
∑

t1=1

φ

(

yt1(θ)√
h2+ 1

)

+ 1

T2h
√

2

T
∑

t1=1

T
∑

t2=1

φ

(

yt1(θ)− yt2(θ)√
2h

)

+ 1

2
√

π
, (37)



whereT is the number of samples,

yt(θ) = cos(θ)x1t + sin(θ)x2t, (38)

is the projected variablea sampled at timet (x1 andx2 are assumed uncorrelated, i.e. whitened),φ(·) is
the kernel function (typically a Gaussian kernel) andh is a parameter which determines the size of the
windows (we adopth= 1.06× T−

1
5 as determined by the minimum mean integrated square error

(MISE) [34]). From Equations (36) and (37) we see that their computational complexity is quadratic in
terms of the number of available samples (O(T2)).

On the other hand, for the estimation ofGA momentswe can use the ergodic average formula:

µ̂β(θ) = 1

T

T
∑

t=1

|yt(θ)|β . (39)

Clearly, a big advantage ofGA momentsover the other measures is its lower computational cost since it
is linear in the number of samples, i.e.O(T).

As usual, in order to simplify the search of the maximum (or minimum), we first applya whitening
filter, i.e. xt ← Txt after which we obtainE[ xxT]= I . The filter matrix is given byT = 3−

1
2 UT with

3 andU being the diagonal matrix of singular values and the matrix of singular vectorsof the
covariance matrixCxx = E[ xxT], respectively [3,12].

The search for a local extremaθ∗ can be done by iteratively evaluating the objective function and/or its
derivatives at a current estimateθ (k) and by generating a sequenceθ (1), θ (2), . . . y, θ (k) that converges to
θ∗. Note that the derivatives of the measures can be easily computed from Equations (36), (37) and
(39). The simplest way to generate this sequence could be to use a steepest ascend/descend method, i.e.
θ (k+1) = θ (k) ± ǫg′(θ (k)). In this case the step sizeǫ must be chosen in order to guarantee the
convergence in few steps which is not a simple task. To avoid this problem, weconsider here a simple
and efficient algorithm based in the N–R iteration which, in the one dimensionalcase, is equivalent to
the steepest ascend/descend method with an adaptive step size defined byǫk = 1

|g′′(θ (k))| , i.e.:

θ (k+1) = θ (k) ± g′(θ (k))

|g′′(θ (k))| , (40)

whereg(θ) could be any of̂gSE(θ), ĝNG(θ) or µ̂β(θ), and the sign “+” or “−” must be chosen for the
case of a maximum or minimum, respectively;g′(θ) andg′′(θ) are the first and second order
derivatives, respectively, whose formulae can be derived from Equations (36), (37) or (39), providing
similar computation complexity. A great advantage of the N–R algorithm is that it is proven to
converge quickly in general (quadratic convergence). A potential drawback of the N–R method is that a
close to zero second order derivative can make the method diverge. Anyway, our simulations showed
always very fast convergence suggesting that the zero second order derivative condition is not likely to
occur in general.b



Algorithm 1: DCA algorithm (two-sources case)

Require: mixturesxt (t = 1, 2,. . . ,T) (centered), tolerancetol, max. # of IterationsKmax, attemptsNatt.
Ensure: estimated sourceŝs1t andŝ2t.

1: Cxx = 1
T

∑T
t=1 xtxT

t ; Covariance matrix.

2: U3VT = Cxx; Singular Value Decomposition SVD.

3: xt = 3−1/2UTxt, (t = 1, 2, ...y,T); Whitening.

4: Search for first extremum

5: θ (0) = 2πu; Initialization: u is a random number uniformly
distributed in [ 0, 1].

6: δθ = +∞, k = 0;

7: while δθ > tol and k < Kmax do

8: θ (k+1) = θ (k) ± g′(θ (k))

|g′′(θ (k))| ; N-R iterationc.

9: δθ = |θ (k+1) − θ (k)|;
10: k = k+ 1;

11: endwhile

12: θ1 = θ (k−1); First local extremum found

13: Search for second extremum

14: θ (0) = θ1+ π/2; Initialization

15: RepeatSTEPs 6-11;

16: n= 1;d

17: while|θ (k−1) − θ1| < tol and n < Natt do

18: θ (0) = 2πu; Initialization: u is a random number uniformly
distributed in [ 0, 1].

19: RepeatSTEPs 6-11;

20: n= n+ 1;

21: endwhile

22: θ2 = θ (k−1); Second local extremum found

23: return ŝi t = cos(θi)x1t + sin(θi)x2t (i = 1, 2);

In Algorithm 1, the algorithm for the casen= m= 2 (two mixtures and two sources) is shown. In this
case, after the first local extremum is found, the algorithm searches forthe second local extrema
starting from an initial guessθ (0) = θ1+ π/2 which, in the case of having independent sources, would
correspond exactly to the location of the second source (orthogonal case). It is noted that, in the general
dependent sources case, it is possible that this procedure results in finding the same local extremum
again. In order to avoid this situation, the algorithm re-start the local extremasearch by using different
random initial guesses until the proper local extremum is found. The maximumnumber of attempts
Natt is a parameter which was set toNatt = 20 in our simulations.

It is important to highlight that, if we generalize Algorithm 1 to the case of arbitrary number of sources
andm= n > 2, we may apply a deflation step by eliminating every local extrema after they are
detected preventing from multiple detections. However, this deflation step is not trivial in the
dependent case since the sources are not orthogonal and the classical deflation technique used in ICA is
not longer valid. For the particular case of theNG measure, in [12] a special deflation step was
developed by transforming the data in order to make it Gaussian at the locationof any detected source.



We highlight that computing the derivatives of the SE based on Parzen windows produces numerically
unstable results becauseddθ

log(f (x, θ)) = 1
f (x,θ)

df(x,θ)

dθ
, thus, the errors in the estimation of the pdf are

amplified in the derivative. On the other hand, the estimation of the derivatives forGA momentsand
NG measuredo not suffer this problem and showed to be numerically stable in our simulations.

7 Source separation experiments

7.1 Separation performance evaluation on different datasets

In this section, we show the results of applying our N–R algorithm based onGA moments(order
β = 0.5, 1, 1.5, 2.5,. . . , 10) andNG measure(MaxNG) compared with FastICAe (with g(x) = x3 and
g(x) = tanh(x) nonlinearities) and the BCA algorithm recently proposed in [22]. FastICA isa classic,
very fast algorithm developed for ICA, on the other side, BCA algorithm isa powerful geometric
method for ICA/DCA based on the idea that the mixture of bounded sources increases the volume of
the support of random variables. BCA obtains the separation by minimizing thevolume of the support
of estimated sources by assuming that the support of the sources is equalto the cartesian product of the
individual supports [11]. The last condition is valid for independent sources and can be seen as a strong
condition for dependent sources, for instance, sources found in theblind spectral unmixing do not meet
this condition as Figure 2 illustrates.

In Figure 4, we present the performance results in terms of the obtained signal to interference ratio

(SIR) which is defined as SIRi = −10 log10

(

1
T

∑T
t=1(ŝi t − si t)

2
)

. We used the following datasets: (a)

Independent Sub-Gaussian sources, generated by applying the function sinh(u)−1 to zero-mean
Gaussian independent signals; (b) Independent Super-Gaussian sources, generated by applying the
function sinh(u) to zero-mean Gaussian independent signals; (c) Independent bimodalsources, where
each of the independent sources were generated by mixing two Gaussians with (µ1,σ1) = (0.5, 0.2)
and(µ2,σ2) = (−0.5, 0.2), respectively; (d) Independent and uniformly distributed zero-mean sources;
(e) Dependent constrained sources, generated by usingsi t = ni t

∑4
p=1 npt

with i = 1, 2, where signalsnpt

(p= 1, 2,. . . , 4) were generated as independent uniform distributions in [ 0, 1]. (f)Dependent sources
with Copula-t distributions, wheres1t ands2t were generated from a Copula-t with 4 degrees of
freedom and with linear correlationρ = 0.8 which makes them highly dependent.f We observe that, for
the case of Sub-Gaussian independent sources (a),GA momentswith β = 3, 4,. . . , 10 give a similar
performance as FastICA and MaxNG. For the case (b) (Super-Gaussian independent sources), the
performance ofGA momentsis slighter less than FastICA and MaxNG. For bimodal independent
sources (c) and uniformly distributed independent sources (d), the performance ofGA momentis
similar to FastICA and MaxNG for valuesβ = 1.0, 1.5, 2.5,. . . , 6.5. For constrained dependent
sources (e), the best performance is obtained forβ = 6.0, 6.5,. . . , 10 and MaxNG with a SIR of
approximately 40 dB. It is noted that the LCE condition holds exactly, thus the separation is almost
perfect by usingNG measure. On the other hand, in case (f) sources modelled with Copula-t
distribution with correlationρ = 0.8 where the LCE condition holds only approximately as the Figure
2c illustrated, for this reason, the quality of separation by using theNG measureis degraded (SIR of
approximately 20 dB) and BCA outperforms all the other methods because sources fulfil the BCA
conditions. It is important to mention that dataset (e) does not fulfil the assumptions for FastICA
(independence) neither for BCA (support of sources is not equal tothe cartesian product of individual
supports). It is also interesting to note that forβ = 4, the performance drops because the second order
derivative is zero (not a maximum neither a minimum). It is clear that, thse lower performance of BCA
for cases (a), (b), (e) and (d) can be attributed to the fact that these sources do not fulfil the conditions
for BCA, i.e. or they have not bounded support or the support of sources can not be written as the
cartesian product of individual supports.



Figure 4 Results of applyingGA moment (order β = 0.5, 1, 1.5, 2.5,. . . , 10) and NG measure
(MaxNG) compared with FastICA (with g(x) = x3 and g(x) = tanh(x) nonlinearities) and the
BCA algorithm proposed in [22] for the case ofn= 2 sources andm= 2 mixtures. The mixing
matrixA ∈ R

2×2 was generated using independent Gaussian random numbers. We performed a total
number of 50 Monte Carlo simulations and we use a total number ofT = 8, 000 samples in each case.
On each box, the central mark is the median, the edges of the box are the 25thand 75th percentiles, the
whiskers extend to the most extreme data points not considered outliers, andoutliers are plotted
individually with circles

7.2 Robustness to the sample sizeT

We have theoretically proved that several objective functions are valid toseparate sources verifying the
LCE condition. Nevertheless, in practice, theGA momentsand theNG measureare estimated from
available samples which implies that the measures are sensible to the size of the datasetT. In Figure 5,
the robustness of the measures is shown by evaluating the mean SIR of the separation versus the sample
sizeT. In the small dataset size case, the errors on the estimation of the moments and their derivatives
can be significant, on the other side, theNG measureshowed to be significantly more robust.

Figure 5 Robustness to sample sizeT: Mean SIR values versusT was computed for the case of
constrained sources. TheNG measure showed to be the most robust measure

7.3 Blind spectral unmixing example

In order to have a realistic set of sources for testing our method in the context of the blind spectral
unmixing problem, we used a set of material abundances generated as follows. Based on a real
ground-truth (see Figure 6 (left)) of a selected area of Rome city, we assign a source to each one of the
classes. For the estimation of each source (abundance) we divide the mapin 8× 8 pixel subareas and
we calculated the material abundances as the percentages of the classes within each subarea. As a
result we obtained nine sources with a total ofT = 2814 (67× 42) samples each (in Figure 7a scatter
plots for some examples of pair of sources are shown). In Figure 7b, theperformance results are shown
for MaxNG, FastICA and BCA algorithms applied to different combinations oftwo sources and using
randomly selected mixing matrices over a total of 50 simulations. We note that the results withGA
momentsare not included because their performance was poor (similar to FastICA). We think this is
because the sample size is too small (T = 2814) and the distributions are very irregular. On the other
hand MaxNG showed the best performance. BCA and FastICA has lowerthan MaxNG because
sources does not fulfill the conditions required by the algorithms i.e. they are not independent and their
support can not be written as the cartesian product of individual supports.

Figure 6 Real radiometrically corrected hyper spectral image of a Rome city area as provided by
the Airborne Laboratory for Environmental Research at IIA-CN R in Rome, Italy [19]. This
540× 337 pixels image was obtained with an airborne imaging spectrometer containing 102 channels.
The RGB version (left-upper), the classification map or ground-truth considering pure pixels
(left-bottom) and the nine material abundances (67× 42 pixels) computed by using a 8× 8 window
(right) are shown



Figure 7 Results for blind spectral unmixing based on DCA.Material abundances computed based
on a real world map (Rome city image in Figure 6) were artificially and randomly mixed and separated
by MaxNG, FastICA and BCA. In(a) selected examples of normalized sources pairs are shown. In(b)
the performance results are shown in terms of the obtained SIR

8 Conclusions and discussion

This article contributes to shed light on the theoretical aspects of the separation of independent and
dependent sources based on the maximization (or minimization) of objective functions by filling the
gaps existing among previous works and giving rigorous theoretical answers to important questions.
Furthermore, this new theoretical framework opens the possibility to analyzenew objective functions
for BSS problems. We have shown that, under the LCE assumption, several objective functions such as
GA moments, NG measureand SE are valid for the separation of dependent sources. However,among
these measures, we showed thatGA momentsare less robust to the sample sizeT than theNG measure
but has much lower computational complexity. We have also shown that simple and efficient
algorithms can be developed based on these measures by using Parzen windows technique combined
with a N–R iterative search of local extrema. Nevertheless, it was noted that estimations of derivatives
of the SE, based on Parzen windows, becomes numerically unstable.

Another disadvantage of theGA momentsis that additional information about the sources is needed in
order to determine if the separation is obtained at a maximum or a minimum. When sources are
independent, we can determine the sign of the second order derivative by just evaluating Equation (33)
which can be done quickly and easily from data. On the other side, for dependent sources, it is
necessary to know the second order conditional expectations, i.e.E[ S2

i |Sj ]. Additionally, it is needed to
chose the proper orderβ which could be not simple and it is out of scope of this article. On the other
hand, theNG measuredoes not require any extra parameter, it is very robust to the sample sizeT and
usually the separation is obtained at local maxima (except in pathological cases as shown in our
example in Figure 3d).

As a main conclusion, we have found that the separation of dependent sources is possible but additional
constraints, or assumptions, on the type of dependence among sources must be taken into account. For
example, if we know that the support of sources can be written as the cartesian product of the
individual supports, then an elegant and very efficient method is to applythe BCA algorithm, or if
sources have LCE, as in the case of abundances in the blind spectral unmixing application, then the
methods presented in this article are the most appropriate.

Endnotes

aFor ease of the presentation, we consider here only the case of two sources which correspond to have
only one parameterθ . For the case ofn > 2 a hyper-spheric coordinate system can be used as shown
in [12].
bIn order to solve the problem of possible zero second order derivatives, more sophisticated methods
well known in the literature can be implemented as, for example, by using the Conjugated Gradient
method.
cg′(.) and g′′(.) are the first and second order derivatives of a selected measure andcan be computed by
taking derivatives on Equations (36), (37) or (39) for the case of SE, NG or GA moment, respectively.
Sign ‘+’ and sign ‘-’ correspond to maximum or minimum search, respectively.
dIf the same local extremum is found then a new search starts (up toNatt attempts).



eFastICA package was downloaded from the author’s webpage http://research.ics.tkk.fi/ica/fastica/.
fWe used the Matlab command s=copularnd(‘t’,0.8,4,T).
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Appendix 1

Applying the differentiator operator under the integral sign in Equation (18) for the case ofn= 2
sources, we to obtain the partial derivatives of the pdf evaluated at(α1,α2) = (0, 1) as follows:

∂fX(x)

∂α1

∣

∣

∣

∣

α=α0

= −
(

fS2(x)E[ S1|x]
)′

, (41)

∂2fX(x)

∂α2
1

∣

∣

∣

∣

α=α0

=
(

fS2(x)E[ S2
1|x]

)′′
, (42)

∂fX(x)

∂α2

∣

∣

∣

∣

α=α0

= −
(

xfS2(x)
)′

, (43)

∂2fX(x)

∂α2
2

∣

∣

∣

∣

α=α0

= 2fS2(x)+ 4xf ′S2
(x)+ x2fS2(x), (44)

∂2fX(x)

∂α1α2

∣

∣

∣

∣

α=α0

= 2
(

fS2(x)E[ S1|x]
)′ + x

(

fS2(x)E[ S1|x]
)′′

, (45)

Using the chain rule of derivatives we have that

d2fX(x; τ)

dτ 2
= ∂2f

∂α2
1

(

α′1(τ )
)2+ 2

∂2f

∂α1∂α2
α′1(τ )α′2(τ )+ ∂2f

∂α2
2

(

α′2(τ )
)2+ ∂f

∂α1
α′′1 +

∂f

∂α2
α′′2. (46)

And, using the fact that

α′1(0) = 1, α′′1(0) = 0, α′2(0) = −ρ, α′′2(0) = ρ2− 1; (47)

we obtain the desired result of Equation (27).



Appendix 2

The second order derivative of the SE atτ = 0 is:

g′′SE(0) =
∫

d2fX(x; 0)

dτ 2
(log(fX(x; τ))+ 1) dx. (48)

In the following, in order to simplify the notation we replacef (x) ≡ fS2(x) and
gSE≡ −

∫

f (x) log(f (x))dx.

Now, by using Equation (27) into (48) and, taking into account the followingresults:

∫

(

f (x)E[ S2
1|x]

)′ f ′(x)

f (x)
dx = −

∫

E[ S2
1|x]

(f ′(x))2

f (x)
dx+

∫

E′′[ S2
1|x] f (x)dx,

∫

xf ′(x) (log(f (x))+ 1) dx = gSE,

∫

x2f ′′(x) (log(f (x))+ 1) dx = −2gSE−
∫

x2 (f ′(x))2

f (x)
dx,

we finally arrive at the desire result of Equation (29).

Appendix 3

By using Equation (27) into (30) and, taking into account the following results:
∫

(

f (x)E[ S2
1|x]

)′′ |x|βdx = β(β − 1)

∫

f (x)E[ S2
1|x] |x|β−2dx,

∫

x|x|β f ′(x)dx = −(β + 1)µβ ,
∫

x2|x|β f ′′(x)dx = (β + 2)(β + 1)µβ ,

we finally arrive at the desire result of Equation (31).
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