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Abstract Engineering activities often produce considerable documentation as a by-

product of the development process. Due to their complexity, technical analysts can

benefit from text processing techniques able to identify concepts of interest and

analyze deficiencies of the documents in an automated fashion. In practice, text

sentences from the documentation are usually transformed to a vector space model,

which is suitable for traditional machine learning classifiers. However, such

transformations suffer from problems of synonyms and ambiguity that cause clas-

sification mistakes. For alleviating these problems, there has been a growing interest

in the semantic enrichment of text. Unfortunately, using general-purpose thesaurus

and encyclopedias to enrich technical documents belonging to a given domain (e.g.

requirements engineering) often introduces noise and does not improve classifica-

tion. In this work, we aim at boosting text classification by exploiting information

about semantic roles. We have explored this approach when building a multi-label

classifier for identifying special concepts, called domain actions, in textual software

requirements. After evaluating various combinations of semantic roles and text

classification algorithms, we found that this kind of semantically-enriched data

leads to improvements of up to 18% in both precision and recall, when compared to

non-enriched data. Our enrichment strategy based on semantic roles also allowed
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classifiers to reach acceptable accuracy levels with small training sets. Moreover,

semantic roles outperformed Wikipedia- and WordNET-based enrichments, which

failed to boost requirements classification with several techniques. These results

drove the development of two requirements tools, which we successfully applied in

the processing of textual use cases.

Keywords Text classification � Natural language processing �
Knowledge representation � Semantic enrichment � Use case specification

1 Introduction

Over the last decade, Machine Learning techniques have been widely used to help

end users categorize documents, identify topics and extract concepts from textual

documentation (Kelleher et al. 2015) in domains as diverse as engineering, business

and medicine. In particular, in the Requirements Engineering (RE) domain (Nazir

et al. 2017), researchers have capitalized on text classification techniques for

automating various analyses such as: identifying inconsistencies (Kamalrudin et al.

2011), finding redundancy (Falessi et al. 2013), mapping text to code (Diaman-

topoulos et al. 2017), and highlighting deficiencies and defects in textual

requirements (Femmer et al. 2017; Rosadini et al. 2017), among others. To perform

these analyses and obtain good results, it is necessary to comprehend the text and

the underlying semantics encoded in the text (Mahmoud and Carver 2015). A

typical example in software requirements such as use cases are domain-specific

terms or phrases (Roth et al. 2014), which only make sense in the specialized

context of the specification. For instance, interactions in use cases described as

‘‘register data’’ and ‘‘save information’’ are equivalent in their meaning (write to a

non-volatile medium), even though the words register and save are not synonyms

from a (general) semantic perspective.

Traditionally, text classification techniques use the ‘‘bag-of-words’’ approach

(Kelleher et al. 2015) to detect domain-specific information. This approach

transforms sentences to a vector space model (VSM) that consists of weighted

terms. The VSM then enables the application of well-known classifiers, such as:

decision trees, naı̈ve-bayes, or support vector machines, among others. However,

there are two main problems with VSM. First, it ignores semantical relations among

the terms because it operates by comparing keywords (e.g., abbreviations,

synonyms, hypernyms or domain-specific relationships are not considered) (Tom-

masel and Godoy 2014). Second, classifiers trained with VSM are dependent on the

terms of the dataset, and thus, they might not work well with unforeseen instances if

the training data is not large (Bai et al. 2010).

To overcome these problems, several researchers have looked at enriching text

with concepts derived from encyclopedias or structured thesaurus, like Wikipedia

and WordNET (Wang et al. 2009; Bai et al. 2010). The key idea is to exploit the

relations between concepts in order to improve classification models. However, in

our experience with automated processing of RE documents (e.g., use case

specifications) (Rago et al. 2013, 2016c), the semantic enrichment of those
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documents with concepts from general-purpose knowledge sources (Mahmoud and

Carver 2015) might be counterproductive, because they tend to introduce noise that

hinders the construction of good classification models (Egozi et al. 2011). In

practice, requirements are written with a ‘‘special’’ lexicon for the sake of

stakeholders’ communication (Kamalrudin et al. 2011), using specific terminology

to convey interactions between an actor and the system and limiting the number of

words to express such behaviors (e.g., write, store and save mean the same in a use

case specification but not in a dictionary). For this reason, abusing of semantic

enrichment with ‘‘general’’ concepts might reduce the discerning power of technical

terms and ultimately degrade the performance of a classifier (Mansuy and

Hilderman 2006).

Due the above limitations, our research pursued three main objectives. The first

objective is to build a representation to categorize requirements at the sentence

level, capable of capturing their functional intention and handling ambiguity at

different abstraction levels. The second objective is to explore the classification

performance of traditional semantic enrichment techniques, based on knowledge

resources such as Wikipedia and WordNET. The third objective is to provide an

alternative enrichment technique based on the semantic information conveyed by

the predicates of a sentence.

In this context, we report on the development of a classifier for identifying

special concepts, called domain actions, in textual requirements documents. A

domain action (DA) is an abstraction that captures the intention of a given sentence

in the context of use cases and provides a deeper understanding of its semantics, for

instance, for text categorization purposes. We have defined a hierarchy of DAs and

applied it to build multi-label classifiers trained with previously tagged require-

ments. A novel aspect of our approach is the semantic enrichment of (requirements)

datasets with information about semantic roles, which is added to the text

(instances) via semantic role labeling (SRL) techniques (Szu-ting 2015). The

evaluation of several classifier configurations with real requirements showed

noticeable precision/recall improvements due to the SRL enrichment. Moreover, the

classifiers trained with enriched data learned better prediction models with a modest

number of instances (compared to training with plain data). The best-performing

classifier—a combination of binary relevance and support vector machine—was

then employed as part of two RE analysis tools (Rago et al. 2016a, b), improving

their detection capabilities.

The contributions of this work are two-fold. First, we describe a semantic

enrichment technique for textual documents that reduces the learning process of a

variety of classifiers and boosts their performance. Our results within the RE domain

led to precision/recall gains up to 15%. Furthermore, the evaluation revealed that

Wikipedia and WordNET were not very effective for improving performance of the

classifiers. Second, we present a model of RE-specific concepts that fits with our

enrichment technique and supports requirements analyses. We believe that this

strategy can be replicated in other engineering domains [e.g., hardware design

(Rago et al. 2016c)] for improving text processing analyses.

The rest of the article is organized as follows. Section 2 introduces the

categorization of textual requirements as a classification problem, and explain the
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role of DAs and SRL in our approach. Section 3 describes our model of DAs in

more detail. Section 4 reports on the results of evaluating classifiers with enriched

and not-enriched datasets. Section 6 discusses related work. Finally, Sect. 7 gives

the conclusions and outlines future lines of work.

2 Background

Analyzing textual requirements is a complex activity (Mund et al. 2015), mainly

due to the expressivity and ambiguity of natural language. A challenge in the

development of RE tools is how to detect similar (or related) concepts that

recurrently appear across several requirements (Roth and Klein 2015; Ménard and

Ratté 2016). Such concepts can be common behaviors (e.g., retrieving, obtaining or

getting information) or shared properties of interest (e.g., performance consider-

ations that impact on several sentences) which are expressed with a different

wording but refer to the same conceptual action. When requirements are processed

with automated techniques, a first task is to look at repeated terms and synonyms in

the text, which is normally accomplished with natural language processing (NLP).

Another task is to try to ‘‘understand’’ (at least, in an approximate way) the intention

of requirements. Intention refers to the meaning of a requirement in the particular

context of the system being developed, and thus, has semantic connotations.

Given a set of concepts C1;C2; . . .;Cn (classes) that, we assume, are associated to

some requirements of a set R1;R2; . . .;Rm, we can define a semantic analysis of the

requirements as a multi-label classification problem. The goal is to categorize each

requirement as belonging to one or more classes. These classes can symbolize

concepts such as quality-attribute constraints, reusable functionality, interaction

types or requirements deficiencies (e.g., using passive voice or negative statements),

among others. Depending on the kind of categorization, the sentences from the

requirements might need to be associated with multiple concepts. In these cases, a

multi-label classifier might be able to tag an individual requirement with more than

one concept (e.g., identifying multiple quality attributes). A graphical schema of the

classification problem is depicted in Fig. 1. We assume that the classifier is learned

based on a training dataset, which consists of requirements already labeled with

their corresponding concepts.1 Then, this classifier can predict likely relevant

concepts for new instances of requirements. As usual, each instance is initially

converted to a VSM representation, before being processed by the classifier. At this

point, it is possible to use a semantic resource such as WordNet or Wikipedia (see

Fig. 1) for enriching the instances with the end goal of improving the accuracy of

text classification. Nonetheless, traditional text classifiers seldom rely on enrich-

ment techniques in technical domains because of their poor performance.

For instance, let us suppose a simple requirement sentence, and the RETRIEVAL

and EXTERNAL COMMUNICATION concepts, as illustrated in Fig. 2. The requirement

sentence is an excerpt from a use case scenario, whereas a concept typifies different

kinds of interactions between a system and its actors. In this context, we may need

1 For simplicity, a supervised approach is considered.
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an application capable of automatically identifying such concepts in the text by

means of a prediction model in order to better understand their meaning. Given the

complexity of the sentence, a single requirement can be associated with one or more

types of interactions, justifying the need for a multi-label classifier. For this purpose,

a basic NLP pipeline (e.g., stop-words and stemmer) can be used to extract the

relevant terms for the vector. The dashed arrows below the sentence depict either

removal or trimming operations as the result of applying a stop-words or stemming

technique, respectively. Furthermore, the term frequency can be computed using

TF-IDF (Kelleher et al. 2015). In Fig. 3, frequencies are shown in the second row of

the table below the pre-processed terms. This representation reflects the importance

of a word in a collection of documents and can be used as a weighting factor for

Fig. 1 Graphical schema of requirements classification

Fig. 2 Processing a textual requirement with a traditional VSM approach
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classification purposes. The importance of a word increases proportionally to the

number of times such a word appears in the document, but is offset by the frequency

of the word in the collection, helping to adjust for the fact that some words appear

more frequently in general. In use case specifications, for instance, the word

‘‘system’’ receives a low score with TF-IDF because it is normally repeated across

all the scenarios.

2.1 Domain actions as requirements concepts

When analysts inspect requirements, it is common for them to spot repeated

concepts (or patterns) along the textual specifications. This is particularly true in use

cases (Hull et al. 2014), which are a RE approach to capture a behavioral contract

between the system and its external actors by means of ‘‘usage’’ scenarios. Use

cases have two interesting characteristics regarding text processing: (1) the lexicon

(i.e., terminology) used to describe behavior is generally limited; and (2) the ‘‘story-

telling’’ of scenarios often exhibits a common structure and employs semantically-

similar concepts (e.g., inputting data or processing information, among others).

These characteristics are often the result of recommended RE guidelines that

analysts normally adhere to (Wiegers and Beatty 2013).

A type of concept relevant to use cases is that of domain action (DA). A DA

represents an abstraction of a recurrent interaction between the system and its

actors, and has an unequivocal semantic meaning in the context of use cases (Sinha

et al. 2010). A DA can refer to aspects of data management, user interactions, or

Fig. 3 Processing a textual requirement with an SRL-enriched VSM approach
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information displaying, among others. In practice, a use case consists of several

steps (sentences), each of which can be viewed as (or reduced to) a DA. Table 2

shows several examples of DAs associated to steps of a use case. DAs are relevant

to our work, as they are precisely the class labels for our classifier to categorize

input requirements. In order to learn a classifier of DAs, an expert must take a large

set of textual requirements covering different types of systems, and manually tag

each requirement with the corresponding DAs. Furthermore, there are other

subtleties when applying DAs to use cases, such as abstraction levels or overlapping

classes, which are explained in Sect. 3.

2.2 Enriching text with semantic roles

Building a DA classifier with acceptable performance and applicable to different

software domains is not straightforward. Even if a large dataset is available (which

is hardly the case), the DA tagging process can be tedious and time-consuming for

an expert, because she must consider the different writing styles of the analysts who

produced the requirements. A way to cope with these problems is to enrich the text

with semantic annotations, being as independent as possible from software domains

or human writing styles. For instance, an expert might recognize that the words

sends and transmits mean the same in the context of RE specifications.

Unfortunately, using sources such as Wikipedia or WordNET for annotating use

case (or even other types of requirements) is not always the best approach, because

their concepts are too general and end up ‘‘confusing’’ the classifier (Kehagias et al.

2003; Mansuy and Hilderman 2006; Tommasel and Godoy 2014).

The alternative approach that we investigate in this work is to enrich

requirements with semantic roles descriptions, which are obtained via semantic

role labeling (SRL) (Szu-ting 2015). SRL is the automated classification of text with

labels defined in the Proposition Bank (PropBank) (Palmer et al. 2005), a linguistic

resource created for adding a layer of predicate-argument information (also referred

to as semantic role labels) to syntactic structures within a sentence. Semantic roles

tackle a limitation of traditional syntactic analyses, which fail to capture the true

meaning of a sentence and its constituents (Palmer et al. 2010). Understanding what

the participants are in a sentence and what event is described is very important for

computers to make effective use of the information codified in the text.

In PropBank, a set of underlying semantic roles are defined on a verb by verb

basis (i.e., the predicate). The roles of each verb are labeled with a special notation,

consisting of numbered arguments (A0, A1, A2, A3, A4 and A5) and adjunct

arguments (ALocation, ATemporal, ANegation, AManner , ADirection, AModal, among others).

Numbered arguments are specific to each particular verb. For consistency with other

taxonomies, A0 is generally the ‘‘Agent’’ of a sentence whereas A1 is generally the

‘‘Patient’’ or ‘‘Theme’’. No other generalizations can be made for the other

numbered arguments, that is, those that are specific for each verb. Adjunct

arguments are less restrictive and can be applied to any verb. A set of roles

associated to a distinct usage of a predicate is called a roleset (or frameset). If a verb

is polysemic, it might require having multiple rolesets for each sense. For SRL, this

means that a disambiguation task is often performed to select the correct roleset.

Using semantic roles to improve requirements classification…
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SRL implementations rely on both semantic and syntax information to distinguish

between rolesets (for instance, the number of arguments in the sentence). During the

tagging procedure, predicates and arguments are often enriched with a ‘‘descrip-

tion’’ field, which captures the meaning of each role for a particular roleset. As an

example, let us consider the results of an SRL analysis performed on a sentence

extracted from a requirements document, as shown in Table 1. The sentence is

divided into six semantic roles, four verb-specific arguments and two adjunct

arguments surrounding the main predicate ‘‘accept’’.

In our work, we leverage on SRL information as a middle ground between

requirements and their corresponding DAs, in order to obtain a classifier that

provides a good performance when trained with a dataset of moderate size. The text

of SRL descriptions can be incorporated to the VSM, as depicted in Fig. 3 (gray

area on the right). This process is done by analyzing both the predicate of a sentence

and each of its arguments, adding the words that are part of their respective

description fields to the word vectors (except for stop-words). This feature helps

classification because some semantic roles are shared between words (Selvaretnam

and Belkhatir 2016). If a sentence contains multiple predicates, then the analysis is

performed one verb at a time, only considering arguments belonging to that

individual roleset and ignoring the rest of the sentence.

For instance, let us have a look at sentences #1 and #7 in Table 2. In such

sentences, the words used for describing the system behavior are different.

Furthermore, despite the fact that the two interactions play a similar function in the

scenarios (i.e., to fetch some data), the main verbs retrieve and obtain are not

synonyms according to the thesaurus. However, both the retrieve and obtain
predicates (see the bold words in rows 1–2 in Table 3) have arguments defined as

thing gotten and received from, respectively. An analysis of sentences #4 and #6

exhibits the same pattern, where the verbs clear out and delete are not synonyms but

mean the same in the context of use cases (i.e., to remove data from the system).

Again, this relation can be revealed by analyzing the arguments of these predicates,

in which the words ‘‘remove’’ and ‘‘entity’’ are shared by the descriptions (see rows

3–4 in Table 3).

SRL basically recognizes predicates and their associated arguments in a sentence,

and also classifies those arguments into specific roles (e.g., the agent, the patient, the

Table 1 Example of semantic role labeling

Roleset accept01 ? ‘‘take willingly’’

A0 ? ‘‘acceptor’’

A1 ? ‘‘thing accepted’’

A2 ? ‘‘accepted from’’

A3 ? ‘‘attribute’’

Example [A0
The system] [AModal

would] [ANegation
not] accept [A1

credentials] [A2
from

users who are on leave of absence]
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manner, the time, the location, etc.) (Szu-ting 2015). A semantic role identifies the

part played by a fragment of the sentence in the context of the main verb. The

knowledge held by predicates and arguments are very useful for removing irrelevant

information, since it permits to answer questions such as ‘‘Who did What to Whom,

How, When and Where?’’ (Palmer et al. 2010). Several tools exist to perform SRL

over textual sentences, which internally rely on classifiers trained to predict

semantic roles using the PropBank corpus (Palmer et al. 2005). This corpus contains

text annotated with semantic propositions, including predicate and argument

relations.

3 Modeling domain actions in use cases

Concepts similar to DAs have been discussed by other researchers (Sinha et al.

2010; Kamalrudin et al. 2011; Jurkiewicz and Nawrocki 2015). However, in the

context of requirement analysis, these conceptual representations have a number of

limitations, namely: (1) the abstraction level is fixed, (2) only one concept per

sentence is allowed, and (3) the techniques employed for identifying the concepts do

not analyze the context of the verbs.

The first limitation precludes comparisons among DAs at different abstraction

levels, which can be helpful in some RE analyses. For example, in Table 2,

sentences #1, #2 and #4 are tagged with distinct DA classes (2nd column). These

classes are RETRIEVAL, CREATE and DELETE, which refer to the recovery of

information, the creation of persistent records, and the removal of information,

respectively. An analyst could recognize here an implicit relation among the

sentences, because the three DAs denote the manipulation of information. For this

reason, we included a more abstract DA class called DATA that reflects this parent-

child relation (3rd column).

Regarding the second limitation, we believe that a flexible approach allowing

more than one DA per sentence can help to deal with ambiguity. In several projects,

a requirement has to be tagged with various DAs because it intermingles two or

more behaviors within the same sentence. For example, let us consider sentences #1

and #3. In these two sentences, the dominant DAs are RETRIEVAL and CALCULATION,

Table 3 Semantic role descriptions of predicates

WORD PROPBANK ID SEMANTIC ROLE DESCRIPTIONS

PREDICATE A0 A1 A2

retrieves retrieve.01 get back receiver thing gotten received from

obtain obtain.01 get receiver thing gotten received from

clears out clears.05 remove,
leave

clearer entity leaving

or removed
place left

deletes delete.01 remove entity removing thing being

removed
removed from

A. Rago et al.
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referring to the recovery of some information and a computation of some sort.

However, a more detailed analysis of the sentences reveals that there might be other

DAs at work (see the 2nd and 3rd columns of Table 2). In sentence #1 there is a

mention to an external system, indicating a EXTERNAL COMMUNICATION DA that is

related to the RETRIEVAL DA. In sentence #3, the presence of the word consistence
could indicate a checking associated with a VERIFICATION DA.

At last, for the third limitation, we argue that the consideration of the context in

which verbs occur is also important for addressing ambiguity. An accurate

classification of DAs requires the identification of the parts of a sentence affected by

the main predicate. For example, the association of sentence #1 with a EXTERNAL

COMMUNICATION DA would have not been possible without analyzing contextual

words such as external. However, the analysis of the word rapidly in the same

sentence, usually related to system calculations, might deviate the classifier towards

other kinds of DA classes. In this regard, we can take advantage of SRL to filter

irrelevant terms and include only those arguments that better describe DAs.

3.1 Proposed hierarchy of DAs

To overcome the limitations above, we created a hierarchical model of DAs that

allows us to capture the semantics of use cases. The hierarchical feature contributes

to improve the performance of text classification (Tsoumakas et al. 2010).

Furthermore, the categorization of DAs was treated as a multi-label classification

problem in order to deal with ambiguities (as discussed in the previous section for

the second limitation) (Kang et al. 2015). Particularly, the aspect of ambiguity for

requirements that cannot be easily categorized into a single class has been

acknowledged in previous works (Sinha et al. 2010; Sengupta et al. 2015) but not

addressed yet. Our model of DAs initially derived from Sinha’s work (Sinha et al.

2010), because the abstraction level of their classes fitted well with several semantic

analyses for use cases.

We refined Sinha’s classes by removing some system-specific classes not

suitable for our purposes (e.g., DELEGATE and BROWSE) and renaming some others.

We also incorporated classes for recognizing control flow sentences, which contain

terminology that is specific to use cases. Overall, we defined 25 DA classes and

arranged them in a three-level hierarchy, as depicted in Fig. 4. The upper level of

the hierarchy groups DAs for semantically-similar use-case interactions, such as

INPUT/OUTPUT, DATA, PROCESS and USE CASE. The middle level introduces more

specific information. For example, the top-level DATA DA is refined by two mid-

level DAs: READ and WRITE. The bottom-level DAs cover concrete interactions such

as: ENTRY, SELECTION, DISPLAY, or NOTIFICATION, among others. A brief description of

each DA label is given in ‘‘Appendix’’ section.

3.2 Compiling a dataset of requirements 1 DAs

Despite some notions of DAs and the classification of these concepts existed in the

literature (Sinha et al. 2010; Kamalrudin et al. 2011; Sengupta et al. 2015), it was

not possible for us to conduct a comparative assessment for two reasons. First, the
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datasets used in these works were not always publicly available for download.

Second, existing datasets would require an extensive adaptation to map the concepts

to our DAs and fit the hierarchical and multi-label representation, ultimately biasing

the results. We instead defined a new dataset (i.e., a training corpus for different

classifiers) using requirements specifications from real software systems that were

clearly written (in accordance to the recommended best practices for use cases) and

asked a group of experts to tag the sentences according to the DAs they detected in

the text. As selection criteria for this corpus, we considered parameters such as

application domain (i.e., type of project), programming paradigm, requirements

methodology, or availability of the project artifacts, written quality of the

specifications and size of the project. Basically, we aim at choosing object-oriented

projects from diverse software domains documented with use cases and publicly

available for making comparisons. Moreover, we targeted projects clearly written

and without grammatical, syntactical or lexical mistakes which may hurt

classification tasks. At last, we ensured that the resulting corpus contained a

representative number of use case steps associated with every DAs defined in the

hierarchy.

For the dataset, we took use case specifications from three real systems,2 namely:

Health Watcher System3 (HWS), Course Registration System (CRS)4 and Colle-

giate Sports Paging System5 (CSPS). HWS is a Web-based system for consulting

health notices and registering sanitary complaints. CRS is a system that operates in a

university intranet and allows students to enroll in courses and professors to report

students’ grades. CSPS is a distributed system that notifies students’ cell phones and

pagers about last-minute sports news. Table 4 shows an overview of the projects

and their requirements documentation. The first five rows detail the domain type of

the project, number of use cases, textual length, number of sentences and total count

of words. The sixth row contains a word cloud that illustrates the most frequent

words in each specification.

The preparation of the specifications consisted of manually extracting the

relevant text from the original files, preserving the format of the text in the form of

enumerated lists and indentation. Tables and images in the original use cases were

omitted since they did not contain valuable information from a classification point

of view. We also corrected minor grammatical and spelling mistakes in the

scenarios, because they might hinder NLP analyses and text classification tasks. The

text of the use cases was then broken into sentences, removing irrelevant sections

(e.g., overview, included use cases and priorities, among others), and arranged in a

ARFF file format where each sentence tagged with a DA is represented as an

individual instance. In total, * 900 instances were gathered from the functional

scenarios of use cases. Afterwards, these sentences were manually tagged with DAs.

The tagging procedure was entrusted to a group of Ph.D. students in Computer

2 The original requirements documents of the case studies can be downloaded from:

http://www.alejandrorago.com.ar/files/assets/dataset-Source.zip.
3 http://www.comp.lancs.ac.uk/*greenwop/tao/.
4 http://sce.uhcl.edu/helm/RUP_course_example/courseregistrationproject/indexcourse.htm.
5 http://sce.uhcl.edu/helm/rationalunifiedprocess/examples/csports/.
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Science from UNICEN University. We chose doctorate students over pre-graduate

students and industry practitioners because they have a strong background (i.e.,

academic) in requirements processes and its deliverables, they are well motivated

and willing to participate in research experiments, as well as they are not biased by

previous experiences (e.g., bad requirement practices) acquired in industrial

projects. The subjects were given a short training on our model of DAs, and then

each subject began the analysis of sentences, assigning one or more DAs per

sentence, based on her own criterion. At the end of the exercise, we had a meeting

with all the subjects in order to consolidate the individual results and produce the

final dataset. The last row of Table 4 shows the five most frequent DAs in each

project and its respective distribution percentage.

Although we did not conducted an inter-agreement study of the exercise, we

observed that the subjects reached a consensus for the majority of the requirements,

that is, they labeled the requirements with the same DAs. Nonetheless, we noticed

that the for some instances with ambiguity, the subjects had different opinions

regarding the DAs involved. In those cases, the solution reached by the subjects was

to label the requirements with more than one DA, introducing multi-label instances

Fig. 4 Hierarchy of domain actions
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in the final dataset.6 Afterwards, we conducted an inspection for checking labeling

mistakes or ironing out confusions made by the subjects, ensuring the correctness of

the dataset. Only a few number of instances (* 40) had to be revised by the

subjects, and those problems were generally solved by removing/adding some DAs.

We should note that the size of our dataset is relatively small for classification tasks;

however, other RE works have also used datasets of similar size for this purpose and

achieved reasonable results (Sinha et al. 2010; Casamayor et al. 2012; Roth and

Klein 2015; Nguyen et al. 2015; Sengupta et al. 2015). Moreover, given that our

goal is the identification of DAs, we argue that a well-balanced dataset composed of

* 360 instances (40% of the current dataset) should suffice for training a good

classifier.

We made a quantitative analysis of the dataset, and observed that the overall

distribution of DAs was balanced (see percentages per level in Fig. 4). Every DA

class was used at least in one instance. The number of instances tagged with top-

level DAs (i.e., abstract ones) was larger than that of mid-level and bottom-level

DAs. This situation was expected because of the hierarchical organization of DAs.

An analysis of DA distribution per level revealed the following facts. Instances

tagged as INPUT/OUTPUT, DATA and PROCESS represented * 94% of top-level DAs.

Instances tagged as USE-CASE were very few in the text (* 6%), because they only

appeared at the beginning, ending and flow bifurcations of the scenarios. Classes in

the mid-level were evenly distributed, with each DA representing * 10–20% of the

dataset. The most frequent classes were INPUT, WRITE and CALCULATION. At the

bottom-level, instances were also tagged evenly, representing * 8–15% of the

dataset. The most frequent DA in this level was SELECTION (* 17%), whereas the

least frequent ones were INTERNAL COMMUNICATION and EXTERNAL COMMUNICATION

(* 3 and * 6%).

When analyzing the overlapping nature of our dataset, we observed a reasonable

fraction of instances having multiple labels, which corroborated our view of the

categorization of DAs as a multi-label problem. As we have previously stated,

ambiguity in textual requirements is an expected phenomenon. For instance, Sinha

et al. tackled this problem by using a dictionary in which every verb is associated to

multiple DAs with a certain degree of confidence (Sinha et al. 2010). However, the

requirements in their dataset are tagged with a single DA label/class per instance.

Along the same line, Sengupta et al. represented the ambiguity of requirements

using multiple labels (Sengupta et al. 2015). In particular, 26% of the verbs in the

sentences compiled in their dataset have overlapping semantic categories. Trusting

that the procedure described above to tag requirements is correct (it is a subjective

task), approximately 16% of the instances in our dataset were simultaneously

associated with 2–3 or more bottom-level DAs. This a direct result of the ambiguity

of requirements sentences, which are often associated to multiple DAs. Given the

hierarchical relations between DAs, we expected to find a large number of labels per

instance. If we consider all three levels of the hierarchy at the same time, instances

with 2 or 3 labels represented an 87% of the dataset. The rest of the instances were

6 The complete dataset can be found at http://www.alejandrorago.com.ar/files/assets/dataset-

DomainActions.zip.
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tagged with 4–6 or even 9 labels, because they are tagged with two or more top

branches of the hierarchy.

4 Evaluation

Several tests were conducted in order to assess the performance of different

classifiers of DAs. Our hypothesis is that enriching textual requirements with

semantic roles can significantly improve the precision/recall of classifiers. The main

objective of the evaluation is to determine the pros and cons of SRL-enriched over

Plain-Text classification, as well as to compare these results with other enrichment

strategies. In the following sections, we discuss the preparation of the dataset, the

experimental methodology and the machine learning algorithms used in the

evaluation. At last, we present the results and draw conclusions of the evaluation.

4.1 Dataset preparation

Before training the classifiers, the use-case sentences were converted to a

suitable text format for the algorithms. Figure 5 illustrates the activities performed

for deriving our datasets. Initially, the textual documentation of each project was

pre-processed with stop-words and stemming filters (Phase #1) for all but SRL

tasks, which do not work well with this kind of techniques and have to be applied

after identifying semantic roles. The goal of this phase is to remove prepositions and

articles because they have little value in classification tasks, and to reduce terms to

their inflectional forms to have a unique representation for word families,

respectively. For the sake of comparison, two datasets were initially built. The

first dataset only included plain text (Plain-Text), whereas the second dataset was

enriched with semantic roles (SRL-Enriched). In the Plain-Text dataset, we used the

original text from the use cases, skipping the enrichment of the requirements.

Therefore, the text of the sentence is transformed to a VSM representation, and the

resulting words are weighted using a term frequency—inverse document frequency

(TF-IDF) technique (Phase #3). Then, the dataset is persisted in ARFF, which is a

suitable format for classifiers.

In the SRL-Enriched dataset, textual requirements are complemented by means of

a lexical resource (see the greyed boxes of Phase #2). First, the original sentences

(without pre-processing) are analyzed with a Semantic Role Labeling classifier,

identifying the main predicates and their arguments. We used Mate-Tools7 to

implement the SRL task (Björkelund et al. 2010), mainly because it is a well-

documented project with an acceptable performance and accurate results.

Nonetheless, more current tools might be used to replace this library in the future

(e.g., Alchemy Lite, SENNA or SEMAFOR). Next, irrelevant information in the

sentences is removed by using the results of the SRL. The goal of this activity is to

take into account only those fragments of text in the sentences coming from

predicates and arguments labeled with SRL as A0, A1 or A2 (Szu-ting 2015). Other

7 https://code.google.com/p/mate-tools/.
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types of arguments, such as A3, A4, ATemporal, ALocation, AManner and so forth are less

frequent to appear in software specifications and commonly introduce details that

can hinder text classification (Uysal and Gunal 2014). To support this claim,

Table 5 summarizes a frequency analysis of the arguments with SRL in each case

study. In addition, we also believe that the information held within adjunct

arguments is not beneficial for identifying domain actions, because these type of

arguments are not strictly specific to the predicate. For instance, some steps in the

‘‘submit grades’’ use case of CRS contained temporal information about (student)

classes ‘‘completed in the previous semester’’, which can be filtered by ignoring

ATemporal arguments. Third, the description of the semantic roles present in each

argument and predicate is appended to the instances as additional information. To

this end, we search each ‘‘descriptor’’ label in PropBank8 roleset files, available as

XML documents. If the predicate or any of the arguments in a sentence is

ambiguous and can be mapped to multiple rolesets, we relied on Mate-Tools’

disambiguation features to select the most likely variant. Our implementation

actually takes into account the predicate sense in order to determine argument

senses. Finally, both the original and the enriched text goes through stop-words/

stemmer filters, is transformed to term vectors and a TF-IDF technique is applied

before saving the dataset in ARFF format (Phase #3) (Kelleher et al. 2015). We did

not apply feature-selection algorithms to the resulting datasets (Badawi and

Altincay 2014), because of their modest size.

In order to assess that SRL performs better than other lexical resources for

improving text classifiers, we also defined four additional datasets containing

WordNET and Wikipedia concepts (Phase #2). Basically, two extended datasets

were created for each lexical resource. Initially, the text from the requirements is

analyzed with WordNET and Wikipedia looking for matches in the respective

lexical resource. The first and third dataset (WordNET-Concepts and Wikipedia-
Concepts) were constructed by searching the words of the sentences in the lexical

resources and replacing them with concept identifiers. This means to interchange

words for synsets and article entries for WordNET and Wikipedia, respectively. If

an individual word is not found in the resource, then that information is lost in the

transformation. In WordNET, we also exploited relations between words, expanding

each term with its synonyms by taking advantage of how a single concept can

represent many words expressing the same meaning. Since losing information is

often harmful for text classification, we also considered mixing the words with their

corresponding concepts identifiers. This enrichment strategy derived in the second

and fourth dataset (WordNET-enriched and Wikipedia-enriched). The idea is to add

the concepts to the already existing words in a sentence, instead of replacing them.

Naturally, enriching the text in this way can introduce overlapped information in the

datasets, especially with WordNET. This is because many of WordNET synsets are

linked to a single word. Fortunately, the classifiers we used are prepared for

handling highly correlated features in the instances and not making mistakes in the

classification. At last, concept-enriched instances are transformed with VSM and

TF-IDF to an ARFF representation (Phase #3).

8 http://verbs.colorado.edu/*mpalmer/projects/ace.html.
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We used the implementation of KATOA for transforming/enriching the text with

concepts (Huang 2011). KATOA defines two filters built on top of Weka, called

StringToWordNetVector and StringToWikipediaVector, that convert textual sen-

tences to concept vectors. This idea has been previously explored in recent works

(Huang et al. 2012). By using these filters, deriving WordNET-Concepts and

Wikipedia-Concepts out of sentences is straightforward. We also made some

modifications to the KATOA implementation to avoid the deletion of existing words

in order to create the WordNET-enriched and Wikipedia-enriched datasets.

4.2 Experimental methodology

We investigated several combinations of supervised single-class classification

algorithms with extensions to support multiple classes and labels. We tested three

Fig. 5 Procedure for deriving the semantically-enriched datasets
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algorithms for one-class classification implemented in Weka,9 namely: decision
trees (J48), naïve-bayes (NB) and support vector machines (SMO). We chose these

algorithms mainly because they are well-known, easy to use and have been

extensively used in the past for text classification tasks. The J48 classifier builds a

prediction model in the form of a tree structure composed of decision nodes and leaf

nodes (i.e., the classes). Essentially, the classifier recursively breaks down the

dataset into smaller subsets while, at the same time, a decision node is added to the

tree. The NB classifier is based on the Bayes theorem and permits to categorize data

by computing the a-posteriori probability of a class given a set of predictors. Despite

its simplicity, NB usually performs well in text classification tasks (Zhang 2004).

The SMO classifier is based on the concept that instances in a space model can be

separated into classes by hyperplanes. Kernels are used for mapping complex planes

from a space to simpler planes in another space. In our evaluation, we decided to use

a popular radial basis function (RBF) kernel approximation based on the Euclidean

distance between examples, since it has shown good results for classifying bag-of-

words datasets.

The J48 and NB classifiers were configured using default parameters, because

their performance is not significantly affected by their values in text classification

tasks. In the case of SMO, different values of C and c were considered, until finding
optimal parameters for the classifiers. We explored two transformations imple-

mented in Mulan10 to support multiple labels and classes, namely: label powerset
(LP) and binary relevance (BR) (Zhang and Zhou 2014). Furthermore, since DAs

are arranged in a hierarchical structure, we applied an algorithm called hierarchical
multilabel classifier (HMC) to take into account father–child relations among DAs

(Tsoumakas et al. 2010). A grid search for C 2 f2�1; 21; . . .; 29; 211g and

c 2 f2�9; 2�7; . . .; 21; 23g was performed on both train and test sets (explained

later), trying to find a good configuration of the classifier that does not over-fit or

under-fit the data. As a result of the search, the optimal parameters obtained were

ðC ¼ 21; c ¼ 2�5Þ for SMO-LP and (C ¼ 25; c ¼ 2�5) for SMO-BR.

We analyzed classification results with example-based precision and example-

based recall metrics (Zhang and Zhou 2014), which are commonly used in multi-

label classification tasks. Precision gauges the fraction of labels correctly identified

with respect to all the suggested labels, whereas recall gauges the fraction of labels

correctly identified with respect to all the instances with such labels (Sokolova and

Lapalme 2009).

We decided not to use a traditional k-fold cross validation, because the number of

folds is tied to the split percentages (e.g., using 10 folds would mean training the

classifier with 90% of the instances and testing it with the remaining 10%). Given

the nature of DAs, we argue that a relatively low number of instances should be

sufficient to correctly predict DAs on the rest of the dataset. Thus, we opted for a

repeated sub-sampling validation with fixed splits (Kelleher et al. 2015). In this

validation schema, the split ratio for the training and testing data is defined in

advance (e.g., 20/80 or 30/70, respectively). Multiple sub-samples with that split

9 http://www.cs.waikato.ac.nz/ml/weka/.
10 http://mulan.sourceforge.net/index.html.
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ratio are then computed, ensuring that every instance is used for training and testing

purposes. Specifically, we used several train/test splits {20/80, 30/70, 40/60, 50/50,

60/40} and we chose ten sub-samples for each split ratio in order to obtain an

accurate result. Once sub-samples are established, the model is fit to the training

data and the precision/recall is assessed using both training and testing data. This

allows us to check for underfitting and overfitting problems and to optimize

parameters (e.g., SMO). The results of the sub-samples of a fixed split ratio are

finally averaged.

4.3 Results of SRL-enriched classification

Figure 6 depicts the results obtained with several configurations of classifiers. The

figure is horizontally organized according to the different configurations, namely:

J48-BR, J48-LP, NB-BR, NB-LP, SMO-BR and SMO-LP. The values for the SRL-

enriched dataset are shown as piled bar charts. In each chart, the X axis shows the

split percentage used for training/testing in our validation, whereas the Y axis shows

precision (or recall) values.

The enrichment of textual requirements with semantic roles led to consistent

improvements across the six configurations, for both precision and recall. Some

configurations, such as those using the NB classifier and the SMO-LP configuration

obtained the best improvements (* 12 and * 18% for both metrics, respectively).

When it comes to the split percentages, we observed that using 20/80 and 30/70

splits was not enough to build good classification models. Without the SRL

enrichment, only a few configurations had acceptable precision and recall using a

60/40 split. However, when the SRL enrichment was applied, we observed very

good precision and recall values over 40/60 splits (i.e., 40% of the instances used for

training and the remaining 60% for testing, averaging the results of ten random but

evenly distributed partitioning samples). This result means that the enrichment

allowed us to learn classifiers ‘‘faster’’, in the sense that fewer instances were

required (* 280 instances).

In terms of precision, the best performing configurations were J48-BR and SMO-

BR. These configurations obtained an absolute * 65 and * 70% precision using a

40/60 split, respectively. These results were boosted to * 72 and * 76% precision

when the dataset was enriched. We noticed that SMO-LP achieved initially a very

low precision (55% at 40/60), which was then much improved with the SRL

enrichment (* 68% at 40/60). The NB classifier obtained lower precision values

Table 5 Frequency of SRL arguments

Case study A0 A1 A2 A3 A4 ATmp ALoc AMnr AAdv ANeg

HWS 120 291 47 2 9 8 24 9 6 3

CRS 212 371 43 9 1 50 15 18 37 6

CSPS 143 289 57 2 0 29 3 18 30 10

Total 475 951 147 13 10 87 42 45 73 19
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than the other techniques, regardless of the split percentage. The configurations with

SMO classifiers obtained the best recall. Both SMO-BR and SMO-LP achieved

* 60 and * 55% recall at a 40/60 split. However, the enrichment boosted these

values to* 70% at 40/60. The J48-BR configuration had a rather poor recall (under

* 40% without enrichment and* 50% with enrichment), showing a trade-off with

its good precision. In a similar way to the precision analysis, SMO-LP exhibited low

recall (55% at 40/60), which was then boosted to * 69% thanks to the SRL

enrichment.

4.4 Results of WordNET- and Wikipedia-enriched classification

In addition to the analysis of the two datasets in the previous section, we also

explored the performance of enrichment strategies for text classifiers, such as

WordNET and Wikipedia concepts (i.e., concept-based vectors instances). To this

end, we conducted experiments for assessing the precision and recall measurements

of the WordNET-Concepts and Wikipedia-Concepts datasets. Basically, these

datasets have the words of the sentences replaced by their conceptual counterparts in

a lexical resource (if such concept exists). We also evaluated the classifiers in the

WordNET-Enriched and Wikipedia-Enriched datasets. These datasets also incorpo-

rate WordNET and Wikipedia concepts, but retain the original words in each

sentence (i.e., instance vectors which are composed of both words and concepts).

Figures 7 and 8 show the results of running the text classifiers on the four dataset

variants. Moreover, the figures also show the precision and recall of Plain-Text as a
reference for comparisons. For the sake of experimental validity, we used the same

configurations of single-class classifiers (J48, NB and SMO) and extensions for

multi-classes/labels (BR and LP), and we employed a schema with identical fixed-
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Fig. 6 Experimental results with SRL enrichment
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splits partitioning to evaluate the datasets. In the piled charts, the X axis represents

the six configurations of the classifier and the percentage used for splitting the

datasets into training and testing subsets. The Y axis measures the precision and

recall obtained by the classifiers to predict domain actions.

The Wikipedia-Concepts dataset yielded poor results in almost every configu-

ration. Classifiers using the LP extension, for example, produced worse precision

and recall using Wikipedia concepts than using the original text (* 15–25% drops

in both metrics). Alternatively, classifiers using the BR extension achieved an

acceptable and sometimes equal precision than with the Plain-Text dataset, but at
the cost of getting a low recall (* 5–20%). This is an important finding because it
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Fig. 7 Experimental results with WordNET and Wikipedia concepts
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enforces the idea that Wikipedia articles are not good enough on its own to improve

the classification of technical documentation, disregarding the classifier chosen and

its configuration. The classifiers achieved a better accuracy using WordNET-
Concepts, but without improving the results of Plain-Text.

The transformation of word vectors to WordNET concepts yielded virtually

identical results in terms of precision and recall than Plain-Text, slightly reducing

the precision and recall. We found an exception to this observation in the SMO-LP

classifier, in which WordNET led to precision and recall boosts between 3 and 7%

for every training/testing split percentage. However, such improvement is appar-

ently an anomaly of this configuration, which presented a low precision and recall

with the Plain-Text dataset. Nonetheless, the gains obtained with WordNET are still

significantly lower to the boost produced by enriching the dataset with SRL in the

same configuration (* 18% gains).

The classifiers behaved better with the WordNET-enriched and Wikipedia-
enriched datasets than with the previous concept-based datasets (see Fig. 8).

However, this enrichment strategy failed to improve the results of Plain-Text by a

significant margin. Since the results are very similar to those of the Plain-Text, the
reader is referred to Fig. 9 to appreciate the precision and recall variations. This

chart summarizes the improvements of the enriched datasets (SRL-Enriched,
WordNET-Enriched and Wikipedia-Enriched) with respect to traditional text

classification (Plain-Text). The X axis contains the configurations of single-class

classification algorithms, multi classes/labels extensions and the training/testing

splits percentages, whereas the Y axis represents the differences in recall and

precision between the classifiers using word vectors and its enriched counterparts. A

quick look at the precision and recall obtained with the J48-BR and J48-LP

configurations shows that WordNET and Wikipedia enrichment neither increased

nor reduced the values achieved with the Plain-Text dataset. Fortunately, this was
not the case of SRL-enriched classification, which produced approximately 8%

improvement for J48 in both precision and recall. The results of the NB classifier

revealed a pattern in the measures, in which the SRL-Enriched dataset consistently
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Fig. 9 Accuracy gains and losses due to enrichment
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boosted the precision and recall by approximately 12%, while the classifiers were

insensitive when using WordNET and Wikipedia enrichments.

Unlike J48 and BR, the SMO classifier is suited to handle a large number of

attributes in the dataset, which is a direct consequence of enriching the instance

vectors, and thus its performance is very relevant in the evaluation. Despite this

characteristic, the SMO-BR configuration exhibited a nearly identical precision and

recall with the WordNET-enriched dataset to that of Plain-Text. Using Wikipedia as

enrichment mechanism instead did not produce significant variations in precision

and recall for SMO either. Either way, the classification improvements of the SRL-
enriched dataset in SMO-BR were noticeable lower than that of NB algorithms in

terms of both precision and recall (6% vs. 12%). This phenomenon can be attributed

to the good precision and recall already obtained by this configuration, which left

little room for boosting the metrics. The anomaly observed with the SMO-LP

classifier was even more evident in the enriched datasets. Since this configuration

underperformed with the Plain-Text dataset, using either WordNET, Wikipedia or

SRL produced significant gains in precision and recall. For WordNET-enriched and

Wikipedia-enriched datasets, the highest boost of * 10% was obtained with 20/80

splits. The improvements slightly decreased as the training sets of the splits were

larger. Training the classifier with the SRL-enriched dataset produced a maximum

* 18% boost in the precision and recall, outperforming the other enrichment

strategies by a factor of two in some of the splits. Even though SMO-LP obtained

the largest accuracy boost, this classifier was not the best performing configuration

when it comes to absolute measurements. For instance, J48-LP got a similar

precision and SMO-BR got a higher recall than SMO-LP.

4.5 Discussion of results

There were two main lessons learned from the evaluation of the classifiers. First and

foremost, the SRL enrichment strategy produced a noticeable improvement for the

classification of DAs. Second, traditional enrichment strategies failed to enhance the

classification results when applied to requirements documentation. Regarding the

second statement, the accuracy of the classifiers did not increase by using WordNET

and Wikipedia, partially confirming our belief that these kind of enrichment

techniques are not suitable for technical documents such as software requirements

specifications. The strategy of replacing word vectors for concept vectors derived

from Wikipedia articles and WordNET synsets (synonyms sets) produced poor

results, achieving a lower precision and recall than the Plain-Text dataset. The

combination of words and Wikipedia/WordNET concepts did not boost accuracy

either. In Wikipedia, the enriched representation did not improved the classification

because most articles/categories available in this resource are broadly-scoped and

unrelated to software concerns, and failed to increase discriminative power of the

dataset. In WordNET, the enriched representation incorporated fine-grained

concepts that failed to complement the requirements mainly due to their overlapping

with existing words in the instances.

Conversely, the SRL enrichment strategy consistently boosted the accuracy of all

the DA classifiers, increasing the precision and recall from as low as * 6% to a
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higher * 18%, depending on the configuration. The idea of expanding the

requirements with semantic role descriptions worked well, uniformly improving the

performance of the classifiers for the different partitioning splits. However, we

could not appreciate a correlation between the partitioning splits and the gains of the

SRL-enriched datasets. That is, we conjectured that the improvement produced by

the SRL enrichment was more evident when the training set is smaller. Surprisingly,

we observed that SRL boosted the recall and precision by a similar margin

independently of the size of the training subset. Another important observation of

the SRL-enriched dataset is that even in the most demanding learning scenarios

(e.g., using a 30/70 or 40/60 partitioning split), the best-performing classifiers were

able to obtain acceptable absolute precision and recall measures, which is a

necessity to develop tool-supported techniques that capitalize on the results of the

classification. This characteristic would essentially allow a developer to create more

complex and rich applications by relying on the ‘‘good’’ results of SRL-enriched

classifiers.

5 Applications to RE tools

The classifiers of DAs have applications in diverse types of requirements analyses.

In previous works (Rago et al. 2016a, b), we relied on the DA classifier during the

processing of use case specifications with two purposes: (1) identifying latent

concerns often related to quality attributes, and (2) for finding duplicate

functionality written in more than one document.

The first application dealt with the identification of concerns ‘‘buried’’ in the use

case scenarios and ‘‘scattered’’ across many documents. Use cases normally have

textual specifications that describe the interactions between the system and external

actors. However, since use cases are specified from a functional perspective,

concerns that do not fit well this decomposition criterion are kept away from the

analysts’ eye and might end up intermingled in multiple use cases. These

crosscutting concerns (CCCs) are generally relevant for analysis, design and

implementation activities and should be dealt with from early stages. Unfortunately,

identifying such concerns by hand is a cumbersome and error-prone task, mainly

because it requires a semantic interpretation of textual requirements. To ease the

analysis of CCCs, we developed an automated tool called REAssistant (Rago et al.

2016a) that is able to extract concepts in the text and localize quality-attribute

information from the specifications to reveal candidate CCCs, helping analysts to

reason about them before making important commitments in the development. The

REAssistant tool is implemented as a set of Eclipse plugins that provide special

views for visualizing CCCs at different levels of granularity.

The second application that takes advantage of our DA classifier aimed at

spotting functional behaviors duplicated in the use cases. In spite of existing

guidelines for writing use cases, industrial use cases do not often meet the standards

of what it is considered a ‘‘good’’ use case model and often exhibit signs of

unwanted/unnecessary redundancy. Duplicating functionality is the action of

repeating the description of some interactions between the system and actors.
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Although duplication is not always a quality defect, and it might be there for the

sake of readability of non-technical stakeholders, the issues entailed to lack of

modularity and abstraction can have a profound (negative) effect on the developers

conducting activities such as effort estimation, project planning, architectural

design, change impact analyses and evolution management. Unfortunately, finding

duplicate functionality in multiple specifications is a cumbersome, arduous and

error-prone activity for the analysts. For this reason, we developed a tool called

ReqAligner (Rago et al. 2016b) that helps analysts to identify duplicate behaviors in

use cases and provides guidelines to mend those defects (duplications) in an

automated fashion. This tool is also materialized as a set of Eclipse plugins that can

display the duplication in the use cases and assist them to refactor their text.

The sub-sections provide more details about the internal components of both

tools, with a focus on the role of the DA classifier for its operation. The reader is

referred to Rago et al. (2016a, b) for further information about the tools.

5.1 The REAssistant tool

The REAssistant11 tool tries to identify latent concerns by understanding the

meaning of use case interactions and relating them with well-known crosscutting

concerns (e.g., performance, security, persistence). Initially, the tool adds NLP-

generated annotations to the text. These annotations consist of sentences, tokens,

arguments and predicates. Next, the tool runs the DA classifier to recognize the kind

of interaction described in each use case step. Once the text analyses are completed,

analysts can query the resulting annotations by means of searching rules. The

analysts’ role is to define concern-specific queries codified in terms of the NLP

annotations to search for crosscutting concerns. The queries can also take advantage

of DAs to unveil crosscutting relations, which represent functional requirements

affected by the concerns. Finding these relations requires a semantic interpretation

of the use case steps and its linkage with the concerns, which would be impractical

to do without concepts like DAs. REAssistant comes loaded with a predefined

ruleset of CCCs, but these rules can be easily customized by analysts. The queries

codify knowledge about concerns and how they relate semantically to natural

language expressions, and were defined by experienced analysts to cover a wide

range of software domains. There are two types of queries: i) direct queries,
responsible for detecting a CCC; and ii) indirect queries, for detecting DAs that are

potentially related to that concern. Direct queries are focused in localizing explicit

references to a particular CCC, for example, the word ‘‘server’’ or ‘‘database’’.

Complementary, indirect queries are focused in finding more subtle associations that

come from a semantic interpretation of the use cases. Figure 10 illustrates a

PERFORMANCE rule composed of three queries. Query #1 would find parts of the text

related to PERFORMANCE through the analysis of token lemmas such as ‘‘response’’

and ‘‘second’’, similarly to keyword-based approaches. Queries #2 and #3 make use

of domain actions to reveal indirect impacts, looking for actions such as

‘‘calculation’’ and ‘‘process’’.

11 https://code.google.com/p/reassistant/.
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We carried out an evaluation of the rules in REAssistant with three case-studies.

In the experiments, the use of indirect rules (codified only in terms of keywords and

NLP properties) achieved a poor recall. This means that the majority of the

sentences associated with a relevant CCCs went undetected. However, once the

best-performing DA classifier (SMO-BR) was incorporated into the NLP pipeline

and the tool searched the concerns with DA-based indirect rules, the recall was

boosted by a 40%, whereas precision decreased by just a 5%. This improvement in

absolute recall percentages is attributed to the codification of more comprehensive

rules in terms of domain actions, which allowed the engine to significantly raise the

retrieval of sentences affected by concerns. Such rules would be overly complicated

to define by using mere keywords. Using DAs, the rules were simpler to codify and

more compact than those written with keywords. It is worth noting that the

(accurate) detection of DAs is vital here, and a bad classification leads to poor

results in the identification of CCCs. In absolute scores, the number of sentences of

the largest case-study initially found by keyword-based rules went from 86 to 206

when using DA-based rules (out of 273).

5.2 The ReqAligner tool

The ReqAligner12 tool was developed to find duplicate functionality in textual use

cases by semantically comparing the scenarios using algorithms similar to those

used in bioinformatics for matching DNA strings. Similarly to REAssistant,
ReqAligner leverages on a domain-specific classifier of semantic actions and, based
on such knowledge, employs a sequence alignment technique for finding

suspiciously similar functionalities in the use cases. Basically, the tool works by

transforming use case scenarios to sequences of symbols (i.e., DAs) and applying an

alignment algorithm to them. The role of the DA classifier with SRL enrichment is

pivotal in ReqAligner, because it allowed us to summarize and compare the textual

contents of the scenarios, as exemplified in Fig. 11. A nice advantage of using the

Fig. 10 Queries for searching a Performance concern (REAssistant)

12 http://ucrefactoring.googlecode.com/.
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DA classifier is that it can link more than one DA per sentence, because it operates

at the level of predicates. This is particularly helpful for different interactions of use

case specification combined into a single step using disjunctions/conjunctions. As

seen in the figure, each interaction is mapped to a single symbol in the sequence,

representing a bottom-level DA. Mid- and top-level domain actions are not

considered in the construction of sequences. In the case of interactions tagged with

multiple DAs at the same time (ambiguous requirements), the algorithm only maps

the most relevant bottom-level DA to the sequence. Once duplicate functionality is

found, the tool can suggest UML relationships that might help analysts to remove

duplications in the text and ultimately improve the overall requirements model.

Internally, ReqAligner assembles the sequences (or chains) of DAs after the

semantic analyses of use-case steps is completed. The resulting sequences

synthesize a summarized view of a use case scenario, which enables the comparison

of scenarios based on their overall semantics (that is, according their intention and

meaning). At this point, the different sequences are processed and matched pairwise

by means of a customized sequence alignment (SA) technique (Compeau and

Pevzner 2015). The sequence alignment basically compares the DAs of two

different sequences and aims at finding a sub-chain that maximizes a given

similarity function. When two sequences go under analysis, the comparison depends

on two predefined parameters: the substitution matrix and the penalization table,

which we adapted to the use cases domain. The substitution matrix defines the

similarities between the use-case steps (according to their DA). The penalization

table defines adjustments (i.e., penalties) the aligner should apply to the similarity

score when there are gaps between the matched sequences. If some textual portions

of a pair of use cases were successfully aligned, it means that we have one or more

candidate duplications in the functional specification. Based on these results, the

tool applies a series of heuristics to determine the kind of problem and the most

likely UML relationship that can help to refactor (and thus, improve) the use cases.

In Rago et al. (2016a), we also reported on the results of an empirical evaluation of

ReqAligner with five publicly available case-studies that produce promising results.

Fig. 11 Transformation of a use case scenario to a sequence of DAs (ReqAligner)
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6 Related work

The use of classifiers in textual documentation has draw the attention of many

engineering researchers in the past few years. On one hand, there has been an

increasing interest in improving engineering processes such as software develop-

ment by applying classification techniques. The goal of these works is to tag

software documentation with useful concepts that will ultimately simplify and

streamline their analysis. On the other hand, many researchers have also

investigated strategies for enriching textual documentation with semantic resources

such as WordNET and Wikipedia. Essentially, these strategies aim at complement-

ing the documents with additional information that will help to increase the

accuracy of the classifiers. The following sub-sections discuss some relevant works

that have addressed these lines of research.

6.1 Identification of domain-specific concepts in software documentation

Many authors have stressed the need of recognizing domain-specific concepts in

textual documents. However, current approaches detect the concepts using either

ad-hoc techniques or classifiers with VSM transformations. Sinha et al. (2010)

introduced the notion of semantic actions in use cases to support completeness,

structural and flow checks. Sinha’s research is the basis for our hierarchy of DAs.

Basically, they implemented a pipeline of linguistic analysis engines for

understanding textual use cases and defined an extensible architecture to process

requirements in multiple languages. The novel contribution of their work is a

domain annotator that maps commonly occurring verbs to a set of pre-defined

semantic classes, such as: INPUT, OUTPUT, READ, WRITE, GIVE, GET, UPDATE, QUERY or

DELEGATE, among others. However, Sinha’s implementation relies on a dictionary of

verbs and static confidence values (for verb associations), disregarding contextual

information and requiring a tailored dictionary per system. Furthermore, another

limitation of Sinha’s taxonomy is the fact that it contains classes of different

abstraction levels, such as UPDATE and DELETE vs. WRITE. Kamalrudin et al. (2011)

developed an approach for assuring consistency, completeness and correctness of

textual use cases, which links the use cases to abstractions called essential

interactions. An essential interaction is an important key phrase (in the context of

use cases) labeled with a meaningful abstract term. For instance, phrases with

predicates such as ‘‘indicate’’, ‘‘choose’’ and ‘‘select’’ are linked with an abstract

interaction named CHOOSE. The authors compiled a library of essential interactions

that support a variety of application domains. Examples of abstract interactions in

the library include CHOOSE, OFFER, VIEW, REQUEST, IDENTIFY, CALCULATE or CONFIRM,

among others. Requirements are tagged with these abstract interactions by means of

text-matching techniques. Although Kamalrudin’s abstractions seem similar to our

DAs, we believe that DAs work at a higher abstraction level mainly because many

of our classes at the bottom level often include multiple essential interactions (e.g.,

‘‘enter’’, ‘‘complete’’ and ‘‘identify’’ can be considered an ‘‘Input’’ DA) and

essential interactions are often linked to a very limited number of words (1-to-1

Using semantic roles to improve requirements classification…

123



mapping). Additionally, essential interactions only capture fine-grained behaviors

whereas our hierarchy of DAs distinguishes the relationships between low, mid and

high-level actions that are mapped to a single word. Jurkiewicz and Nawrocki

(2015) analyzed use case scenarios to detect missing events. To do so, they

recognize associations between use-case scenarios and classes of activities by

combining NLP techniques with a special classifier. Jurkiewicz’s activities are very

similar to Sinha’s actions and to our DAs. A limitation common to the three

approaches above is their lack of support for semantic enrichment, which might lead

to problems of ambiguity or synonyms.

Recent works in the Software Engineering field have employed advanced NLP

techniques. Sengupta et al. (2015) developed an approach for deriving a semi-

formal model from textual requirements in order to make quality assessments and

integrity checks. Essentially, a domain-specific ontology is used for semantically

categorize commonly occurring verbs into high-level actions (i.e., intentions),

relational verbs (part-whole and part-of) and low-level actions (i.e., concrete

behaviors). Each category is further refined into classes that indicate the semantic

meaning of an individual verb, such as POLICY, IS-A, EXECUTE, CREATE, INPUT/

OUTPUT, PERMIT, CONDITION or VIEW, among others. These classes are very similar to

our DAs, but lack of a proper hierarchical organization (for example, display actions

labeled as VIEW should be considered a special case of I/O). Moreover, the approach

has a limited support for handling ambiguous requirements, even though the authors

acknowledged that over 25% of their requirements dataset belong to two or more

classes. In our work, we have addressed this situation by modeling the problem as a

multi-label classification task. In addition, a dependency parser is used for

extracting subject-verb-object structures and semantic role labeling is employed to

determine agents, themes and objects. Unfortunately, they applied an ad-hoc SRL

technique which only extracts a subset of roles by taking advantage of Stanford

dependencies. In many cases, this is a simplification of the SRL problem as defined

in PropBank or FrameNet. Another limitation of such implementation is that this

lightweight SRL does not provide information about the semantic roles the

predicates and arguments are playing in a sentence. In our approach, we take

advantage of the information available in PropBank to enrich text classification with

semantic descriptions of the roles. Another promising research for comparing

existing requirements by means of transformations to more formal models is given

by Roth et al. (2014) and Roth and Klein (2015). Initially, they defined an ontology

that captures general requirements concepts from different domains. The first level

of the ontology contains two classes for distinguishing THINGS from OPERATIONS. The

former class is further refined in ACTOR, OBJECT and PROPERTY, whereas the latter is

refined in ACTION, EMERGENCE, STATUS and OWNERSHIP. There are also relations

between classes which describe and constrain interactions among them, such as

HAS_ACTOR, ACTS_ON or OWNS, among others. Roth also proposed using statistical

techniques from semantic role labeling to classify textual requirements and map

them to ontology concepts and relations. The underlying idea resembles the steps of

a traditional semantic role labeling task, which analyzes the text progressively

through incremental steps, namely: identifying the concepts, assigning their type,

determining related concepts and labeling relations between pairs of concepts.
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Similarly to our work, the text is processed by a series of NLP modules, such as

POS-tagging, lemmatization and dependency parsing. An important limitation of

Roth’s work is the level of detail of the ontology, which only describes generic

concepts of use cases and does not have support for telling domain-specific

interactions apart. The representation introduced in our work make it possible to

recognize fine-grained interactions at the lowest level of the DA hierarchy.

6.2 Document enrichment for improving classification accuracy

Several works have studied semantic enrichment strategies for text classification.

Some early works showed improvements in the overall accuracy of text classification

algorithms. However, the importance of having domain-specific resources for

enriching technical documents has been acknowledged. Bloehdorn and Hotho (2006)

explored the use of ontologies in text classification tasks in domains such as news,

medicine and agriculture, obtaining good results. Nonetheless, the authors noted that

the improvement is dependent on the enrichment source chosen, which has to be

aligned with the domain of the datasets. Egozi et al. (2011) presented an approach

that enriches textual representations with concept-based features extracted from

Wikipedia. This approach was used in information retrieval tasks for transforming/

enriching both documents and queries with semantic concepts and performing

searches in the enriched space. The premise is that by using concepts the retrieval

should be less dependent on the specific terms encoded in the documents.

Nonetheless, the authors had to resort to aggressive feature selection techniques to

avoid ‘‘noisy’’ concepts and improve the initial accuracy of retrieval. Llorens et al.

(2013) explored the application of semantic knowledge to improve the identification

and classification of temporal expressions and events. Particularly, they used lexical

semantics and semantic roles for enriching textual information and coping with time-

related ambiguities. Semantic roles provide valuable information for telling temporal

arguments apart from non-time related arguments. However, the improvements

obtained experimentally could not be replicated for their classification, because

according to the authors the semantic enrichment was not sufficiently discriminative

in their domain. Wang and others also explored the use of Wikipedia for text

classification. In Wang and Domeniconi (2008), a semantic kernel is used to embed

background knowledge derived from Wikipedia and enrich textual representations.

Some initial evaluations lead to slightly better results than bag-of-words represen-

tations in newspapers, forums and movies datasets. In Wang et al. (2009), Wikipedia

was also applied to text classifiers for news datasets. The authors discovered that

over-enriching the data can lead to worse results than the baseline. Bai et al. (2010)

extracted information from WordNET to improve text classification, obtaining

slightly better results than the bag-of-word baseline. Navigli et al. (2011) also

explored WordNET concepts for classifying and disambiguating Wikipedia articles.

Essentially, they created semantic models for the articles derived from WordNET

synsets, their synomyns and glosses, obtaining better results than the baseline. Li

et al. (2012) presented a technique that uses WordNET enrichment for creating

category profiles that allows to classify unlabeled documents, avoiding the need of

labeled datasets and hence fully automating text classification tasks. Rooney et al.
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(2014) tackled the problem of textual entailment by enriching sentences with diverse

features extracted from semantic resources, such as dependency parsing, semantic

role labeling, and WordNET relationships (e.g., synonyms, antonyms, meronyms,

among others). As a result, they found several redundant features that hinder

classification. Tommasel and Godoy (2014) proposed a semantic enrichment of tags

for the classification of Web resources, using both Wikipedia and WordNET.

Comparisons against simple tag-based representations showed that certain config-

urations with WordNET slightly improved classification tasks, but this trend could

not be verified with Wikipedia.

7 Conclusions and future work

In this article, we have presented an enrichment technique based on semantic roles

for improving text classification, with applications to the RE domain. Particularly,

the inclusion of SRL helped to categorize domain-specific abstractions called DAs

in textual use cases. We approached the categorization of DAs as multi-label,

hierarchical classification problem. An empirical evaluation of several configura-

tions of classifiers on a requirements dataset showed promising results due to the

SRL enrichment. Specifically, we observed classification improvements up to

* 18% in both precision and recall for some configurations. We also noticed that

classifiers required fewer instances to learn good classification models. In addition,

the evaluation showed that WordNET and Wikipedia enrichments are not enough to

improve the classification of technical documentation, such as requirements

specifications. From a theoretical viewpoint, our research shows that role-based

features, such as predicate and argument descriptions, can be beneficial for text

classification purposes. An experimental evaluation in a technical domain, such as

use case specifications, revealed accuracy gains and little to none precision loss.

This result is interesting because enrichment strategies based on general-purpose

resources have difficulties to achieve a good accuracy in this type of documentation.

Thus, domain-specific or semantic enrichment techniques need to be investigated in

order to boost accuracy. A practical implication of our work is a demonstration that

an SRL enrichment allows classifiers to perform better in cases of unknown textual

requirements. The strength of SRL comes from its reliance on common knowledge

encoded in semantic roles descriptions. Since applications like REAssistant or

ReqAligner, which rely on the classifier of DAs, demand a high accuracy in order to

produce good results, alternative enrichment techniques like the one presented in

this article are very important in tool-supported engineering activities. Along this

line, another practical implication is the conjecture that both the DA model and the

SRL enrichment are applicable to other kinds of software documents.

As future work, we will further evaluate the SRL technique with other

requirements datasets, and compare it against other approaches based on subsets of

Wikipedia or WordNET. We plan to upgrade the semantic role tagger used in this

work with more recent and better SRL tools. We will also investigate whether

feature selection algorithms can enhance the results of the multi-label classifier.

Finally, we will explore other applications of our DA classifier to aid complex
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requirements analyses. Some promising ideas are (1) the adaptation of the hierarchy

of domain actions to other types of requirements specifications such as user stories,

and (2) the detection of design decisions in software architecture documents and

traceability links between the architecture and requirements.
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Appendix: Description of domain actions

• Process: Represents interactions that involve CPU-demanding activities (of a

system).

• Verification: Covers interactions associated from checks of user input,

validation of stored information and consistency of data.

• Calculation: Covers interactions associated to the analysis of information

and the synthesis of new results.

• Communication: Covers all types of interaction with subsystems or foreign

software/hardware.

• Internal: Groups interactions linked to data sharing with subsystems.

• External: Groups interactions linked to data sharing with other systems.

• Data: Represents interactions that involve data-related activities, such as

persistence and caches operations.

• Read: Covers interactions associated to retrieval of data.

• Single: Groups retrieval interactions of single values, often linked to

parameters and object representations.

• Multiple: Groups retrieval interactions of many tuples of information,

often materialized as a complex query.

• Write: Covers interactions associated to the storage of data, by either adding,

modifying or removing.

• Create: Groups interactions aimed at incorporating new information to

the system.

• Update: Groups interactions aimed at altering pre-existing information in

the system.

• Delete: Groups interactions aimed at removing information from the

system.
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• Use Case: Represents interactions commonly used in use case scenarios to

manage the execution flow.

• Begin: Groups interactions frequently used to denote the start of a use case

flow.

• End: Groups interactions frequently used to denote the end of a use case

flow.

• Control: Groups interactions to denote the jump from one use case step to

another.

• Input/Output: Represents interactions that involve the communication between

the system described and human actors (or other systems).

• Input: Covers interactions associated to the feeding of information to the

system.

• Entry: Groups interactions related to feeding in data via physical/virtual

interface.

• Selection: Groups interactions related to choosing data from a list of

options.

• Output: Covers interactions associated to the delivery of information to end

users.

• Display: Groups interactions related to the presentation of data on a

physical/virtual display.

• Notification: Groups interactions about status changes or warning

messages.
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